

Readings:

K&F: 3.4, 14.1, 14.2

BN Semantics 3 – Now it's personal!

Parameter Learning 1

Graphical Models – 10708

Carlos Guestrin

Carnegie Mellon University

September 22nd, 2006

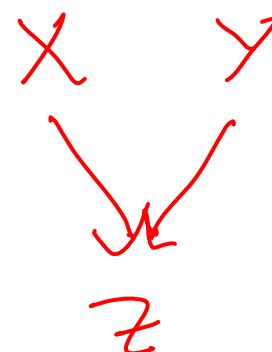
Building BNs from independence properties

- From d-separation we learned:
 - Start from local Markov assumptions, obtain all independence assumptions encoded by graph
 - For most P 's that factorize over G , $I(G) = I(P)$
 - All of this discussion was for a given G that is an I-map for P
- Now, give me a P , how can I get a G ?
 - i.e., give me the independence ~~assertions~~ entailed by P
 - Many G are “equivalent”, how do I represent this?
 - Most of this discussion is not about practical algorithms, but useful concepts that will be used by practical algorithms
 - Practical algs next week

Minimal I-maps

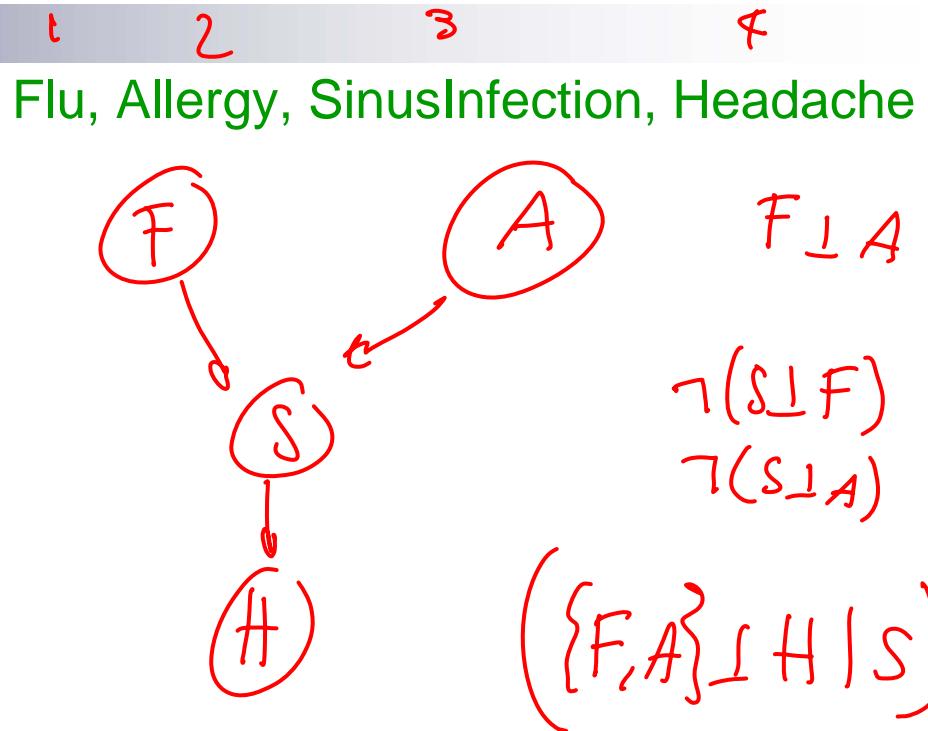
- One option:
 - G is an I-map for P
 - G is as simple as possible
- G is a minimal I-map for P if deleting any edges from G makes it no longer an I-map

true P $X \perp Y$
and nothing else
vars x, y, z



Obtaining a minimal I-map

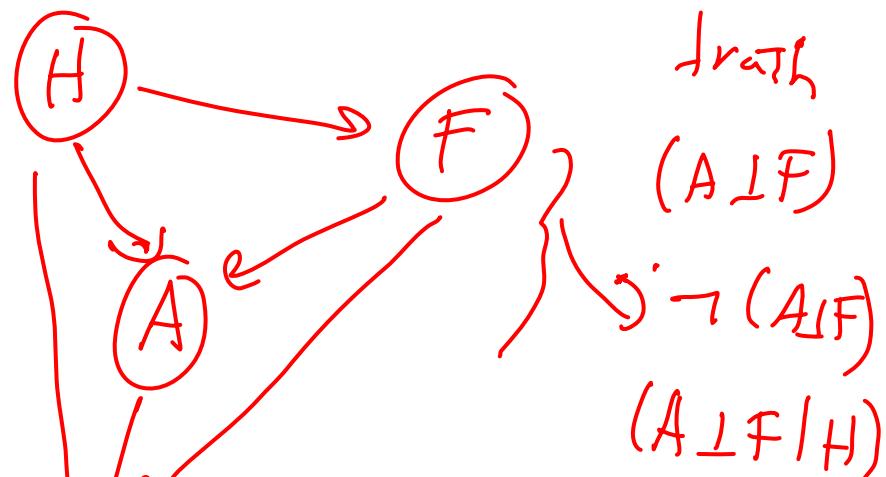
- Given a set of variables and conditional independence assertions that ~~P entails~~
- Choose an ordering on variables, e.g., X_1, \dots, X_n
- For $i = 1$ to n
 - Add X_i to the network
 - Define parents of X_i , \mathbf{Pa}_{X_i} , in graph as the minimal subset of $\{X_1, \dots, X_{i-1}\}$ such that local Markov assumption holds – X_i independent of rest of $\{X_1, \dots, X_{i-1}\}$, given parents \mathbf{Pa}_{X_i}
 - Define/learn CPT – $P(X_i | \mathbf{Pa}_{X_i})$



Minimal I-map not unique (or minimal)

- Given a set of variables and conditional independence assumptions
- Choose an ordering on variables, e.g., X_1, \dots, X_n
- For $i = 1$ to n
 - Add X_i to the network
 - Define parents of X_i , \mathbf{Pa}_{X_i} , in graph as the minimal subset of $\{X_1, \dots, X_{i-1}\}$ such that local Markov assumption holds – X_i independent of rest of $\{X_1, \dots, X_{i-1}\}$, given parents \mathbf{Pa}_{X_i}
 - Define/learn CPT – $P(X_i | \mathbf{Pa}_{X_i})$

2
~~3~~ ~~3~~ F 1
Flu, Allergy, SinusInfection, Headache



still minimal
I-map

Perfect maps (P-maps)

- ~~I-maps are not unique and often not simple enough~~
mininal
- Define “simplest” G that is I-map for P
 - A BN structure G is a **perfect map** for a distribution P if $I(P) = I(G)$
- Our goal:
 - Find a perfect map!
 - Must address equivalent BNs

Inexistence of P-maps 1

■ XOR (this is a hint for the homework)

$$z = x \oplus y$$

z true if exactly one of x or y true

$$(x \perp y)$$

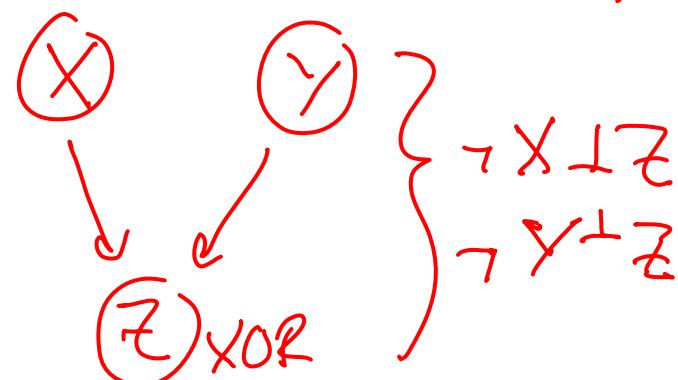
$$(z \perp y)$$

$$(z \perp x)$$

$$\neg(z \perp y \mid x)$$

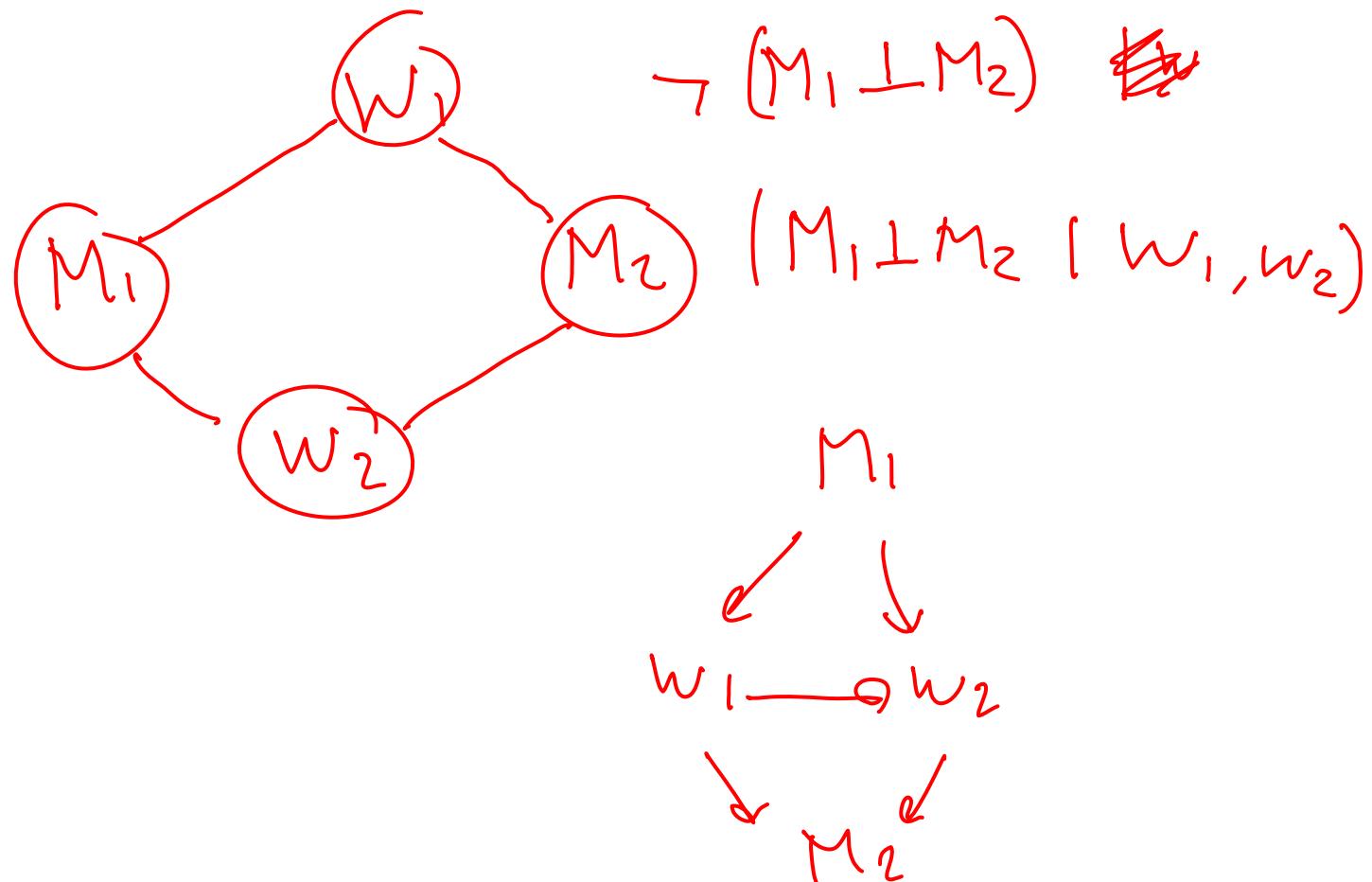
$$\neg(x \perp y \mid z)$$

$$\neg(z \perp x \mid y)$$



Inexistence of P-maps 2

- (Slightly un-PC) swinging couples example

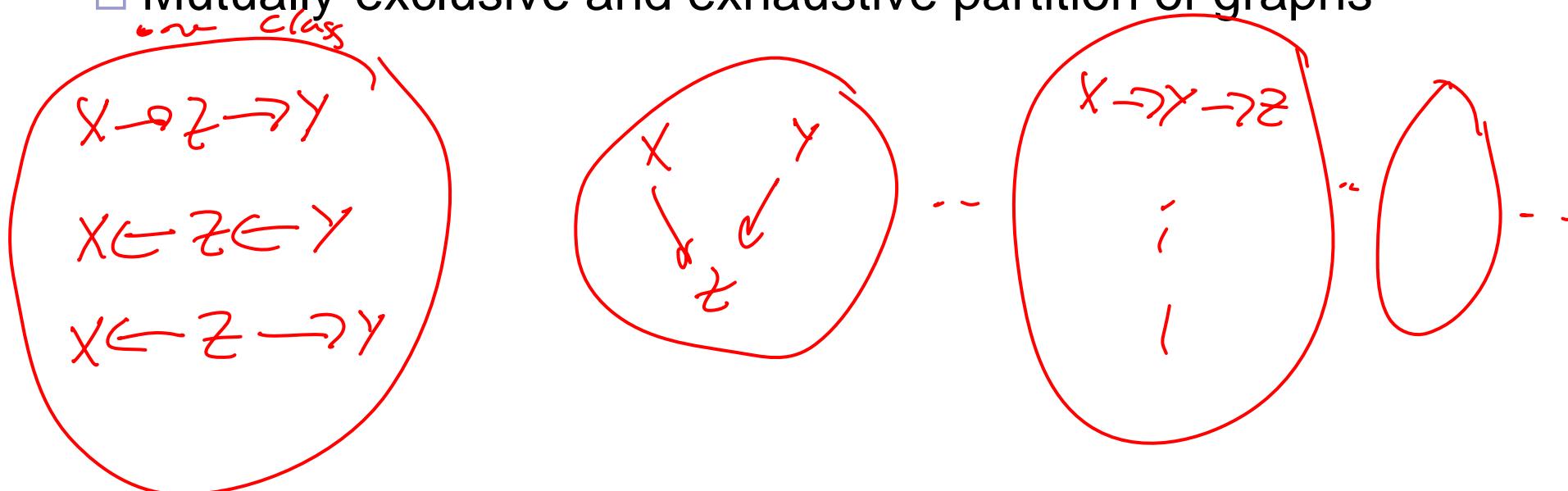


Obtaining a P-map

- Given the independence assertions that are true for P
- Assume that there exists a perfect map G^*
 - Want to find G^*
- Many structures may encode same independencies as G^* , when are we done?
 - Find all equivalent structures simultaneously!

I-Equivalence

- Two graphs G_1 and G_2 are **I-equivalent** if $I(G_1) = I(G_2)$
- **Equivalence class** of BN structures
 - Mutually-exclusive and exhaustive partition of graphs



- How do we characterize these equivalence classes?

Skeleton of a BN

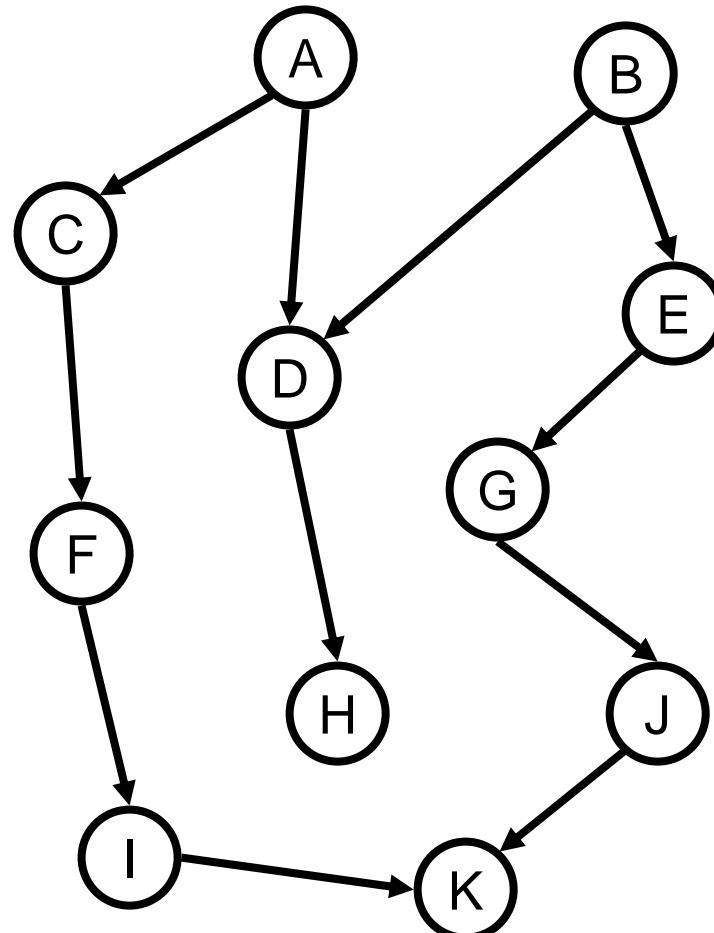
- **Skeleton** of a BN structure G is an **undirected graph** over the same variables that has an edge $X-Y$ for every $X \rightarrow Y$ or $Y \rightarrow X$ in G

Can make independence

never in dep.

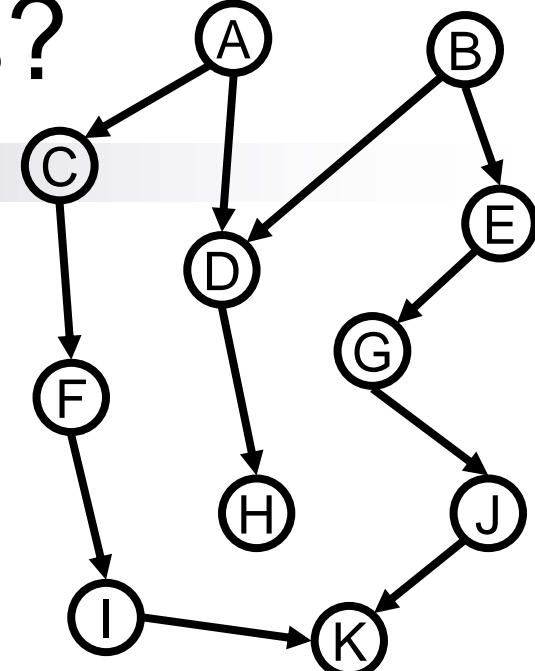
(Little) Lemma: Two I-equivalent BN structures must have the same skeleton

counter example



What about V-structures?

- V-structures are key property of BN structure

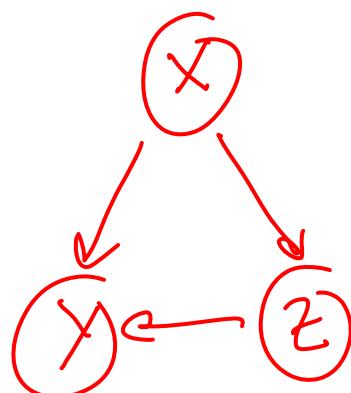


- Theorem: If G_1 and G_2 have the same skeleton and V-structures, then G_1 and G_2 are I-equivalent

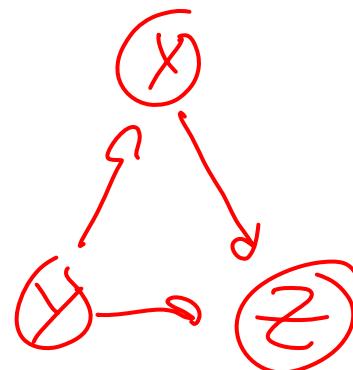
not if and only if

Same V-structures not necessary

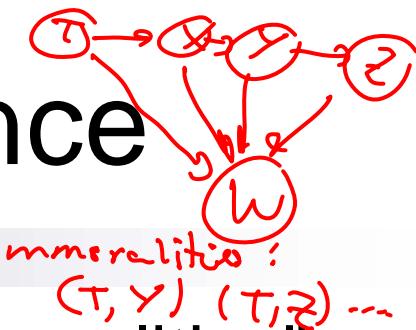
- **Theorem:** If G_1 and G_2 have the same skeleton and V-structures, then G_1 and G_2 are I-equivalent
- Though sufficient, same V-structures not necessary



diff. V-structures
but
I-equiv.



Immoralities & I-Equivalence



- Key concept not V-structures, but “immoralities” (unmarried parents ☺)
 - $X \rightarrow Z \leftarrow Y$, with no edge between X and Y
 - Important pattern: X and Y independent given their parents, but not given Z
 - (If edge exists between X and Y, we have covered the V-structure)
- **Theorem**: G_1 and G_2 have the same skeleton and immoralities if and only if G_1 and G_2 are I-equivalent

Obtaining a P-map

- Given the independence assertions that are true for P
 - Obtain skeleton
 - Obtain immoralities
- From skeleton and immoralities, obtain every (and any) BN structure from the equivalence class

Identifying the skeleton 1

- When is there an edge between X and Y?

$$\text{Edge } X \rightarrow Y \text{ if } \nexists Z \subseteq \{X_1 \dots X_n\} / \{X, Y\} \\ (X \perp Y | Z)$$

- When is there no edge between X and Y?

$$\exists Z : (X \perp Y | Z)$$

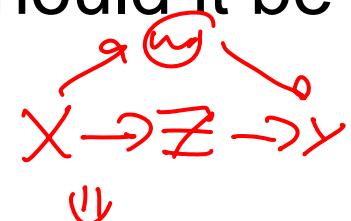
Identifying the skeleton 2

- Assume d is max number of parents (d could be n)
- For each X_i and X_j
 - $E_{ij} \leftarrow \text{true}$
 - For each $U \subseteq X - \{X_i, X_j\}$, $|U| \leq 2d$
 - Is $(X_i \perp X_j \mid U)$?
 - $E_{ij} \leftarrow \text{false}$
 - If E_{ij} is true
 - Add edge $X - Y$ to skeleton

Identifying immoralities

- Consider $X - Z - Y$ in skeleton, when should it be an immorality?

other active path



- Must be $X \rightarrow Z \leftarrow Y$ (immorality):

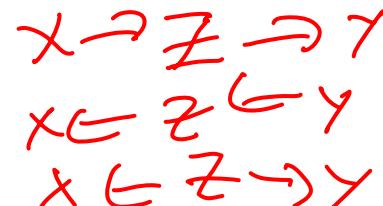
- When X and Y are **never independent** given U , if $Z \in U$

$\nexists U \subseteq \{x_1, \dots, x_n\} - \{X, Y\} : Z \in U \text{ and } (X \perp Y \mid U)$

- Must not be $X \rightarrow Z \leftarrow Y$ (not immorality):

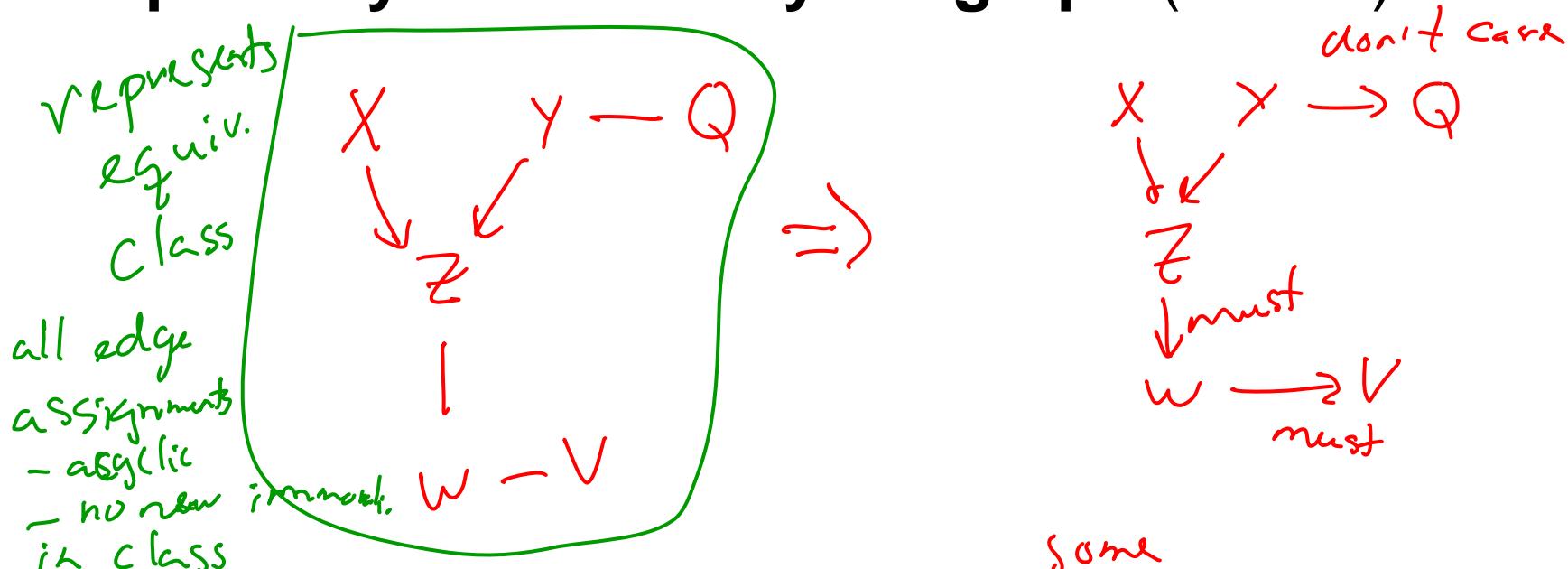
- When there exists U with $Z \in U$, such that X and Y are **independent** given U

possible dirs:



From immoralities and skeleton to BN structures

- Representing BN equivalence class as a **partially-directed acyclic graph (PDAG)**



- Immoralities force direction on ^{some} other BN edges
- Full (polynomial-time) procedure described in reading

What you need to know

- Minimal I-map
 - every P has one, but usually many
- Perfect map
 - better choice for BN structure
 - not every P has one
 - can find one (if it exists) by considering I-equivalence
 - Two structures are I-equivalent if they have same skeleton and immoralities

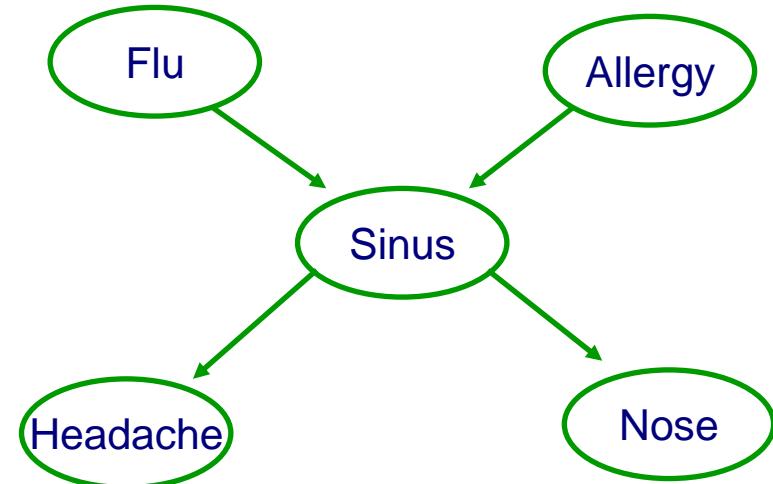
Announcements

- I'll lead a special discussion session:
 - Today 2-3pm in NSH 1507
 - talk about homework, especially programming question

Review

■ Bayesian Networks

- Compact representation for probability distributions
- Exponential reduction in number of parameters
- Exploits independencies

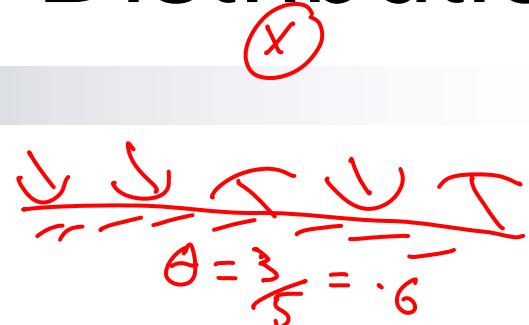


■ Next – Learn BNs

- parameters
- structure

Thumtack – Binomial Distribution

- $P(\text{Heads}) = \theta, P(\text{Tails}) = 1-\theta$



- Flips are i.i.d.:
 - Independent events
 - Identically distributed according to Binomial distribution

- Sequence \underline{D} of $\underline{\alpha_H}$ Heads and $\underline{\alpha_T}$ Tails

$$P(\underline{D} \mid \underline{\theta}) = \underline{\theta}^{\alpha_H} (1 - \underline{\theta})^{\alpha_T}$$

Maximum Likelihood Estimation

- **Data:** Observed set D of $\underline{\alpha_H}$ Heads and $\underline{\alpha_T}$ Tails
- **Hypothesis:** Binomial distribution
- Learning θ is an optimization problem
 - What's the objective function?
- MLE: Choose θ that maximizes the probability of observed data:

$$\begin{aligned}\hat{\theta} &= \arg \max_{\theta} P(\mathcal{D} \mid \theta) \\ &= \arg \max_{\theta} \ln P(\mathcal{D} \mid \theta)\end{aligned}$$

Your first learning algorithm

$$\begin{aligned} 10a^5 \\ = 5 \ln a \end{aligned}$$

$$\hat{\theta} = \arg \max_{\theta} \ln P(\mathcal{D} | \theta)$$

$$= \arg \max_{\theta} \ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

$$\begin{aligned} \ln a \cdot b \\ = \ln a + \ln b \\ \frac{\partial}{\partial \theta} \ln \theta = \frac{1}{\theta} \end{aligned}$$

$$\frac{\partial}{\partial \theta} \ln(1-\theta) = \frac{-1}{1-\theta}$$

- Set derivative to zero:

$$\frac{d}{d\theta} \ln P(\mathcal{D} | \theta) = 0$$

$$\frac{\partial}{\partial \theta} \ln[\theta^{\alpha_H} (1-\theta)^{\alpha_T}]$$

$$\begin{aligned} &= \frac{\partial}{\partial \theta} [\alpha_H \ln \theta + \alpha_T \ln(1-\theta)] = \frac{\partial}{\partial \theta} \alpha_H \ln \theta + \frac{\partial}{\partial \theta} \alpha_T \ln(1-\theta) \end{aligned}$$

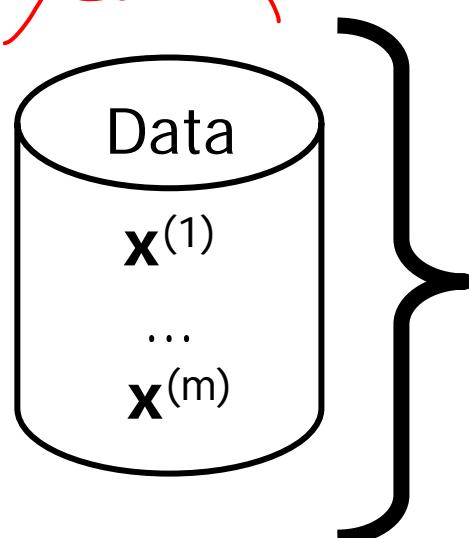
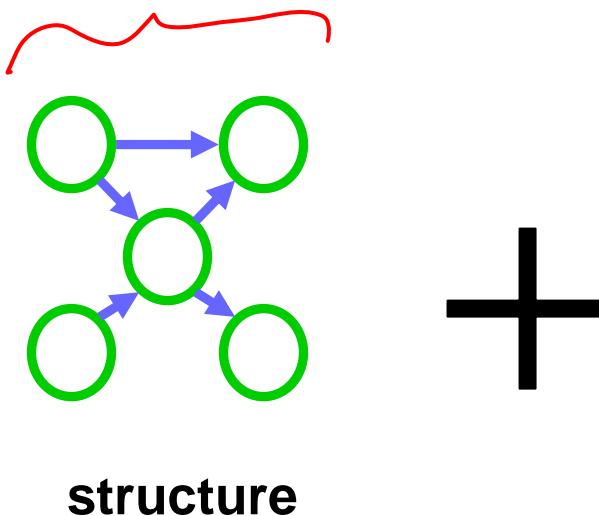
$$\begin{aligned} &= \frac{\alpha_H}{\theta} - \frac{\alpha_T}{1-\theta} = 0 \quad \Rightarrow \quad \theta = \frac{\alpha_H}{\alpha_H + \alpha_T} \end{aligned}$$

$$\theta = \frac{\alpha_H}{\alpha_H + \alpha_T}$$

Learning Bayes nets

	Known structure	Unknown structure
Fully observable data	easy	NP-hard but not so bad
Missing data	hard (things like EM)	very hard but → in a few weeks

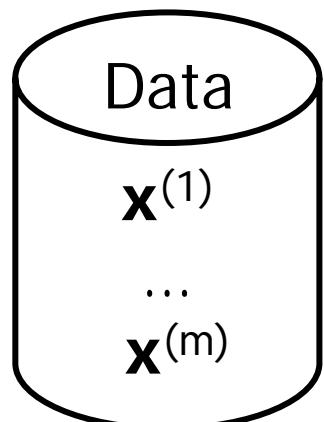
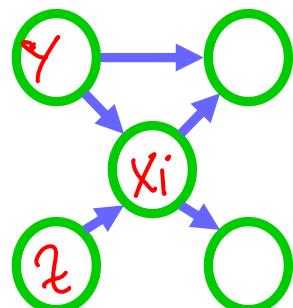
↳ $(x_1=t, x_2=? , x_3=f)$



structure

CPTs –
 $P(X_i | \text{Pa}_{X_i})$
parameters

Learning the CPTs



For each discrete variable X_i

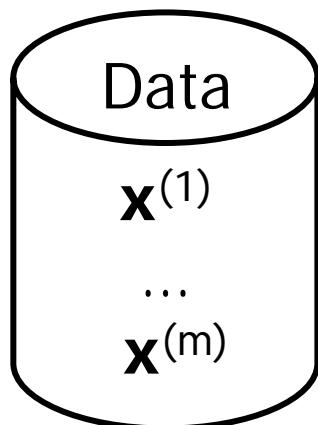
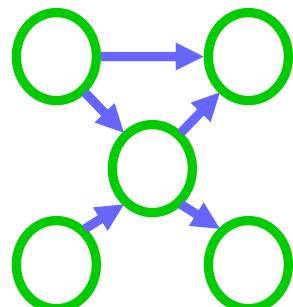
$$P(X_i | P_{\text{ax}_i}) = P(X_i | Y, Z)$$

$\underset{\text{MCf}}{\approx}$

$$P(X_i = x_i | Y = y, Z = z) \underset{\text{MLE}}{\approx} \frac{\text{Count}(X_i = x_i, Y = y, Z = z)}{\text{Count}(Y = y, Z = z)}$$

MLE: $P(X_i = x_i | X_j = x_j) = \frac{\text{Count}(X_i = x_i, X_j = x_j)}{\text{Count}(X_j = x_j)}$

Learning the CPTs



For each discrete variable X_i

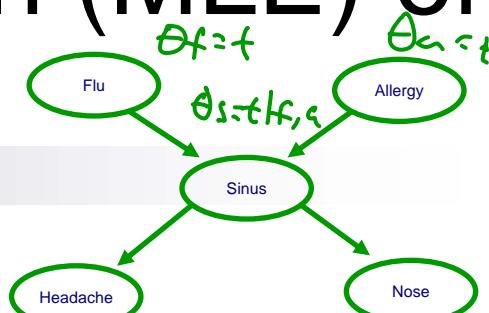
$$\text{MLE: } P(X_i = x_i | X_j = x_j) = \frac{\text{Count}(X_i = x_i, X_j = x_j)}{\text{Count}(X_j = x_j)}$$

WHY?????????

Maximum likelihood estimation (MLE) of BN parameters – example

- Given structure, log likelihood of data:

$$\begin{aligned}
 \log P(\mathcal{D} | \theta_{\mathcal{G}}, \mathcal{G}) &\stackrel{iid}{=} \log \prod_j P(F=f^{(j)}, A=a^{(j)}, S=s^{(j)}, H=h^{(j)}, N=n^{(j)}) \\
 &= \text{structure} \log \prod_j P(F=f^{(j)}) P(a^{(j)}) . P(s^{(j)} | a^{(j)}, f^{(j)}) . P(h^{(j)} | s^{(j)}) . P(n^{(j)} | s^{(j)}) \\
 &= \sum_j [\log P(f^{(j)}) + \log P(a^{(j)}) + \log P(s^{(j)} | a^{(j)}, f^{(j)}) + \log P(h^{(j)} | s^{(j)}) \\
 &\quad + \log P(n^{(j)} | s^{(j)})] \\
 &\stackrel{\text{argmax}}{=} \left[\sum_j \log P(f^{(j)}) + \sum_j \log P(a^{(j)}) + \sum_j \log P(s^{(j)} | a^{(j)}, f^{(j)}) \dots \right. \\
 &= \left[\underset{\theta_{f=t}}{\text{argmax}} \sum_j \log P(f^{(j)} | \theta_{f=t}) \right] + \dots \underset{\theta_{a=t}}{\text{argmax}} \dots + \underset{\theta_{s=f+a}}{\text{argmax}} \dots
 \end{aligned}$$



Maximum likelihood estimation (MLE) of BN parameters – General case

- Data: $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}$
- Restriction: $\underbrace{\mathbf{x}^{(j)}[\mathbf{Pa}_{X_i}]}_{\text{assignment to } \mathbf{Pa}_{X_i} \text{ in } \mathbf{x}^{(j)}}$
- Given structure, log likelihood of data:

$$\log P(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}) = \log \prod_j \prod_i P(x_i = x_i^{(j)} \mid \mathbf{Pa}_{X_i} = \underbrace{x^{(j)}[\mathbf{Pa}_{X_i}]}_{\text{assignment to } \mathbf{Pa}_{X_i}})$$

Taking derivatives of MLE of BN parameters – General case

$$\log P(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}) = \sum_{j=1}^m \sum_{i=1}^n \log P\left(X_i = x_i^{(j)} \mid \mathbf{Pa}_{X_i} = \mathbf{x}^{(j)} [\mathbf{Pa}_{X_i}]\right)$$

General MLE for a CPT

- Take a CPT: $P(X|U)$
- Log likelihood term for this CPT
- Parameter $\theta_{X=x|U=u}$:

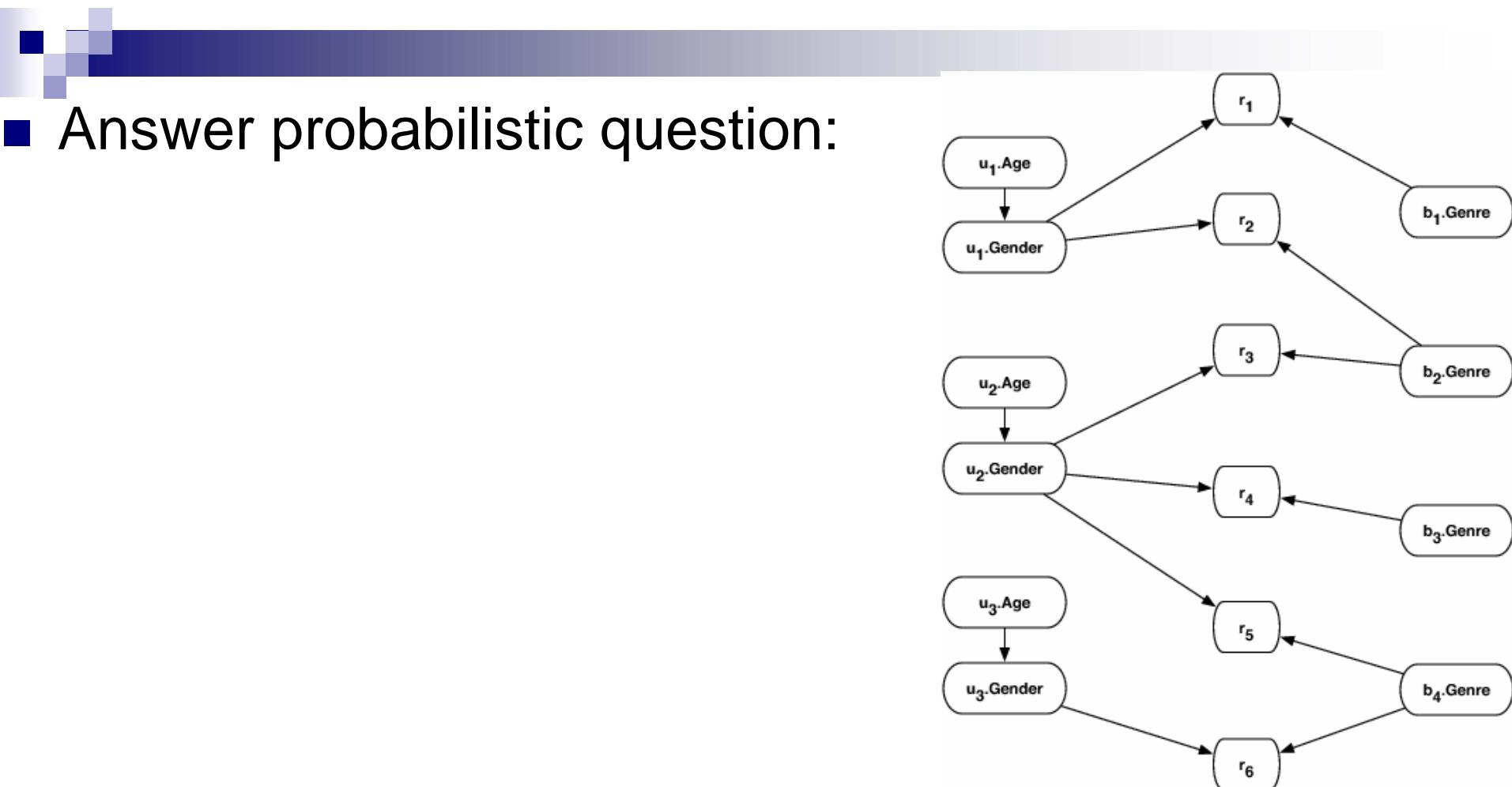
$$\text{MLE: } P(X = x | U = u) = \theta_{X=x|U=u} = \frac{\text{Count}(X = x, U = u)}{\text{Count}(U = u)}$$

Parameter sharing

(basics now, more later in the semester)

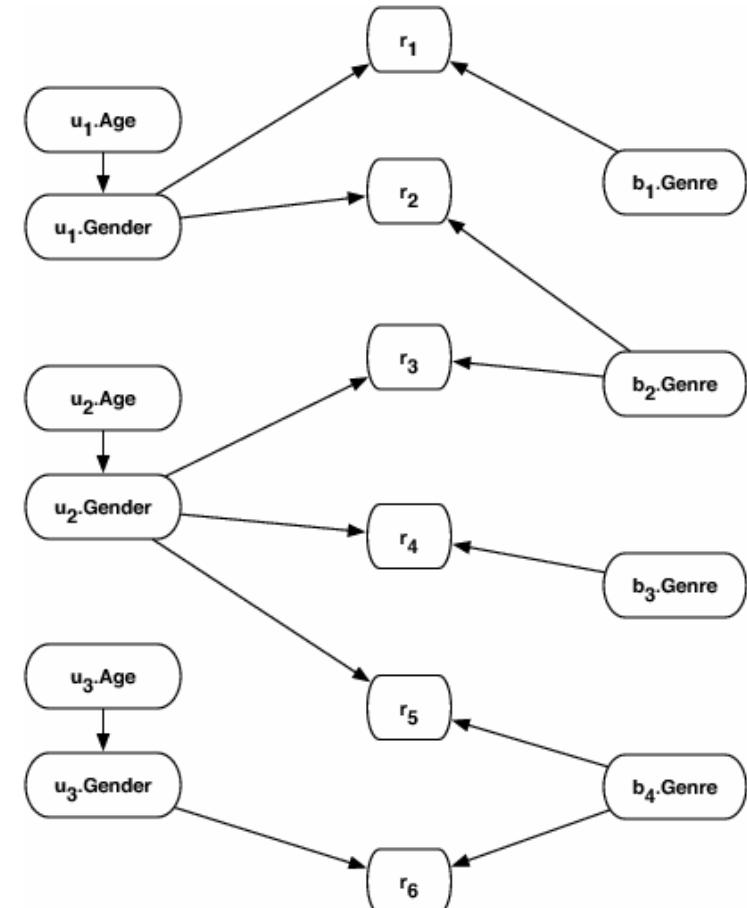
- Suppose we want to model customers' rating for books
- You know:
 - features of customers, e.g., age, gender, income,...
 - features of books, e.g., genre, awards, # of pages, has pictures,...
 - ratings: each user rates a few books
- A simple BN:

Using recommender system



Learning parameters of recommender system BN

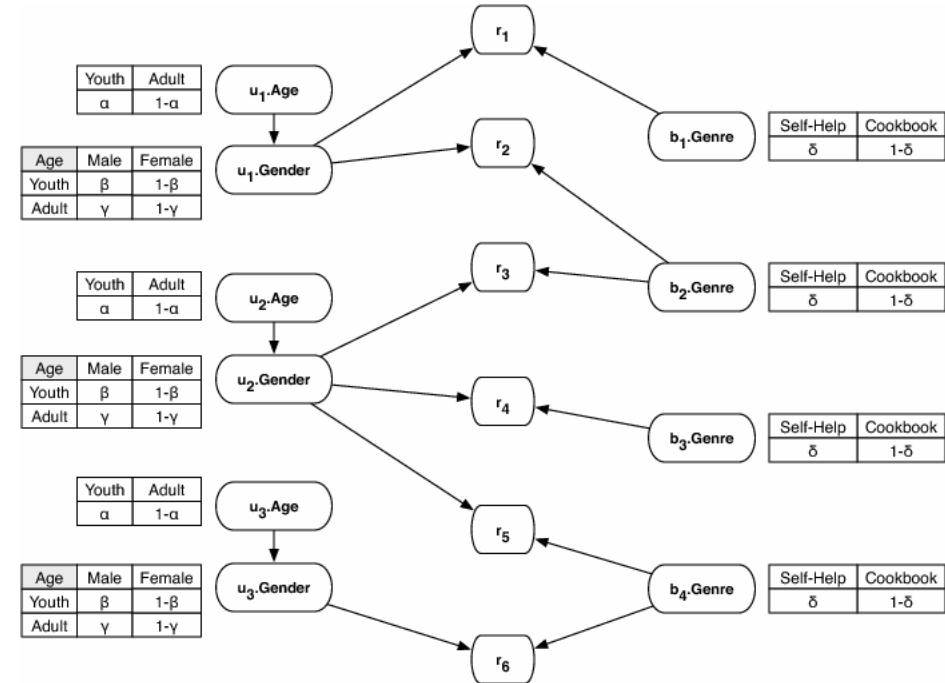
- How many parameters do I have to learn?



- How many samples do I have?

Parameter sharing for recommender system BN

- Use same parameters in many CPTs
- How many parameters do I have to learn?
- How many samples do I have?

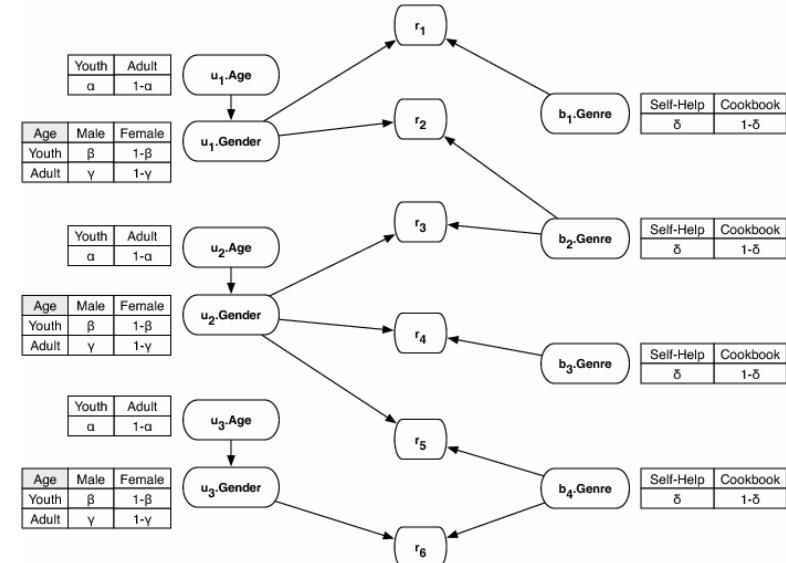


For each r_i node

Gender	Genre	Dislikes	Neutral	Likes
Male	Self-Help	ε	ζ	$1-\varepsilon-\zeta$
Male	Cookbook	η	θ	$1-\eta-\theta$
Female	Self-Help	ι	κ	$1-\iota-\kappa$
Female	Cookbook	λ	μ	$1-\lambda-\mu$

MLE with simple parameter sharing

■ Estimating α :



■ Estimating β :

■ Estimating ε :

For each r_k node				
Gender	Genre	Dislikes	Neutral	Likes
Male	Self-Help	ε	ζ	$1-\varepsilon-\zeta$
Male	Cookbook	η	θ	$1-\eta-\theta$
Female	Self-Help	ι	κ	$1-\iota-\kappa$
Female	Cookbook	λ	μ	$1-\lambda-\mu$

What you need to know about learning BNs thus far

- Maximum likelihood estimation
 - decomposition of score
 - computing CPTs
- Simple parameter sharing
 - why share parameters?
 - computing MLE for shared parameters