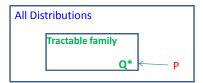
Variational Inference

Amr Ahmed Nov. 6th 2008

- Approximate Inference
- Variational inference formulation
 - Mean Field
 - Examples
 - Structured VI
 - Examples

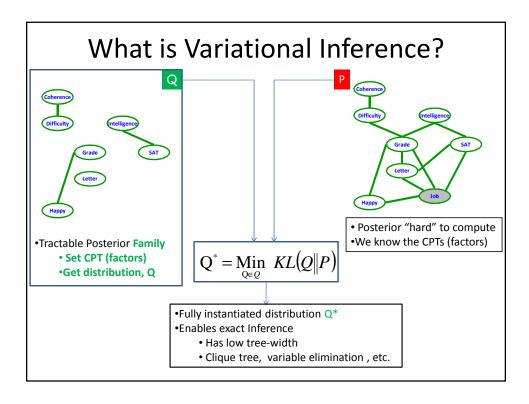
Approximate Inference

- Exact inference is exponential in clique size
- Posterior is highly peaked
 - Can be approximated by a simpler distribution
- Formulate inference as an optimization problem
 - Define an objective: how good is Q
 - Define a family of simpler distributions to search over
 - Find Q* that best approximate P



Approximate Inference

- Exact inference is exponential in clique size
- Posterior inference is highly peaked
 - Can be approximated by a **simpler** distribution
- Formulate inference as an optimization problem
 - Define an objective: how good is Q
 - Define a family of simpler distributions to search over
 - Find Q* that best approximate P
- Today we will cover variational Inference
 - Just a possible way of such a formulation
- There are many other ways
 - Variants of loopy BP (later in the semester)



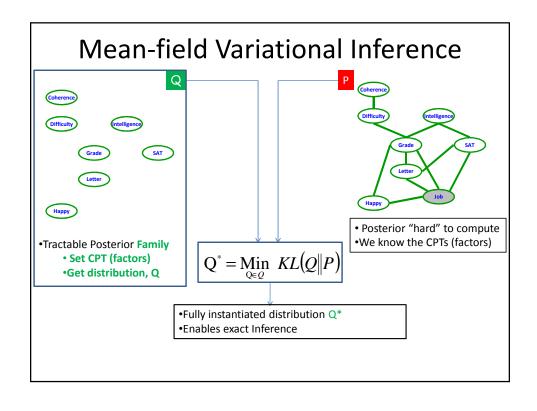
VI Questions

- Which family to choose
 - Basically we want to remove some edges
 - Mean field: fully factorized
 - Structured : Keep tractable sub-graphs
- · How to carry the optimization

$$Q^* = \min_{Q \in \mathcal{Q}} KL(Q||P)$$

- Assume P is a Markov network
 - Product of factors (that is all)

- Approximate Inference
- Variational inference formulation
 - Mean Field
 - Examples
 - Structured VI
 - Examples



• Theorem :
$$\ln Z = F[P_{\mathcal{F}},Q] + D(Q||P_{\mathcal{F}})$$
• Maximize = Minimize
• Where energy functional:
$$F[P_{\mathcal{F}},Q] = \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi] + H_Q(\mathcal{X}) \quad \text{Tractable By construction}$$
• Our problem now is
$$Q^* = \max_{Q \in \mathcal{Q} \atop \Sigma_g(X_i) = 1} F[P_F,Q] \quad \text{You get} \quad \text{In} Z \leq F[P_F,Q] \quad \forall Q$$
Maximizing F[P,Q] tighten the bound And gives better prob. estimates

$$P = \frac{1}{Z} \prod_{i} \phi_{i}(C_{i})$$

The Energy Functional

$$Q = \prod_{j} q_{j}(x_{j})$$

• Our problem now is

$$Q^* = \underset{\sum_{x_i} Q(X_i)=1}{\text{Max}} F[P_F, Q]$$

 Theorem: Q is a stationary point of mean field approximation iff for each j:

$$Q_i(x_i) = \frac{1}{Z_i} \exp \left\{ \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid x_i] \right\}$$

- Approximate Inference
- · Variational inference formulation
 - Mean Field
 - Examples
 - Structured VI
 - Examples

$$Q_i(x_i) = rac{1}{Z_i} \exp \left\{ \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid x_i]
ight\}$$

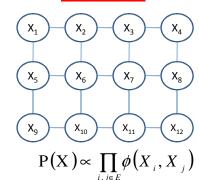
Example

Q : fully factorized MN

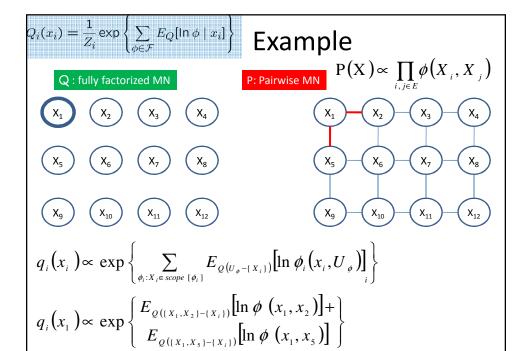
$$X_5$$
 X_6 X_7 X_8

$$Q(X) = \prod_{i=1}^{n} q_i(X_i)$$

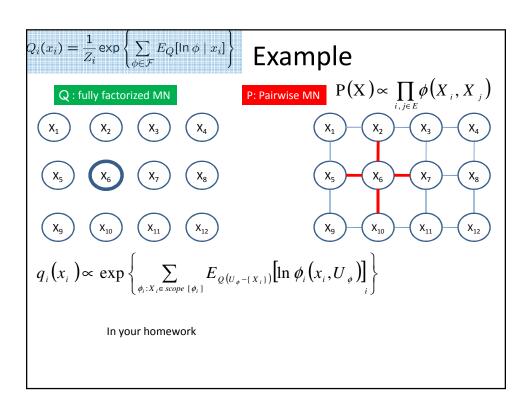
P: Pairwise MN



- Given the factors in P, we want to get the factors for Q.
- Iterative procedure. Fix all q_{i} , compute q_{i} via the above equation
- Iterate until you reach a fixed point



$$\begin{aligned} &Q_{i}(x_{i}) = \frac{1}{Z_{i}} \exp \left\{ \sum_{\phi \in \mathcal{F}} E_{Q}[\ln \phi \mid x_{i}] \right\} & \textbf{Example} \\ &Q: \textbf{fully factorized MN} & P(X) \propto \prod_{i,j \in E} \phi(X_{i}, X_{j}) \\ &X_{1} & X_{2} & X_{3} & X_{4} \\ &X_{5} & X_{6} & X_{7} & X_{8} \\ &X_{9} & X_{10} & X_{11} & X_{12} \\ &q_{i}(x_{i}) \propto \exp \left\{ \sum_{\phi_{i}: X_{i} \in scope} e_{\{\phi_{i}\}} E_{Q(U_{\phi} - \{X_{i}\})} \left[\ln \phi_{i}(x_{i}, U_{\phi}) \right]_{i} \right\} \\ &q_{i}(x_{1}) \propto \exp \left\{ E_{q(X_{2})} \left[\ln \phi(x_{1}, x_{2}) \right] + E_{q(X_{3})} \left[\ln \phi(x_{1}, x_{5}) \right] \right\} \\ &\propto \exp \left\{ \sum_{x_{2}} q_{2}(x_{2}) \ln \phi(x_{1}, x_{2}) + \sum_{x_{5}} q_{5}(x_{5}) \ln \phi(x_{1}, x_{5}) \right\} \end{aligned}$$



$$Q_{i}(x_{i}) = \frac{1}{Z_{i}} \exp \left\{ \sum_{\phi \in \mathcal{F}} E_{Q}[\ln \phi \mid x_{i}] \right\} \quad \text{Example}$$

$$Q : \text{fully factorized MN} \quad P(X) = \prod_{i,j \in E} \phi(X_{i}, X_{j})$$

$$X_{1} \quad X_{2} \quad X_{3} \quad X_{4} \quad X_{1} \quad X_{2} \quad X_{3} \quad X_{4}$$

$$X_{5} \quad X_{6} \quad X_{7} \quad X_{8} \quad X_{5} \quad X_{6} \quad X_{7} \quad X_{8}$$

$$Intuitively$$

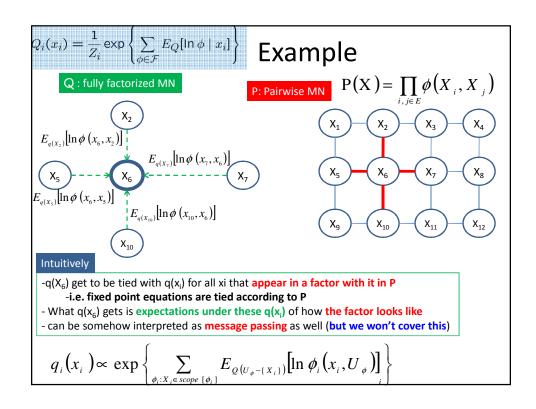
$$-q(X_{6}) \text{ get to be tied with } q(x_{i}) \text{ for all } xi \text{ that appear in a factor with it in P}$$

$$-i.e. \text{ fixed point equations are tied according to P}$$

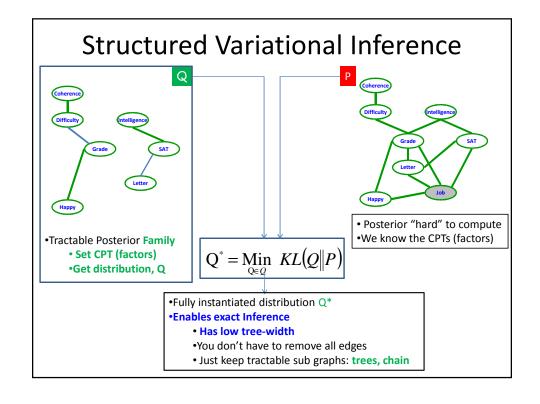
$$-\text{ What } q(X_{6}) \text{ gets is expectations under these } q(x_{i}) \text{ of how the factor looks like}$$

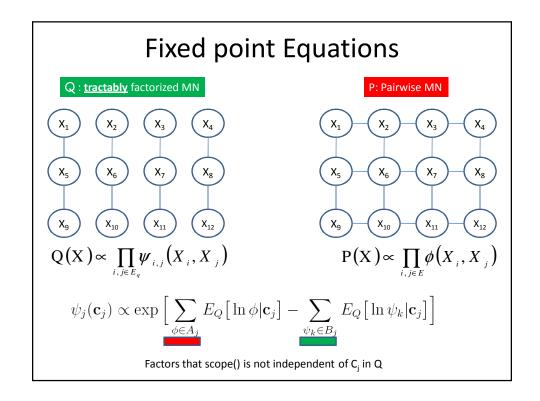
$$-\text{ can be somehow interpreted as message passing as well (but we won't cover this)}$$

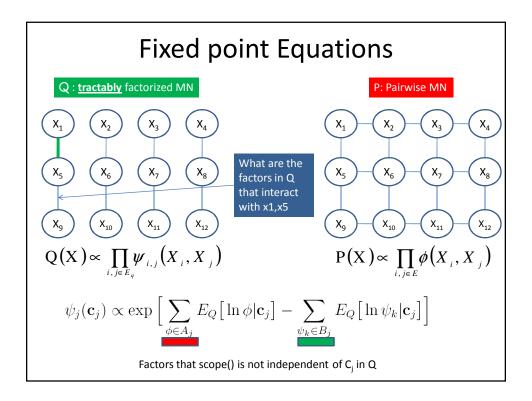
$$q_{i}(x_{i}) \propto \exp \left\{ \sum_{\phi_{i}: X_{i} \in \text{scope}} E_{Q(U_{\phi} - \{X_{i}\})} \left[\ln \phi_{i}(x_{i}, U_{\phi}) \right]_{i} \right\}$$

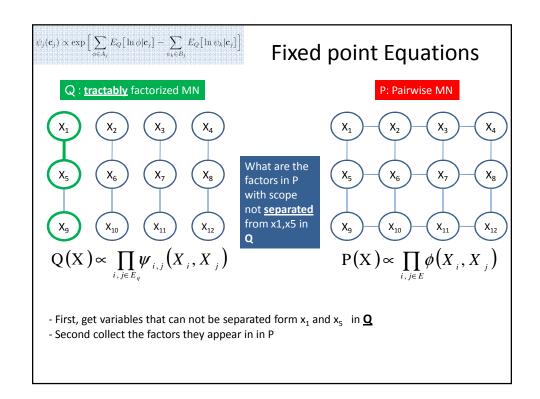


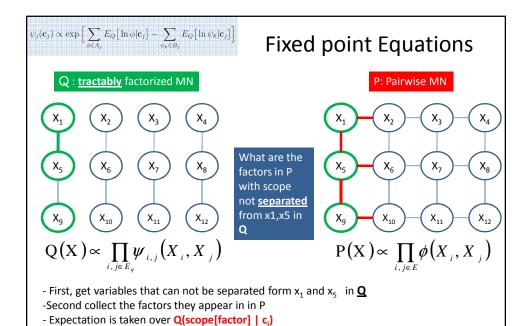
- Approximate Inference
- Variational inference formulation
 - Mean Field
 - Examples
 - Structured VI
 - Examples
- Inference in LDA (time permits)

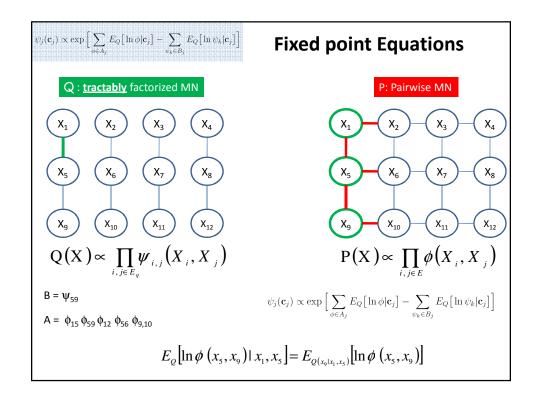










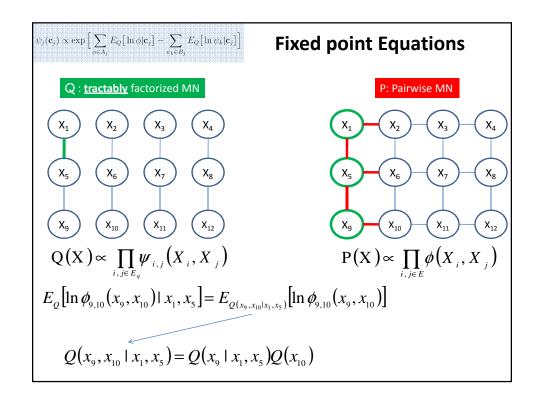


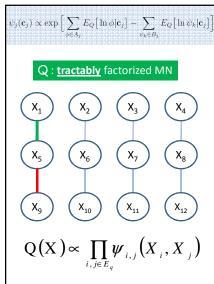
Fixed point Equations

Q: tractably factorized MN

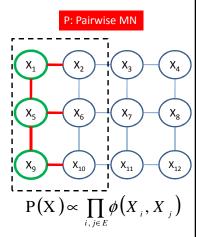
P: Pairwise MN

$$X_1$$
 X_2
 X_3
 X_4
 X_5
 X_6
 X_7
 X_8
 X_9
 X_{10}
 X_{11}
 X_{12}
 X_{12}
 X_9
 X_{10}
 X_{11}
 X_{12}
 X_{12}
 X_{13}
 X_{14}
 X_{15}
 X_{15}





Some intuition



- -What have we picked from P when dealing with the first factor (X1,x5)?
 - -Factors that interact with (x1,x5) in both P and Q
 - Fixed point equations are tied in the same way these variables are tied in P and Q
- can be also interpreted as passing message over Q of expectations on these factors
- Q: how to compute these madrigals in Q efficiently? Homework!

Variational Inference in Practice

- · Highly used
 - Fast and efficient
 - Approximation quality might be not that good
 - Always peaked answers (we are using the wrong KL)
 - · Always captures modes of P
 - · Spread of P is usually lost
 - Famous applications of VI
 - VI for topic models (LDA)
 - You can derive LDA equations in few lines using the fully factorized update equations (exercise)
 - We might go over it in a special recitations but try it if you are doing a project in topic models
 - · Involved temporal models
 - · Many more...