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Building BNs from independence

_ grogerties

m From d-separation we learned:

Start from local Markov assumptions, obtain all
independence assumptions encoded by graph
For most P’ that factorize over G, I(G) = I(P)

All of this discussion was for a given G that is an I-map for P

m Now, give me a P, how can | get a G?
i.e., give me the independence assumptions entailed by P
Many G are “equivalent”, how do | represent this?

Most of this discussion is not about practical algorithms, but
useful concepts that will be used by practical algorithms
= Practical algs next week




Minimal I-maps
" J
m One option:

Gis an I-map for P
G is as simple as possible

m GG is a minimal I-map for P if deleting any edges
from G makes it no longer an I-map

Obtaining a minimal I-map
" JEE

m Given a set of variables and
conditional independence
assumptions

m Choose an ordering on
variables, e.g., Xy, ..., X,

m Fori=1ton
Add X; to the network
Define parents of X, Paxi, in
graph as the minimal subset of
{Xy,..., X4} such that local
Markov assumption holds — X
independent of rest of
{Xy,...,Xi4}, given parents Pay
Define/learn CPT — P(X|| Pay)

Flu, Allergy, Sinusinfection, Headache




Minimal I-map not unique (or minimal)
" S

m Given a set of variables and
conditional independence
assumptions

m Choose an ordering on
variables, e.g., Xy, ..., X,

m Fori=1ton
Add X; to the network
Define parents of X, Paxi, in
graph as the minimal subset of
{X,,..., X4} such that local
Markov assumption holds — X;
independent of rest of
{X,,..., X4}, given parents Pay
Define/learn CPT — P(X|| Pay;)

Flu, Allergy, Sinusinfection, Headache

Perfect maps (P-maps)
" JEE
m |-maps are not unique and often not simple
enough

m Define “simplest” G that is I-map for P

A BN structure G is a perfect map for a distribution P
if I(P) =1(G)

m Our goal:
Find a perfect map!
Must address equivalent BNs




Inexistence of P-maps 1
" J
m XOR (this is a hint for the homework)

Inexistence of P-maps 2
" JE
m (Slightly un-PC) swinging couples example




Obtaining a P-map
" J
m Given the independence assertions that are true
for P

m Assume that there exists a perfect map G’
Want to find G

m Many structures may encode same
independencies as G’, when are we done?
Find all equivalent structures simultaneously!

I-Equivalence
" JJ
m Two graphs G, and G, are l-equivalent if I(G,) = 1(G,)
m Equivalence class of BN structures
Mutually-exclusive and exhaustive partition of graphs

m How do we characterize these equivalence classes?




Skeleton of a BN

= JEE

m Skeleton of a BN structure G is
an undirected graph over the
same variables that has an

edge X-Y for every X—Y or
Y—Xin G

m (Little) Lemma: Two -
equivalent BN structures must
have the same skeleton

" JEE
m V-structures are key property of BN
structure

m Theorem: If G, and G, have the same
skeleton and V-structures, then G, and
G, are l-equivalent




Same V-structures not necessary

" JEE
m Theorem: If G, and G, have the same skeleton and
V-structures, then G, and G, are |-equivalent

m Though sufficient, same V-structures not necessary

Immoralities & I-Equivalence
" JE
m Key concept not V-structures, but “immoralities”
(unmarried parents ©)
X — Z < Y, with no arrow between X and Y
Important pattern: X and Y independent given their
parents, but not given Z
(If edge exists between X and Y, we have covered the
V-structure)
m Theorem: G, and G, have the same skeleton
and immoralities if and only if G, and G, are
l-equivalent




Obtaining a P-map
" J
m Given the independence assertions that are true
for P

Obtain skeleton
Obtain immoralities

m From skeleton and immoralities, obtain every
(and any) BN structure from the equivalence
class

|dentifying the skeleton 1

" JEE
m When is there an edge between X and Y?

m When is there no edge between X and Y?




|dentifying the skeleton 2
" J

m Assume d is max number of parents (d could be n)

m For each X;and X;
E; « true
For each UC X - {X;,X}, |U|< 2d
w s (X LX | U)?
E; < true
If Eij is true
= Add edge X —Y to skeleton

|dentifying immoralities

" J

m Consider X —Z —Y in skeleton, when should it be
an immorality?

m Must be X — Z < Y (immorality):
When X and Y are never independent given U, if ZeU

m Must not be X — Z < Y (not immorality):
When there exists U with ZeU, such that X and Y are
independent given U




From immoralities and skeleton to
BN structures
«

m Representing BN equivalence class as a
partially-directed acyclic graph (PDAG)

m Immoralities force direction on other BN edges

m Full (polynomial-time) procedure described in
reading

What you need to know
" JEE

m Minimal |I-map
every P has one, but usually many

m Perfect map
better choice for BN structure
not every P has one
can find one (if it exists) by considering I-equivalence

Two structures are l-equivalent if they have same
skeleton and immoralities
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Announcements
" JE
m |'ll lead a special discussion session:
Today 2-3pm in NSH 1507

» talk about homework, especially programming question

Review
" J
m Bayesian Networks

Compact representation for @
probability distributions

Exponential reduction in
number of parameters

Exploits independencies

m Next — Learn BNs
parameters
structure
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Thumbtack — Binomial Distribution

" JE
m P(Heads) =6, P(Tails) =1-6

m Flips are i.i.d.:
Independent events

Identically distributed according to Binomial
distribution

m Sequence D of oy; Heads and o Tails

P(D|6) =0%H(1 —0)°T

Maximum Likelihood Estimation
" J

m Data: Observed set D of oy, Heads and o Tails

m Hypothesis: Binomial distribution

m Learning 6 is an optimization problem
What's the objective function?

m MLE: Choose 6 that maximizes the probability of
observed data:

~

0 = arg meax P(D | 0)

= argmax InP(D|0H)
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Your first learning algorithm
" J
0 = argmax  In P(D | 6)

= argmeax InO“H (1 — 9)*T

m Set derivative to zero: di InP(D | 0) =0

Learning Bayes nets
" J

Known structure Unknown structure

Fully observable
data

Missing data

CPTs —
+ P(X;| Pay;)

structure parameters
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Learning the CPTs

A

j MLE: P(X7=$7’X7=ZBJ)=

For each discrete variable X;

COUI’\t(Xi = x;, Xj = mj)

Count(X; = z;)
2

Learning the CPTs

MLE: P(X7=$7’X7=ZBJ)=

For each discrete variable X;

COUI’\t(Xi = x;, Xj = mj)

Count(X; = z;)

> WHY?222222222?

A b
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Maximum likelihood estimation (MLE) of

BN garameters — example °

m Given structure, log likelihood of data:
log P(D | 6g,G)

Maximum likelihood estimation (MLE) of

BN garameters General case

m Data: x(),...,x(m)
7 Restrlctlon. x0[Pay] — assignment to Pay; in x0)
m Given structure, log likelihood of data:

log P(D | 6g,G)
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Taking derivatives of MLE of BN

Earameters — General case

log P(D | 0g,G) = i f: log P <XZ- =) | Pay, = x() [Paxi])

j=1li=1

General MLE for a CPT

M
m Take a CPT: P(X|U)
m Log likelihood term for this CPT

m Parameter 0y_,y_

Count(X =2, U = u)
MLE: P(X =2|U=u)=0y_yjy=y = Count(U = o)
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Parameter sharing

‘basics nowi more later in the semester)

m Suppose we want to model customers’ rating for books

m You know:
features of customers, e.g., age, gender, income,...
features of books, e.g., genre, awards, # of pages, has pictures,...
ratings: each user rates a few books

m A simple BN:

33

Using recommender system
" JEE
m Answer probabilistic question:

34
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Learning parameters of
recommender system BN
S

m How many parameters do |
have to learn?

Parameter sharing for
recommender system BN
" S
m Use same parameters
in many CPTs

m How many parameters
do I have to learn?

m How many samples
do | have?
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MLE with simple parameter sharing
" S
m Estimating o

m Estimating f3:

m Estimating e:

37

What you need to know about

. garning BNs thus far

m Maximum likelihood estimation
decomposition of score
computing CPTs
m Simple parameter sharing
why share parameters?
computing MLE for shared parameters
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