Clique Trees

Amr Ahmed October 23, 2008

Outline

- Clique Trees
- Representation
- Factorization
- Inference
- Relation with VE

Representation

- Given a Probability distribution, P
 - How to represent it?
 - What does this representation tell us about P?
 - Cost of inference
 - Independence relationships
 - What are the options?
 - Full CPT
 - Bayes Network (list of factors)
 - Clique Tree

Representation

- FULL CPT
 - Space is exponential
 - Inference is exponential
 - Can read nothing about independence in P
 - Just bad

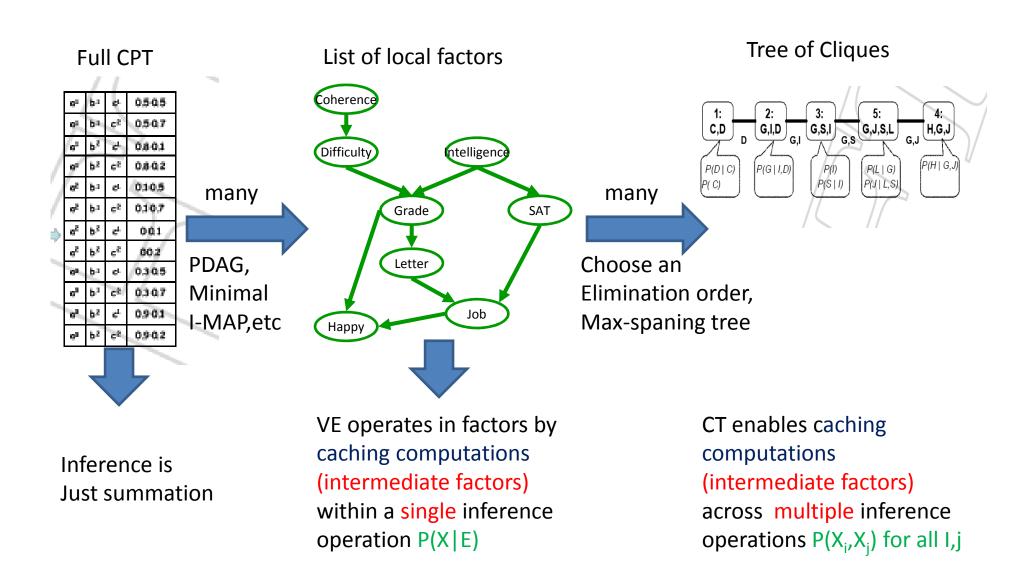
Representation: the past

- Bayes Network
 - List of Factors: $P(X_i | Pa(X_i))$
 - Space efficient
 - Independence
 - Read local Markov Ind.
 - Compute global independence via d-seperation
 - Inference
 - Can use dynamic programming by leveraging factors
 - Tell us little immediately about cost of inference
 - Fix an elimination order
 - Compute the induced graph
 - Find the largest clique size
 - » Inference is exponential in this largest clique size

Representation: Today

- Clique Trees (CT)
 - Tree of cliques
 - Can be constructed from Bayes network
 - Bayes Network + Elimination order → CT
 - What independence can read from CT about P?
 - How P factorizes over CT?
 - How to do inference using CT?
 - When should you use CT?

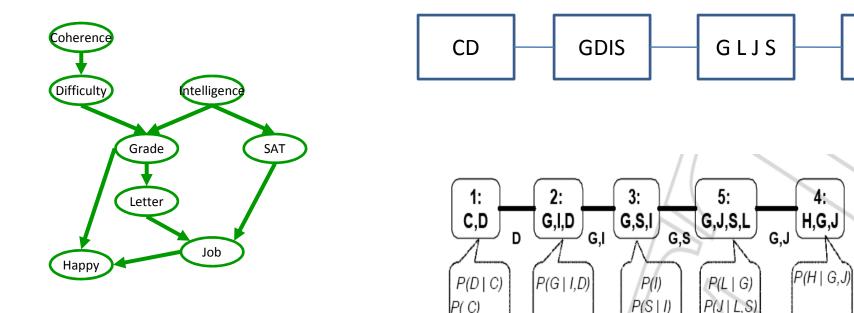
The Big Picture



- For set of factors F (i.e. Bayes Net)
 - Undirected graph
 - Each node i associated with a cluster C_i
 - Family preserving: for each factor $f_j \in F$, \exists node i such that $scope[f_i] \subseteq \mathbf{C}_i$
 - Each edge i j is associated with a separator $\mathbf{S}_{ij} = \mathbf{C}_i \cap \mathbf{C}_j$

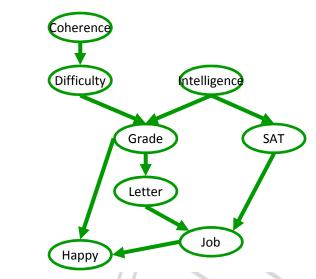
HJG

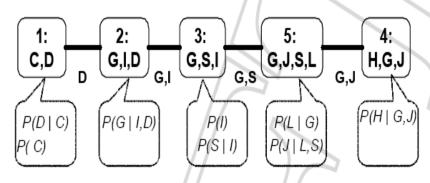
- Family preserving over factors
- Running Intersection Property
- Both are correct Clique trees



- What independence can be read from CT
 - I(CT) subset I(G) subset I(P)
- Use your intuition
 - How to block a path?
 - Observe a separator. Q4

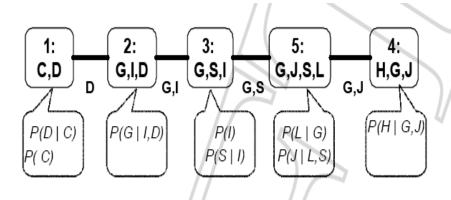
$$C \perp G \mid D$$
 $H \perp I \mid G, J$
 $H \perp I \mid G, S$
 $CD \perp HJ \mid GI$

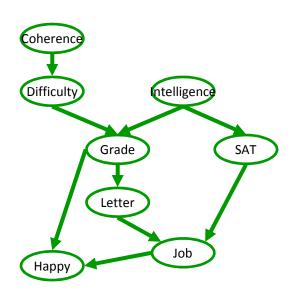




 How P factorizes over CT (when CT is calibrated) Q4 (See 9.2.11)

$$P(\mathbf{X}) = \frac{\prod_{i} P(\mathbf{C}_i)}{\prod_{ij} P(\mathbf{S}_{ij})}$$



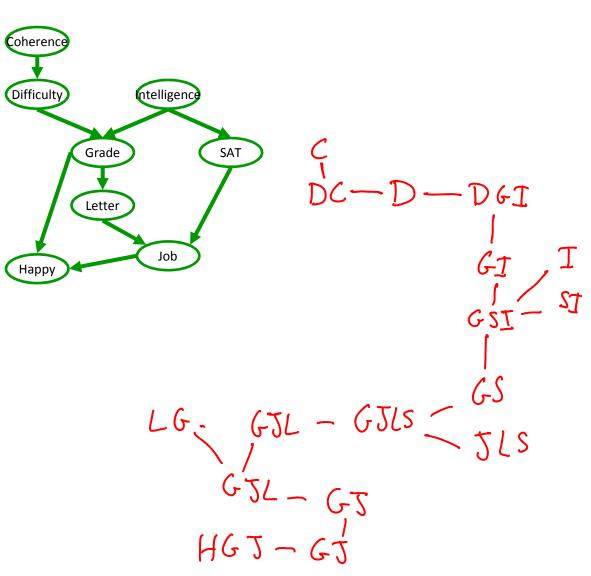


Representation Summary

- Clique trees (like Bayes Net) has two parts
 - Structure
 - Potentials (the parallel to CPTs in BN)
 - Clique potentials
 - Separator Potential
 - Upon calibration, you can read marginals from the cliques and separator potentials
- Initialize clique potentials with factors from BN
 - Distribute factors over cliques (family preserving)
 - Cliques must satisfy RIP
- But wee need calibration to reach a fixed point of these potentials (see later today)
- Compare to BN
 - You can only read local conditionals $P(x_i|pa(x_i))$ in BN
 - You need VE to answer other queries
 - In CT, upon calibration, you can read marginals over cliques
 - You need VE over calibrated CT to answer queries whose scope can not be confined to a single clique

Clique tree Construction

- Replay VE
- Connect factors that would be generated if you run VE with this order
- Simplify!
 - Eliminate factor that is subset of neighbor



Replay VE with order: C,D,I,H,S, L,J,G

Initial factors: C, DC, GDI, SI, I, LG, JLS, HJG

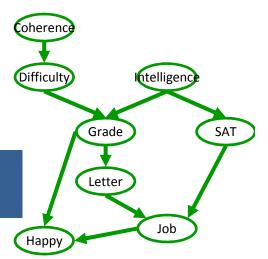
Eliminate C: multiply CD, C to get factor with CD, then marginalize C To get a factor with D.

$$C - CD - D$$

Eliminate D: multiply D, GDI to get factor with GDI, then marginalize D to get a factor with GI

$$C - CD - D - DGI - GI$$

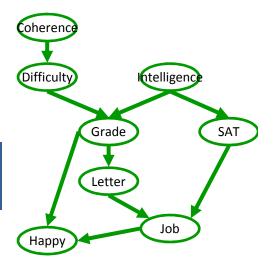
Eliminate I: multiply GI, SI, I to get factor with GSI, then marginalize I to get a factor with GS



Replay VE with order: C,D,I,H,S, L,J,G

Initial factors: C, DC, GDI, SI, I, LG, JLS, HJG

Eliminate I: multiply GI, SI, I to get factor with GSI, then marginalize I to get a factor with GS

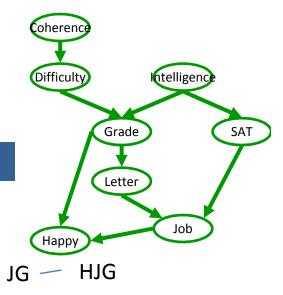


Eliminate H: just marginalize HJG to get a factor with JG

Replay VE with order: C,D,I,H,S, L,J,G

Initial factors: C, DC, GDI, SI, I, LG, JLS, HJG

Eliminate H: just marginalize HJG to get a factor with JG

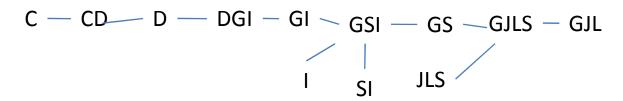


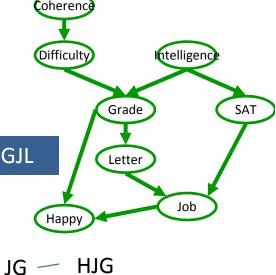
Eliminate S: multiply GS, JLS to get GJLS, then marginalize S to get GJL

Replay VE with order: C,D,I,H,S, L,J,G

Initial factors: C, DC, GDI, SI, I, LG, JLS, HJG

Eliminate S: multiply GS, JLS to get GJLS, then marginalize S to get GJL

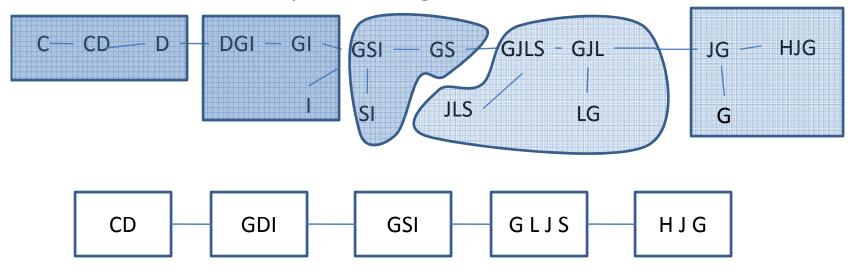




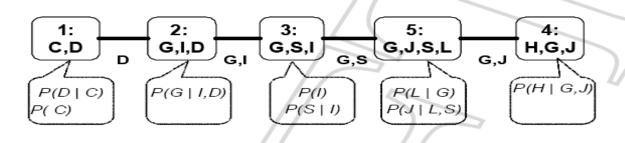
Eliminate L: multiply GJL, LG to get JLG, then marginalize L to get GJ

Eliminate L, G: $JG \rightarrow G$

Summarize CT by removing subsumed nodes



- Satisfy RIP and Family preserving (always true for any Elimination order)
- Finally distribute initial factor into the cliques, to get initial beliefs (which is the parallel of CPTs in BN), to be used for inference

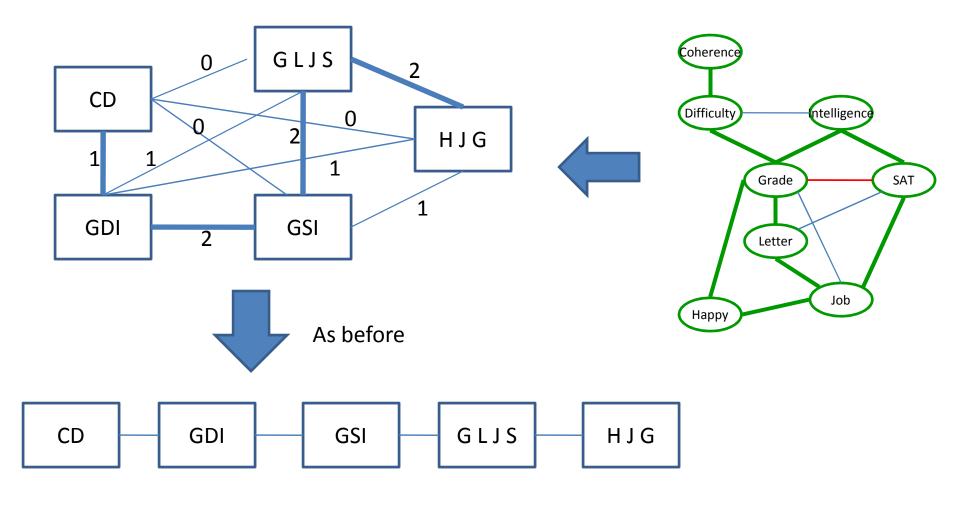


Clique tree Construction: Another method

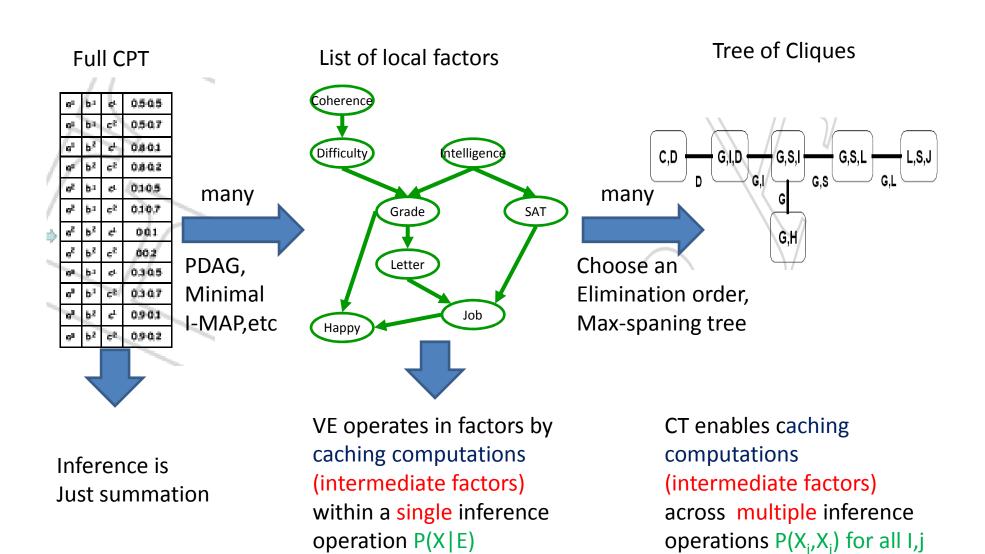
- From a triangulated graph
 - Still from VE, why?
 - Elimination order → triangulation
 - Triangulation → Max cliques
 - Connect cliques, find max-spanning tree

Clique tree Construction: Another method (details)

- Get choral graph (add fill edges) for the same order as before C,D,I,H,S, L,J,G.
- Extract Max cliques from this graph and get maximum-spanning clique tree

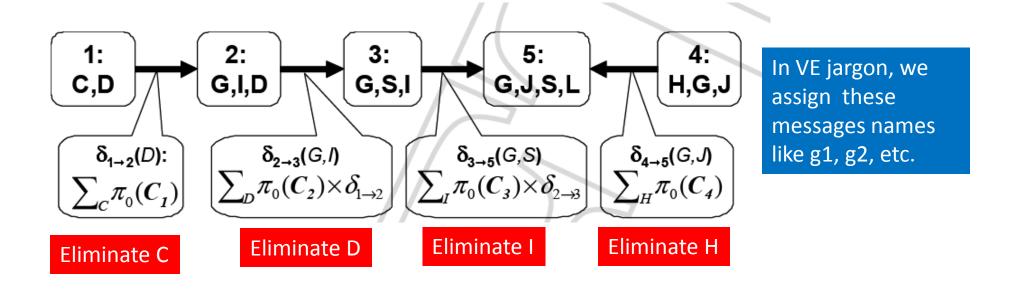


The Big Picture

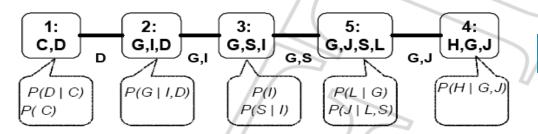


Clique Tree: Inference

- P(X): assume X is in a node (root)
- Just run VE! Using elimination order dictated by the tree and initial factors put into each clique to define \Pi₀(C_i)
- When done we have P(G,J,S,L)



Clique Tree: Inference (2)



Initial Local belief

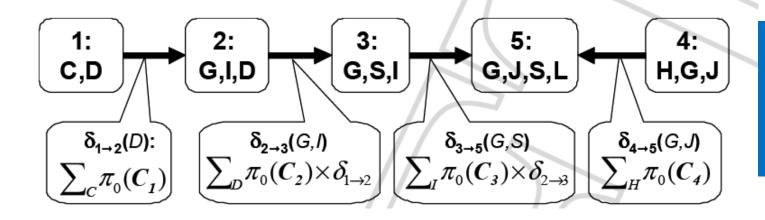
What is:
$$\delta_{1\to 2}(D) = \sum_{C} \pi_0(C1) = \sum_{C} P(C)P(D \mid C)$$

Just a factor over D

What is: $\delta_{2->3}(G,I) = \sum_{D}^{C} \pi_0(C2) \times \delta_{1->2}(D) = \sum_{C} \delta_{1->2}(D) P(G \mid I,D)$

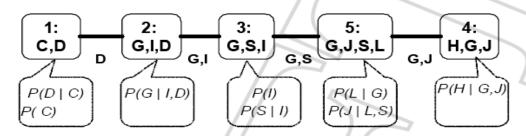
Just a factor over GI

We are simply doing VE along "partial" order determined by the tree: (C,D,I) and H (i.e. H can Be anywhere in the order)



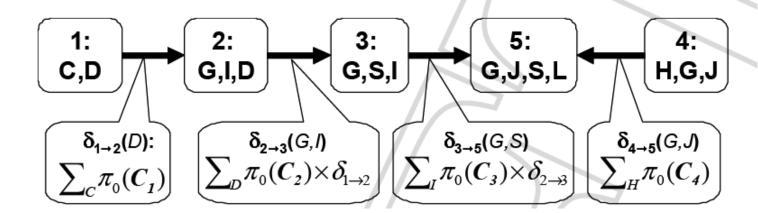
In VE jargon, we call these messages with names like g1, g2, etc.

Clique Tree: Inference (3)



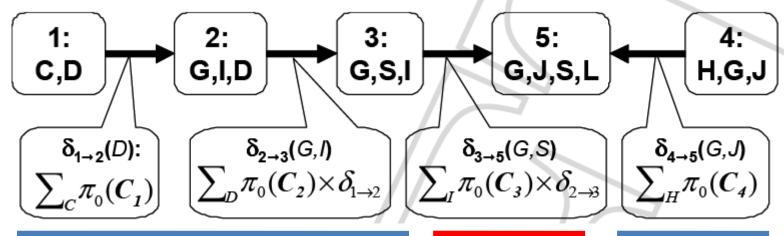
Initial Local belief

- -When we are done, C5 would have received two messages from left and right
- In VE, we will end up with factors corresponding to these messages in addition to all factors that were distributed into C5: P(L|G), P(J|L,G)
- -In VE, we multiply all these factors to get the marginals
- In CT, we multiply all factors in C5: \Pi_0(C_5) with these two messages to get C_5 calibrated potential (which is also the marginal), so what is the deal? Why this is useful?



Clique Tree: Inter-Inference Caching

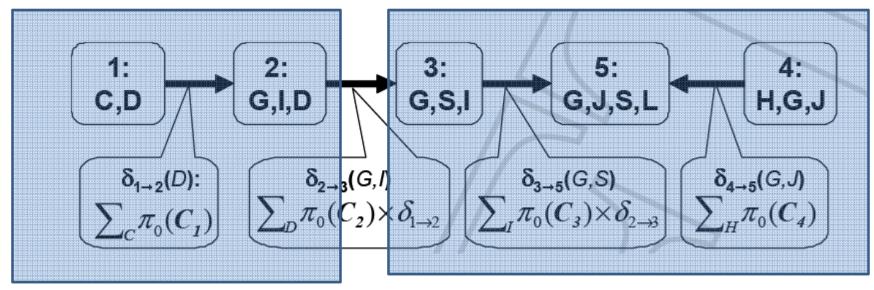
P(G,L) :use C5 as root



P(I,S): use C3 as root

Notice the same 3 messages: i.e. same intermediate factors in VE

What is passed across the edge?



Exclusive Scope:CD

Edge Scope: GI

Exclusive Scope: S,L,J,H

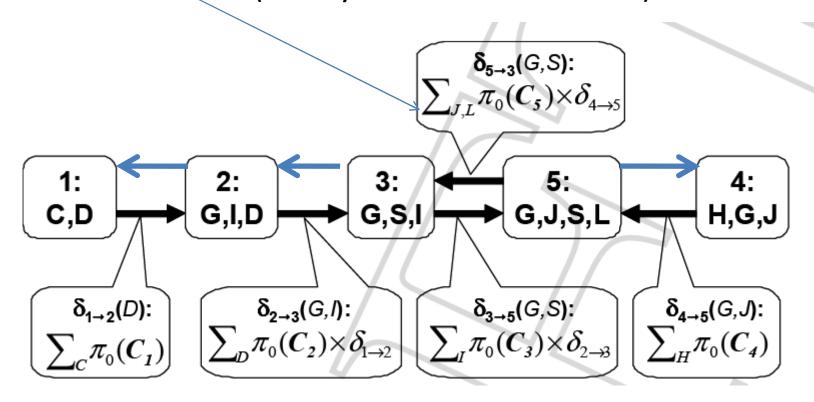
GISLJH

CDGI

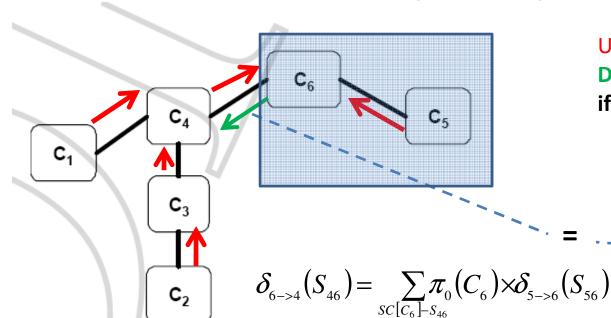
- -The message summarizes what the right side of the tree cares about in the left side (GI)
 - See Theorem 9.2.3
- Completely determined by the root
 - -Multiply all factors in left side
 - -Eliminate out exclusive variables (but do it in steps along the tree: C then D)
- -The message depends ONLY on the direction of the edge!!!

Clique Tree Calibration

- Two Step process:
 - Upward: as before
 - Downward (after you calibrate the root)



Intuitively Why it works?



Upward Phase: Root is calibrated Downward: Lets take C4, what if it was a root.

Now C4 is calibrated and can Act recursively as a new root!!!

The two tree only differ on the edge from C4-C6, but else The same

C4: just needs message from C6 That summarizes the status of the Separator from the other side of the tree

Clique Trees

- Can compute all clique marginals with double the cost of a single VE
- Need to store all intermediate messages
 - It is not magic
 - If you store intermediate factors from VE you get the same effect!!
- You lose internal structure and some independency
 - Do you care?
 - Time: no!
 - Space: YES
- You can still run VE to get marginal with variables not in the same clique and even all pair-wise marginals (Q5).
- Good for continuous inference
- Can not be tailored to evidences: only one elimination order

Queries Outside Clique: Q5

- T is assumed calibrated
 - Cliques agree on separators
 - See section 9.3.4.2, Section 9.3.4.3

