10708 Graphical Models: Homework 2

Due October 15th, beginning of class

October 1, 2008

Instructions: There are six questions on this assignment. Each question has the name of one
of the TAs beside it, to whom you should direct any inquiries regarding the question. Please
submit your homework in two parts, one for each TA. Also, please put each TA’s questions
in the same order they appeared in the homework. The last problem involves coding, which
should be done in MATLAB. Do not attach your code to the writeup. Instead, copy your
implementation to

/afs/andrew.cmu.edu/course/10/708/Submit/your_andrew_id/HW2

Refer to the web page for policies regarding collaboration, due dates, and extensions.

1 I-equivalence [20 pts] [Amr]

Let G; and Gy be two graphs over X'. In this question we will explore when G; and G, are
[-equivalent.

1. [3 pts] Prove that two network structures G; and G, are I-equivalent if the following
two conditions hold:

(a) The two graphs have the same set of trails, and
(b) A trail is active in G iff it is active in Gs.
(Hint: Use the notion of d-separation.)

2. [3 pts] Prove that if G; and G, have the same skeleton and the same set of v-structures
then they are I-equivalent.(Hint: use the result from part 1)

3. [2 pts|] Can part 2 be extended to an if and only if statement? If so, prove the other
direction. If not, provide an example of two I-equivalent graphs G; and G, that have
the same skeleton, but different v-structures.

Your answers to the above questions should convince you that same v-structures, although
sufficient, are not necessary for I-equivalence. In the following parts, you will provide a
condition that precisely relates I-equivalence and similarity of network structures. We begin
with a few definitions you will need:

Definition 1 (Minimal Active Trail) Consider an active trail T = X1, Xo, ..., X,,. We
call this active trail minimal if no subset of the nodes in T" forms an active trail between
Xy and X,,. In other words, T is minimal if no other active trail between X, and X,,
“shortcuts” any of the nodes in T'.

Definition 2 (Triangle) Consider a trail T = X1, Xs,..., X,,. We call any three consec-
utive nodes in the trail a triangle if their undirected skeleton is fully connected (i.e., forms a
3-clique). In other words, X; 1, X;, X;11 form a triangle if we have X; 1 = X; = X;11 and
Xio1 = Xip.

4. [3 pts] Prove that the only possible triangle in a minimal active trail is one where
X1 «— X; — X,;11, with an edge between X; ; and X;,;, and where either X; ; or
X1 is the center of a v-structure in the trail. (Hint: prove by cases.)

5. [4 pts] Consider two networks G; and G, that have the same skeleton and same im-
moralities. Prove, using the notion of minimal active trail, that G; and G, imply
precisely the same conditional independence assumptions, i.e., that if X and Y are
d-separated given Z in G;, then X and Y are also d-separated given Z in G,. (Hint:
prove by contradiction.)

6. [5 pts] Finally, prove that two networks G; and G, that induce the same conditional
independence assumptions must have the same skeleton and the same immoralities.
(Hint: prove by contradiction.)

2 P-MAPS, minimal I-maps and PDAGS [10 points] [Amr]

In this question we will analyze what happens when you apply the PDAG learning algorithm
you implemented in HW1 on a distribution that does not have a P-map. In this problem,
use d =n — 2.

Consider a probability distribution P over 4 variables, (Xi, Y7, X5, Y3), that entails the fol-
lowing and only the following independence assertions: X; L X5|Y7,Ys and V) L V5| Xy, Xs.
From class we know that this distribution does not have a P-map.

1. [1 pts] Draw the skeleton and final P-DAG resulting from applying the PDAG learning
algorithm, from HW1, using the above independence assertions.

2. [2 pts] Given a P-DAG, we can obtain a DAG (i.e. a Bayesian network) consistent
with it by repeating the following two steps until all edges are directed: 1) Randomly
directing an undirected edge and 2) Propagating the constraints enforced by the new

directed edge to avoid creating extra immoralities or cycles. How many DAGs can
you obtain from the skeleton learnt in part 1, if any? Either enumerate all of them or
explain why you can not obtain any DAG.

3. [2 pts| While P does not have a P-map, it still has minimal I-map(s). Draw the minimal
[-map for P using each of the following orders of adding variables to the graph:

b X17 Yi) }/27 X2
L X17 }/17 X27 }/2
Are these minimal I-maps I-equivalent, and why?

4. [1 pts] What is the relationship between the skeleton obtained in 2.1 and the underlying
skeletons of the DAGs obtained in 2.37

5. [4 pts] Prove the following statement or provide a counter example: an edge W — V
will appear in the skeleton produced by build-skeleton if and only if W = V appears
in all minimal I-maps of P. (Hint: each minimal I-map is associated with an ordering
of adding variables to the graph)

3 Decomposable Scores [10 pts] [Dhruv]

Decomposable scoring functions are those where the score of a network given data D can be
represented as the sum of scores of each node given its parents and the data:

score(G : D) = Z FamScore(X;|Pa¥ : D)

In greedy structure search we explore the space of structures by applying a local operator
to an existing Bayes net. Examples of local operators include adding an edge, deleting an
edge, and reversing an edge. In this question you will show that if the scoring function
is decomposable, then computing the change in score caused by a local operator can be
computed efficiently.

1. [5 pts] Prove proposition 17.4.6 (Koller & Friedman)
2. [5 pts| Prove proposition 17.4.7 (Koller & Friedman)

4 Learning Edge Directions [15 pts] [Amr]

In this question, we consider a simpler form of structure learning for BNs: Assume we have a
skeleton and want to build a BN from it. For each edge, we want to either assign a direction
to this edge or delete it from the graph. For this problem, you can assume you are using
some decomposable score, FamScore(X;|Pay;).

3

1. [2 pts] Consider the skeleton X; — — X, — — X3, what are the possible BNs that we are
considering in this problem? What is the score of each of the graphs?

2. [3 pts|] Now, consider the skeleton X; — =Xy — —X3 — —X4. Does the decision about
the edge X7 — — X5 affect the family score of X37 Justify your answer.

3. [10 pts] Using the intuitions above, design a linear time dynamic programming algo-
rithm for finding the optimal BN from a chain skeleton X; —— Xy ——X3—— ... — =X,

5 Greedy Structure Search [10 pts] [Amr]

Suppose we have a general network structure search algorithm, A, that takes a set of basic
operators on network structures as a parameter. This set of operators defines the search space
for A, as it defines the candidate network structures that are the “immediate successors”
of any current candidate network structure, i.e., the successor states of any state reached
in the search. Thus, for example, if the set of operators is [add an edge not currently in
the network], then the successor states of any candidate network G is the set of structures
obtained by adding a single edge anywhere in G (so long as acyclicity is maintained).
Given a set of operators, A does a simple greedy search over the set of network structures,
starting from the empty network (no edges), using the BIC' scoring function. Now, consider
two sets of operators we can use in A. Let Apqq be A using the set of operations [add an
edge not currently in the network]|, and let Apgq,derere) be A using the set of operations [add
an edge not currently in the network, delete an edge currently in the network].

1. [5 pts] Show a distribution where, regardless of the amount of data in our training
set (i.e., even with infinitely many samples), the answer produced by Aj.qq is worse
(i.e., has a lower BIC score) than the answer produced by Ajsqa,deiete- (It's easiest to
represent your true distribution in the form of a Bayesian network, i.e., a network from
which sample data is generated.)

2. [5 pts| Show a distribution where, regardless of the amount of data in our training set,
Aladd,delete] Will converge to a local maximum. In other words, the answer returned by
the algorithm has a lower score than the optimal (highest-scoring) network. What can
we conclude about the ability of our algorithm to find the optimal structure?

Note: In 5.1 and 5.2, we are looking for a full specification of each distribution in terms of
the graph structure and the local CPTs. Please also use your fully specified distributions to
justify the behavior in 5.1 and 5.2.

6 Tree-Augmented Naive Bayes [35 pts] [Dhruv]

In many classification tasks naive Bayes is either competitive with, or is, the best method,
even though, naive Bayes ignores dependencies between features. This seems to be an
argument against structure learning, until one realizes that most structure learning methods
are trying to model the joint distribution, which does not necessarily corresponds to a good
estimate of the class-conditional distribution.

Tree-Augmented Naive Bayes (TAN) is a model augments naive Bayes by adding correlations
between features such that each feature has the class node, and one other feature, as parents.
Figure 2 is an example of a TAN model. The advantage of TAN over NB is that NB
assumes full conditional independence for the features, which can hurt in some cases by
double counting information. A TAN model can reduce some double counting problems by
modeling correlation between features.

Figure 1: An example of naive Bayes.

==

Figure 2: An example of tree-augmented naive Bayes. Note that the induced graph on the
evidence variables (w, z,y, z) forms a tree.

The algorithm for learning TAN models is a variant of the Chow-Liu algorithm for learning
tree-structured Bayes nets. Let C' represent the class variable, and {X;} ; be the features
(non-class variables).

1. Compute the conditional mutual information given C' between each pair of distinct
variables,

3 P(x;,z4|c)
[(X3; X4|C) =), Plwi,aj,0)log 5 ——=
(X5 X%,10) = D Pleveplog gt o

mi,mj,c

where P(-) is an empirical distribution (computed using the training data). Intuitively,

this quantity represents the gain in information of adding X; as a parent of X; given
that C' is already a parent of X.

2. Build a complete undirected graph on the features Xj,..., X,, where the weight of the
edge between X; and X is I(X;; X;|C). Call this graph Gp.

3. Find a maximum weighted spanning tree! on Gp. Call it 7p.

4. Pick an arbitrary node in 77 as the root, and set the direction of all the edges in 7p
to be outward from the root. Call the directed tree 7. (Hint: Use DFS).

5. The structure of the TAN model consists of a naive Bayes model on C, Xy,..., X,
augmented by the edges in 7.

The task is to learn a boolean function, classifying input features as class 0 or 1. The data
can be found in corral .mat, where each row is an instance containing six boolean features,
and the last column is the class. The data is generated in gen_corral data.m, if you are
interested in knowing the true mapping.

6.1 Structure Learning [20 pts]

Implement the above algorithm for learning the structure of a TAN model, and submit your
code as tanstruct.m. Using the corral data, draw the structure (directed acyclic graph)
produced using this algorithm in your writeup.

6.2 Representation

In this part you will implement the representation of a general Bayesian network. Using this
representation, you will learn parameters of this model, and perform a simple inference step?
to perform classification in the next question.

Hint: The steps you should take in implementing this are as follows:

1. A data structure to represent a factor, a mapping from an assignment of variables
to a real value. Conditional probability tables can be viewed as factors. For exam-
ple, in figure 1, the conditional probability table for W would map the assignment
(W =1, C=1) to some value c. The easiest way to encode a factor is as a multidi-
mensional array where each dimension corresponds to a variable. See table factor.m.

2. A data structure to represent a Bayesian network. The easiest way to do this is just
to store a list of all the conditional probability tables as factors.

!Kruskal’s or Prim’s algorithm can be used to find a maximum weighted spanning tree. It is okay to use
external implementations, but only for finding the maximum spanning tree.
2Do not implement variable elimination.

3. A data structure that represent an assignment to variables. The easiest way to do
this is as a pair of vectors: vars and vals. Note that vals(7) is the value assigned to
variable vars(i). See assignment.m.

4. A function (assign prob.m) that takes a Bayesian network and an assignment to all
the variables, and returns the probability of that assignment.

Note: You will not receive full marks for an implementation that stores the full joint distri-
bution explicitly.

Note 2: There is nothing to report in this part. You will use (and upload) this code as part
of the next question.

6.3 Learning and Classification [15 pts]

In this question you will compare the classification accuracy of naive Bayes and TAN. Perform
a variant of leave-one-out cross-validation (LOOCV), that is, hold out one instance, learn
the structure and parameters from a random subset (of size m) of the rest, and then classify
this datapoint.

1. Learn the structure of a TAN model and estimate the parameters using the following
smoothing estimator. For the parameter corresponding to P(x;|Pa;) estimate it using

O ipa; = aP(z;|Pa;) + (1 — a)P(z;)
mP(Pa;) + s

where s is a smoothing parmeter. For this question, use s = 5. This is known as
back-off smoothing.

2. Learn a naive Bayes model and estimate the parameters using back-off smoothing.
3. Compare the classification accuracy of naive Bayes and TAN on the test set.

Note: In order to classify, you will need to compute P(C|X;, Xo, ..., X,,) where {X;}
are the features. We will develop machinery for general inference queries in the next
homework. For this question, you should use Bayes rule, and assign prob.m to get
the answer to this specific query. Do NOT implement any general inference algorithm
like variable elimination.

Plot the classification accuracy (for the two models) as a function of m, the size of the
random subset of training data (vary m from 10 — 63). Submit the code used to run these
experiments as tancompare.m. Comment on the trend observed in the plot. Specifically, do
you expect TAN to always (meaning, on all datasets) outperform NB?

