Parameter Learning in Markov Nets

Dhruv Batra, 10-708 Recitation 11/13/2008

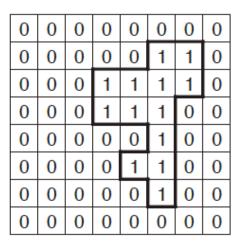
Contents

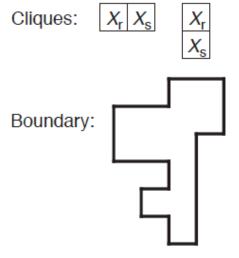
- MRFs
 - Parameter learning in MRFs
 - IPF
 - Gradient Descent
 - HW5 implementation

Semantics

- Priors on edges
 - Ising Prior / Potts Model
 - Metric MRFs

The Ising Model: A 2-D MRF[100]





• Potential functions are given by

$$V(x_r, x_s) = \beta \delta(x_r \neq x_s)$$

where β is a model parameter.

• Energy function is given by

$$\sum_{c \in \mathcal{C}} V_c(x_c) = \beta(\text{Boundary length})$$

• Longer boundaries \Rightarrow less probable

Metric MRFs

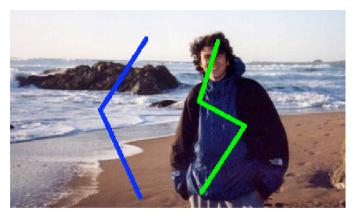
Energies in pairwise MRFs

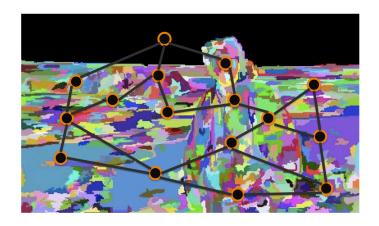
$$E(f) = \sum_{\{p,q\} \in \mathcal{N}} V_{p,q}(f_p, f_q) + \sum_{p \in \mathcal{P}} D_p(f_p),$$

$$V(\alpha, \beta) = 0 \Leftrightarrow \alpha = \beta,$$

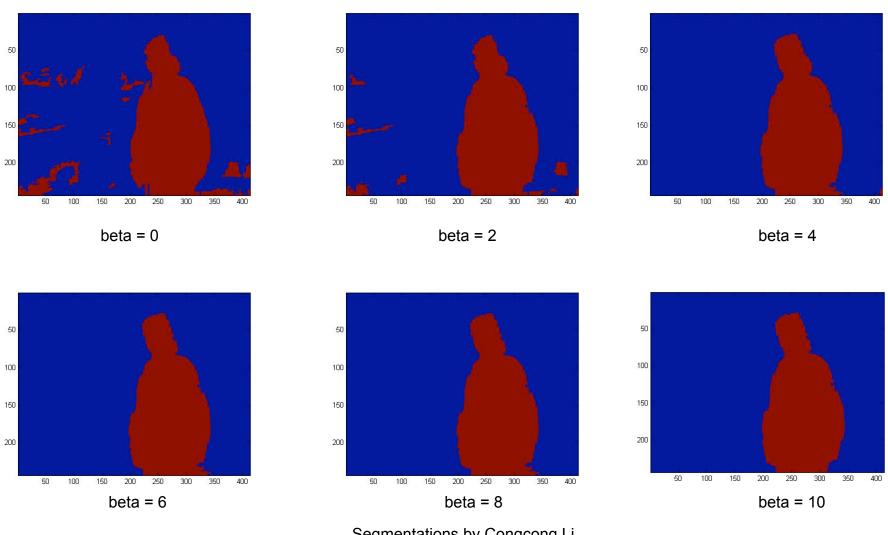
 $V(\alpha, \beta) = V(\beta, \alpha) \ge 0,$
 $V(\alpha, \beta) \le V(\alpha, \gamma) + V(\gamma, \beta),$

• Semi-supervised image segmentation





Effect of varying beta



Segmentations by Congcong Li

Potts Model

$$\Psi(x_i, x_j) = \exp\left\{-\beta \times I\left(x_i \neq x_j\right)\right\},\,$$

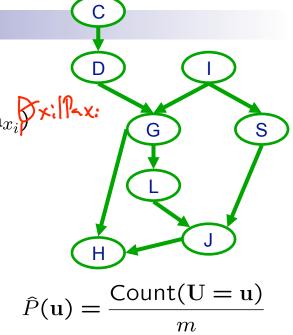
More general parameters

$$\Psi(x_i, x_j) = \begin{bmatrix} \theta_1 & \theta_2 \\ \theta_3 & \theta_4 \end{bmatrix}.$$

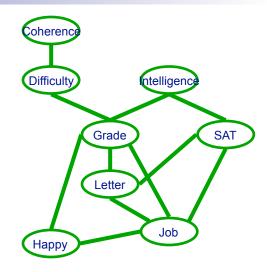
Learning Parameters of a BN

$$\ell(\mathcal{D}:\theta) = \log P(\mathcal{D}\mid\theta) = m \sum_{i} \sum_{x_{i}, \mathbf{Pa}_{x_{i}}} \underbrace{\widehat{P}(x_{i}, \mathbf{Pa}_{x_{i}})}_{\text{expirited}} \log P(x_{i}\mid\mathbf{Pa}_{x_{i}})$$

- Learn each CPT independently
- Use counts



Learning Parameters of a MN



Log-linear Markov network (most common representation)

- e.g., indicator function
- Ψ(G,I,D)={ is f Get, tet, D=f **Log-linear model** over a Markov network *H*:
 - \square a set of features $\phi_1[\mathbf{D}_1], \ldots, \phi_k[\mathbf{D}_k]$
 - each D_i is a subset of a clique in H
 - two φ's can be over the same variables
 - \square a set of weights $w_1, ..., w_k$

usually learned from data
$$\lim_{k \to \infty} P(X_1, \dots, X_n) = \frac{1}{Z} \exp \left[\sum_{i=1}^k w_i \phi_i \left(\mathbf{D}_i \right) \right]$$

$$\Psi(x_i, x_j) = \begin{bmatrix} \theta_1 & \theta_2 \\ \theta_3 & \theta_4 \end{bmatrix}.$$

For convenience we denote $\theta = (\theta_1, \theta_2, \theta_3, \theta_4)$. This MRF is not decomposable, and therefore we cannot estimate the potentials in closed form.

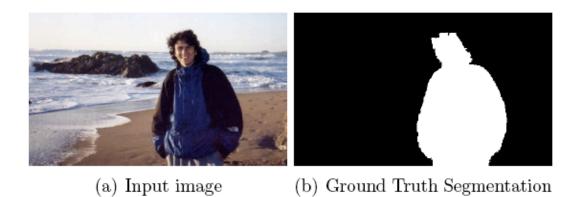


Figure 2: Training Data

- (a) Assume that Φ is known (computed in a manner similar to HW 4, only now all pixels are labelled). Write down the IPF update equation for $\Psi(x_i, x_j)$. What is the cost of computing $\Psi^{(t+1)}(x_i, x_j)$?
- (b) Using the equation from part (a) implement IPF for Ψ using the images and data provided. Report the final value of θ . Use loopy belief propagation to compute any

Questions?

Semantics

Factorization

$$P(X_1,\ldots,X_n)=\frac{1}{Z}P'(X_1,\ldots,X_n)$$

where

$$P'(X_1,\ldots,X_n)=\pi_i[D_1]\times\pi_2[D_2]\times\cdots\times\pi_m[D_m]$$

Energy functions

$$\pi[D] = \exp(-\epsilon[D]),$$

Equivalent representation

$$P(X_1,\ldots,X_n) \propto \exp\left[-\sum_{i=1}^m \epsilon_i[\boldsymbol{D}_i]\right].$$

Semantics

Log Linear Models

Definition 5.6.9: A distribution P is a *log-linear model* over a Markov network \mathcal{H} if it is associated with:

- a set of features $\phi_1[D_1], \ldots, \phi_k[D_m]$, where each D_i is a subclique in \mathcal{H} ,
- a set of weights w₁,..., w_k,

such that

$$P(X_1, \dots, X_n) = \frac{1}{Z} \exp \left[-\sum_{i=1}^k w_i \phi_i[\mathbf{D}_i] \right].$$