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Building BNs from independence 
properties

� From d-separation we learned:
� Start from local Markov assumptions, obtain all 

independence assumptions encoded by graph
� For most P’s that factorize over G, I(G) = I(P)
� All of this discussion was for a given G that is an I-map for P

� Now, give me a P, how can I get a G?
� i.e., give me the independence assumptions entailed by P
�Many G are “equivalent”, how do I represent this?
�Most of this discussion is not about practical algorithms, but 

useful concepts that will be used by practical algorithms
� Practical algs next week
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Minimal I-maps

� One option: 
�G is an I-map for P
�G is as simple as possible

� G is a minimal I-map for P if deleting any edges 
from G makes it no longer an I-map
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Obtaining a minimal I-map

� Given a set of variables and 
conditional independence 
assumptions

� Choose an ordering on 
variables, e.g., X1, …, Xn

� For i = 1 to n
� Add Xi to the network
� Define parents of Xi, PaXi

, in 
graph as the minimal subset of 
{X1,…,Xi-1} such that local 
Markov assumption holds – Xi
independent of rest of  
{X1,…,Xi-1}, given parents PaXi

� Define/learn CPT – P(Xi| PaXi)

Flu, Allergy, SinusInfection, Headache 
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Minimal I-map not unique (or minimal)

� Given a set of variables and 
conditional independence 
assumptions

� Choose an ordering on 
variables, e.g., X1, …, Xn

� For i = 1 to n
� Add Xi to the network
� Define parents of Xi, PaXi

, in 
graph as the minimal subset of 
{X1,…,Xi-1} such that local 
Markov assumption holds – Xi
independent of rest of  
{X1,…,Xi-1}, given parents PaXi

� Define/learn CPT – P(Xi| PaXi)

Flu, Allergy, SinusInfection, Headache 
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Perfect maps (P-maps)

� I-maps are not unique and often not simple 
enough

� Define “simplest” G that is I-map for P
� A BN structure G is a perfect map for a distribution P

if I(P) = I(G)  

� Our goal:
� Find a perfect map!
�Must address equivalent BNs
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Inexistence of P-maps 1

� XOR (this is a hint for the homework)
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Inexistence of P-maps 2

� (Slightly un-PC) swinging couples example 
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Obtaining a P-map

� Given the independence assertions that are true 
for P

� Assume that there exists a perfect map G*

�Want to find G*

� Many structures may encode same 
independencies as G*, when are we done?
� Find all equivalent structures simultaneously!



10-708 – ©Carlos Guestrin 2006 10

I-Equivalence

� Two graphs G1 and G2 are I-equivalent if I(G1) = I(G2)
� Equivalence class of BN structures

�Mutually-exclusive and exhaustive partition of graphs

� How do we characterize these equivalence classes? 
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Skeleton of a BN

� Skeleton of a BN structure G is 
an undirected graph over the 
same variables that has an 
edge X–Y for every X→Y or 
Y→X in G

� (Little) Lemma: Two I-
equivalent BN structures must 
have the same skeleton

A

H

C
E

G

D

B

F

K

J

I



10-708 – ©Carlos Guestrin 2006 12

What about V-structures?

� V-structures are key property of BN 
structure

� Theorem: If G1 and G2 have the same 
skeleton and V-structures, then G1 and 
G2 are I-equivalent
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Same V-structures not necessary

� Theorem: If G1 and G2 have the same skeleton and 
V-structures, then G1 and G2 are I-equivalent

� Though sufficient, same V-structures not necessary
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Immoralities & I-Equivalence

� Key concept not V-structures, but “immoralities”
(unmarried parents ☺)
� X → Z ← Y, with no arrow between X and Y
� Important pattern: X and Y independent given their 

parents, but not given Z
� (If edge exists between X and Y, we have covered the 

V-structure)
� Theorem: G1 and G2 have the same skeleton 

and immoralities if and only if G1 and G2 are      
I-equivalent
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Obtaining a P-map

� Given the independence assertions that are true 
for P
�Obtain skeleton
�Obtain immoralities

� From skeleton and immoralities, obtain every 
(and any) BN structure from the equivalence 
class
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Identifying the skeleton 1

� When is there an edge between X and Y?

� When is there no edge between X and Y?
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Identifying the skeleton 2

� Assume d is max number of parents (d could be n)

� For each Xi and Xj
� Eij ← true
� For each U⊆ X – {Xi,Xj}, |U|· 2d

� Is (Xi ⊥ Xj | U) ?
� Eij ← true

� If Eij is true
� Add edge X – Y to skeleton
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Identifying immoralities

� Consider X – Z – Y in skeleton, when should it be 
an immorality?

� Must be X → Z ← Y (immorality):
�When X and Y are never independent given U, if Z∈U

� Must not be X → Z ← Y (not immorality):
�When there exists U with Z∈U, such that X and Y are 

independent given U
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From immoralities and skeleton to 
BN structures
� Representing BN equivalence class as a 

partially-directed acyclic graph (PDAG)

� Immoralities force direction on other BN edges
� Full (polynomial-time) procedure described in 

reading
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What you need to know

� Minimal I-map 
� every P has one, but usually many

� Perfect map
� better choice for BN structure
� not every P has one
� can find one (if it exists) by considering I-equivalence
� Two structures are I-equivalent if they have same 

skeleton and immoralities
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Announcements

� I’ll lead a special discussion session:
� Today 2-3pm in NSH 1507 

� talk about homework, especially programming question
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Review

� Bayesian Networks 
� Compact representation for 

probability distributions
� Exponential reduction in 

number of parameters
� Exploits independencies 

� Next – Learn BNs
� parameters
� structure

Flu Allergy

Sinus

Headache Nose
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Thumbtack – Binomial Distribution

� P(Heads) = θ,  P(Tails) = 1-θ

� Flips are i.i.d.:
� Independent events
� Identically distributed according to Binomial 

distribution
� Sequence D of αH Heads and αT Tails  
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Maximum Likelihood Estimation

� Data: Observed set D of αH Heads and αT Tails  
� Hypothesis: Binomial distribution 
� Learning θ is an optimization problem

�What’s the objective function?

� MLE: Choose θ that maximizes the probability of 
observed data:
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Your first learning algorithm

� Set derivative to zero:
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Learning Bayes nets
Known structure Unknown structure

Fully observable 
data
Missing data

x(1)

…
x(m)

Data
CPTs –
P(Xi| PaXi)

structure parameters
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Learning the CPTs

x(1)

…
x(m)

Data
For each discrete variable Xi
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Learning the CPTs

x(1)

…
x(m)

Data
For each discrete variable Xi

WHY??????????
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Maximum likelihood estimation (MLE) of 
BN parameters – example 
� Given structure, log likelihood of data:

Flu Allergy

Sinus

Headache Nose
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Maximum likelihood estimation (MLE) of 
BN parameters – General case
� Data: x(1),…,x(m)

� Restriction: x(j)[PaXi] → assignment to PaXi in x(j)

� Given structure, log likelihood of data:
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Taking derivatives of MLE of BN 
parameters – General case
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General MLE for a CPT
� Take a CPT: P(X|U)
� Log likelihood term for this CPT

� Parameter θX=x|U=u :
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Parameter sharing 
(basics now, more later in the semester)

� Suppose we want to model customers’ rating for books
� You know:

� features of customers, e.g., age, gender, income,…
� features of books, e.g., genre, awards, # of pages, has pictures,…
� ratings: each user rates a few books

� A simple BN:
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Using recommender system

� Answer probabilistic question:
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Learning parameters of 
recommender system BN

� How many parameters do I 
have to learn?

� How many samples do I have?
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Parameter sharing for 
recommender system BN

� Use same parameters 
in many CPTs

� How many parameters 
do I have to learn?

� How many samples 
do I have?
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MLE with simple parameter sharing

� Estimating α:

� Estimating β:

� Estimating ε:
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What you need to know about 
learning BNs thus far

� Maximum likelihood estimation
� decomposition of score 
� computing CPTs

� Simple parameter sharing
� why share parameters?
� computing MLE for shared parameters
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