

Readings:

K&F: 3.4, 14.1, 14.2

BN Semantics 3

Now it's personal!

Parameter Learning 1

Graphical Models – 10708

Carlos Guestrin

Carnegie Mellon University

September 22nd, 2006

1

Building BNs from independence properties

- From d-separation we learned:
 - Start from local Markov assumptions, obtain all independence assumptions encoded by graph
 - For most P 's that factorize over G , $I(G) = I(P)$
 - All of this discussion was for a given G that is an I-map for P
- Now, give me a P , how can I get a G ?
 - i.e., give me the independence assumptions entailed by P
 - Many G are “equivalent”, how do I represent this?
 - Most of this discussion is not about practical algorithms, but useful concepts that will be used by practical algorithms
 - Practical algs next week

10-708 - ©Carlos Guestrin 2006

2

Minimal I-maps

- One option:
 - G is an I-map for P
 - G is as simple as possible
- G is a **minimal I-map** for P if deleting any edges from G makes it no longer an I-map

Obtaining a minimal I-map

- Given a set of variables and conditional independence assumptions
- Choose an ordering on variables, e.g., X_1, \dots, X_n
- For $i = 1$ to n
 - Add X_i to the network
 - Define parents of X_i , \mathbf{Pa}_{X_i} , in graph as the minimal subset of $\{X_1, \dots, X_{i-1}\}$ such that local Markov assumption holds – X_i independent of rest of $\{X_1, \dots, X_{i-1}\}$, given parents \mathbf{Pa}_{X_i}
 - Define/learn CPT – $P(X_i | \mathbf{Pa}_{X_i})$

Flu, Allergy, SinusInfection, Headache

Minimal I-map not unique (or minimal)

- Given a set of variables and conditional independence assumptions
- Choose an ordering on variables, e.g., X_1, \dots, X_n
- For $i = 1$ to n
 - Add X_i to the network
 - Define parents of X_i , \mathbf{Pa}_{X_i} , in graph as the minimal subset of $\{X_1, \dots, X_{i-1}\}$ such that local Markov assumption holds – X_i independent of rest of $\{X_1, \dots, X_{i-1}\}$, given parents \mathbf{Pa}_{X_i}
 - Define/learn CPT – $P(X_i | \mathbf{Pa}_{X_i})$

Flu, Allergy, SinusInfection, Headache

10-708 - ©Carlos Guestrin 2006

5

Perfect maps (P-maps)

- I-maps are not unique and often not simple enough
- Define “simplest” G that is I-map for P
 - A BN structure G is a **perfect map** for a distribution P if $I(P) = I(G)$
- Our goal:
 - Find a perfect map!
 - Must address equivalent BNs

10-708 - ©Carlos Guestrin 2006

6

Inexistence of P-maps 1

- XOR (this is a hint for the homework)

Inexistence of P-maps 2

- (Slightly un-PC) swinging couples example

Obtaining a P-map

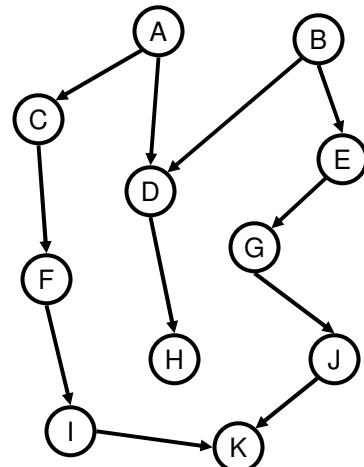
- Given the independence assertions that are true for P
- Assume that there exists a perfect map G^*
 - Want to find G^*
- Many structures may encode same independencies as G^* , when are we done?
 - Find all equivalent structures simultaneously!

I-Equivalence

- Two graphs G_1 and G_2 are **I-equivalent** if $I(G_1) = I(G_2)$
- **Equivalence class** of BN structures
 - Mutually-exclusive and exhaustive partition of graphs
- How do we characterize these equivalence classes?

Skeleton of a BN

- **Skeleton** of a BN structure G is an **undirected graph** over the same variables that has an edge $X-Y$ for every $X \rightarrow Y$ or $Y \rightarrow X$ in G
- (Little) **Lemma:** Two I-equivalent BN structures must have the same skeleton

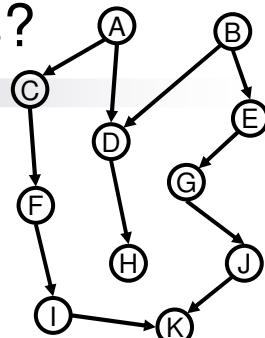


10-708 - ©Carlos Guestrin 2006

11

What about V-structures?

- **V-structures are key property of BN structure**
- **Theorem:** If G_1 and G_2 have the same skeleton and V-structures, then G_1 and G_2 are I-equivalent



10-708 - ©Carlos Guestrin 2006

12

Same V-structures not necessary

- **Theorem:** If G_1 and G_2 have the same skeleton and V-structures, then G_1 and G_2 are I-equivalent
- Though sufficient, same V-structures not necessary

Immoralities & I-Equivalence

- Key concept not V-structures, but “immoralities” (unmarried parents ☺)
 - $X \rightarrow Z \leftarrow Y$, with no arrow between X and Y
 - Important pattern: X and Y independent given their parents, but not given Z
 - (If edge exists between X and Y, we have *covered* the V-structure)
- **Theorem:** G_1 and G_2 have the same skeleton and immoralities if and only if G_1 and G_2 are I-equivalent

Obtaining a P-map

- Given the independence assertions that are true for P
 - Obtain skeleton
 - Obtain immoralities
- From skeleton and immoralities, obtain every (and any) BN structure from the equivalence class

Identifying the skeleton 1

- When is there an edge between X and Y?
- When is there no edge between X and Y?

Identifying the skeleton 2

- Assume d is max number of parents (d could be n)
- For each X_i and X_j
 - $E_{ij} \leftarrow \text{true}$
 - For each $U \subseteq X - \{X_i, X_j\}$, $|U| \leq 2d$
 - Is $(X_i \perp X_j \mid U)$?
 - $E_{ij} \leftarrow \text{true}$
 - If E_{ij} is true
 - Add edge $X - Y$ to skeleton

10-708 - ©Carlos Guestrin 2006

17

Identifying immoralities

- Consider $X - Z - Y$ in skeleton, when should it be an immorality?
- Must be $X \rightarrow Z \leftarrow Y$ (immorality):
 - When X and Y are **never independent** given U , if $Z \in U$
- Must **not** be $X \rightarrow Z \leftarrow Y$ (not immorality):
 - When there exists U with $Z \in U$, such that X and Y are **independent** given U

10-708 - ©Carlos Guestrin 2006

18

From immoralities and skeleton to BN structures

- Representing BN equivalence class as a **partially-directed acyclic graph (PDAG)**
- **Immoralities force direction on other BN edges**
- Full (polynomial-time) procedure described in reading

10-708 - ©Carlos Guestrin 2006

19

What you need to know

- Minimal I-map
 - every P has one, but usually many
- Perfect map
 - better choice for BN structure
 - not every P has one
 - can find one (if it exists) by considering I-equivalence
 - Two structures are I-equivalent if they have same skeleton and immoralities

10-708 - ©Carlos Guestrin 2006

20

Announcements

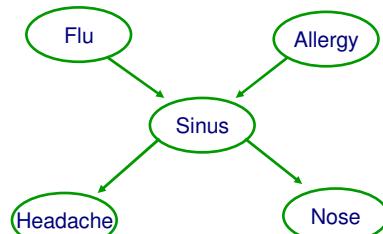
- I'll lead a special discussion session:
 - Today 2-3pm in NSH 1507
 - talk about homework, especially programming question

10-708 - ©Carlos Guestrin 2006

21

Review

- Bayesian Networks
 - Compact representation for probability distributions
 - Exponential reduction in number of parameters
 - Exploits independencies



- Next – Learn BNs
 - parameters
 - structure

10-708 - ©Carlos Guestrin 2006

22

Thumbtack – Binomial Distribution

- $P(\text{Heads}) = \theta, P(\text{Tails}) = 1-\theta$

- Flips are i.i.d.:
 - Independent events
 - Identically distributed according to Binomial distribution
- Sequence D of α_H Heads and α_T Tails

$$P(\mathcal{D} | \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

10-708 - ©Carlos Guestrin 2006

23

Maximum Likelihood Estimation

- **Data:** Observed set D of α_H Heads and α_T Tails
- **Hypothesis:** Binomial distribution
- Learning θ is an optimization problem
 - What's the objective function?
- MLE: Choose θ that maximizes the probability of observed data:

$$\begin{aligned}\hat{\theta} &= \arg \max_{\theta} P(\mathcal{D} | \theta) \\ &= \arg \max_{\theta} \ln P(\mathcal{D} | \theta)\end{aligned}$$

10-708 - ©Carlos Guestrin 2006

24

Your first learning algorithm

$$\begin{aligned}\hat{\theta} &= \arg \max_{\theta} \ln P(\mathcal{D} \mid \theta) \\ &= \arg \max_{\theta} \ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T}\end{aligned}$$

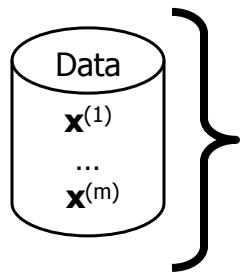
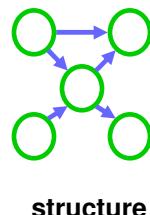
- Set derivative to zero: $\frac{d}{d\theta} \ln P(\mathcal{D} \mid \theta) = 0$

10-708 - ©Carlos Guestrin 2006

25

Learning Bayes nets

	Known structure	Unknown structure
Fully observable data		
Missing data		

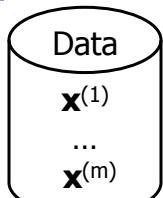
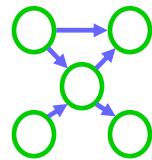


CPTs –
 $P(X_i \mid \text{Pa}_{X_i})$
parameters

10-708 - ©Carlos Guestrin 2006

26

Learning the CPTs



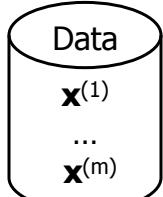
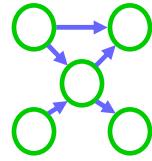
For each discrete variable X_i

$$\text{MLE: } P(X_i = x_i | X_j = x_j) = \frac{\text{Count}(X_i = x_i, X_j = x_j)}{\text{Count}(X_j = x_j)}$$

10-708 - ©Carlos Guestrin 2006

27

Learning the CPTs



For each discrete variable X_i

$$\text{MLE: } P(X_i = x_i | X_j = x_j) = \frac{\text{Count}(X_i = x_i, X_j = x_j)}{\text{Count}(X_j = x_j)}$$

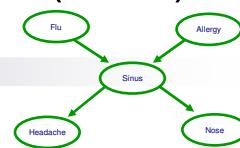
WHY???????????

10-708 - ©Carlos Guestrin 2006

28

Maximum likelihood estimation (MLE) of BN parameters – example

- Given structure, log likelihood of data:
 $\log P(\mathcal{D} | \theta_{\mathcal{G}}, \mathcal{G})$



10-708 - ©Carlos Guestrin 2006

29

Maximum likelihood estimation (MLE) of BN parameters – General case

- Data: $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}$
- Restriction: $\mathbf{x}^{(j)}[\mathbf{Pa}_{X_i}] \rightarrow$ assignment to \mathbf{Pa}_{X_i} in $\mathbf{x}^{(j)}$
- Given structure, log likelihood of data:
 $\log P(\mathcal{D} | \theta_{\mathcal{G}}, \mathcal{G})$

10-708 - ©Carlos Guestrin 2006

30

Taking derivatives of MLE of BN parameters – General case

$$\log P(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}) = \sum_{j=1}^m \sum_{i=1}^n \log P\left(X_i = x_i^{(j)} \mid \mathbf{Pa}_{X_i} = \mathbf{x}^{(j)} [\mathbf{Pa}_{X_i}]\right)$$

10-708 - © Carlos Guestrin 2006

31

General MLE for a CPT

- Take a CPT: $P(X \mid \mathbf{U})$
- Log likelihood term for this CPT
- Parameter $\theta_{X=x \mid \mathbf{U}=\mathbf{u}}$:

$$\text{MLE: } P(X = x \mid \mathbf{U} = \mathbf{u}) = \theta_{X=x \mid \mathbf{U}=\mathbf{u}} = \frac{\text{Count}(X = x, \mathbf{U} = \mathbf{u})}{\text{Count}(\mathbf{U} = \mathbf{u})}$$

10-708 - © Carlos Guestrin 2006

32

Parameter sharing

(basics now, more later in the semester)

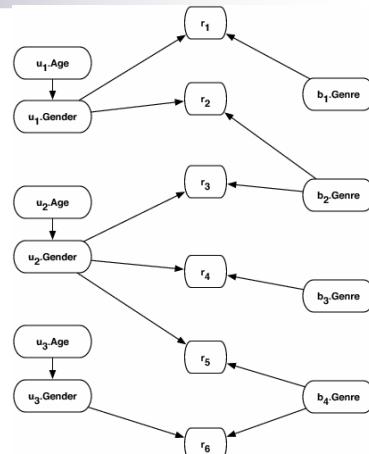
- Suppose we want to model customers' rating for books
- You know:
 - features of customers, e.g., age, gender, income,...
 - features of books, e.g., genre, awards, # of pages, has pictures,...
 - ratings: each user rates a few books
- A simple BN:

10-708 - ©Carlos Guestrin 2006

33

Using recommender system

- Answer probabilistic question:

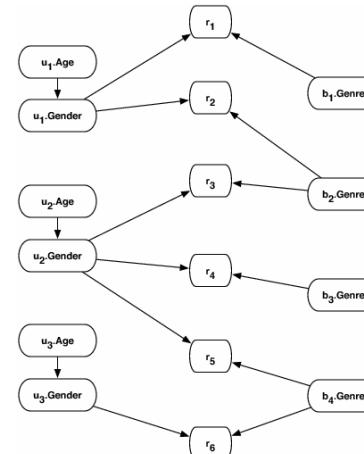


10-708 - ©Carlos Guestrin 2006

34

Learning parameters of recommender system BN

- How many parameters do I have to learn?



- How many samples do I have?

10-708 - ©Carlos Guestrin 2006

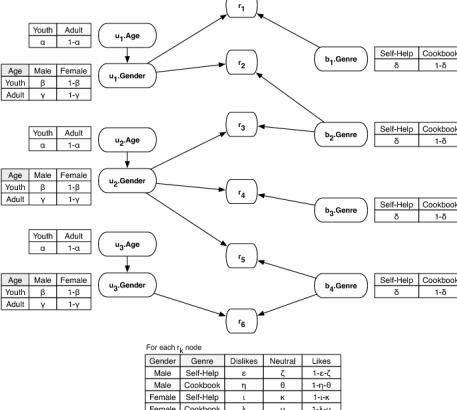
35

Parameter sharing for recommender system BN

- Use same parameters in many CPTs

- How many parameters do I have to learn?

- How many samples do I have?



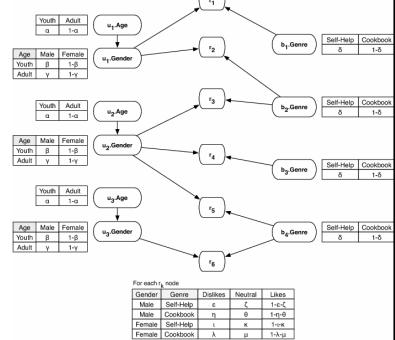
For each r_i node				
Gender	Genre	Dislikes	Neutral	Likes
Male	Self-Help	ϵ	ζ	$1-\epsilon-\zeta$
Male	Cookbook	η	θ	$1-\eta-\theta$
Female	Self-Help	ι	κ	$1-\iota-\kappa$
Female	Cookbook	λ	μ	$1-\lambda-\mu$

10-708 - ©Carlos Guestrin 2006

36

MLE with simple parameter sharing

- Estimating α :



- Estimating β :

- Estimating ϵ :

10-708 - ©Carlos Guestrin 2006

37

What you need to know about learning BNs thus far

- Maximum likelihood estimation
 - decomposition of score
 - computing CPTs
- Simple parameter sharing
 - why share parameters?
 - computing MLE for shared parameters

10-708 - ©Carlos Guestrin 2006

38