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Building BNs from independence

] grogerties

m From d-separation we learned:

Start from local Markov assumptions, obtain all
Independence assumptions encoded by graph

For most P’s that factorize over G, I(G) = I(P)
All of this discussion was for a given G that is an I-map for P

m Now, give me a P, how can | get a
SR Oﬂj

l.e., give_me the mdependenceassamt-reﬂs entailed by P
Many G are “equivalent”, how do | represent this?
Most of this discussion is not about practical algorithms, but

useful concepts that will be used by practical algorithms
m Practical algs next week
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Minimal I-maps
"
m One option:

G is an I-map for P
G Is as simple as possible

m Gis aminimal I-map for P if deleting any edges
from G makes it no longer an I-map

o~ n A r\o/fl\'lr\7 L ]5%
VOrs XY .3 \‘/

E-




Obtaining a minimal I-map

" A N 3 ¢
m Given a set of variables and Flu, Allergy, Sinusinfection, Headache

conditiogal Independence
A\ SSL o S + c\»,{- P(ﬂ?é\][f @ @ FiA
N e

m Choose an ordering on (51 F)
variables, e.g., X4, ..., X, @ 1(5.1,4)
m Fori=1ton
Add X, to the network O f{: g j
Define parents of X, Pay, In ( 74 H ] S
graph as the minimal subset of
{X{,...,X{} such that local
Markov assumption holds — X
independent of rest of
{X{,..., X1}, given parents Pay;
Define/learn CPT — P(X| Pay)
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Minimal I-map not unigue (or minimal)
7-

" 2 T3 f 1
m Given a set of variables and Flu, Allergy, Sinusinfection, Headache
conditional independence 1, ‘
. o
assumptions | @N = 5
= Choose an ordering on \ (ALF)

variables, e.g., X, ..., X, / \
m Fori=1ton Z@ ’)—7(41]:)
Add X; to the network Q// (14_1?-/{_})

Define parents of X, Pay, In
graph as the minimal subset of @
{X{,...,X{} such that local

Markov assumption holds — X , ,
independent of rest of 5%)/ N npga, |
{X4,....X:,}, given parents Pay T - om0

Define/learn CPT — P(X|| Pay)
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Perfect maps (P-maps)
' -m

m |-maps are not unigue and often not simple
enough

m Define “simplest” G that is I-map for P

A BN structure G Is a perfect map for a distribution P

if I(P) = 1(G)
\—"\.\’_/

m Our goal:
Find a perfect map!
Must address equivalent BNs



Inexistence of P-maps 1
" J
m XOR (this Is a hint for the homework)

Y A& ";‘(’K’\i
Z= X0 2 s L
(X1 X
22 . §7§i§
)
(2.1 X) Dot
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Inexistence of P-maps 2

m (Slightly un-PC) swinging couples example

@ - M ime) &

B rn

@ a
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Obtaining a P-map
"
m Given the independence assertions that are_true
forP

m Assume that there exists a perfect map G
Want to find G

m Many structures may encode same
independencies as G°, when are we done?

Find all equivalent structures simultaneously!
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l-Equivalence
" J
m Two graphs G, and G, are I-equivalent If I(G;) = I(G,)
m Equivalence class of BN structures -
Mutually

& N—

m How do we characterize these equivalence classes?
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Skeleton of a BN

" A
m Skeleton of a BN structure G Is
an undirected graph over the
same variables that has an
edge X-Y for every X—Y or o
( N

Y—=XInG -
=t 19
KL (\? E:t \l\

m (Little) Lgmma: MO%-?
equivalent BN structures must

have the same skeleton
Cd‘U\hA‘L/ M("""’pb' |

Cy—
\
o

nvVLy
RN 2

\
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What about V-structures? &
" J
m V-structures are key property of BN
structure

m Theorem: If G; and G, have the same
skeleton and V_smjgtures then GJL , and
G, are I- equwalent

—_

et 4 M& M\/U T\OC



Same V-structures not necessary

"

m Theorem: If G; and G, have the same skeleton and
V-structures, then G, and G, are I-equivalent

m Though sufficient, same V-structures not necessary



D—
Immoralities & I- E(J|U|valen(:é\§§7O

" e
G, Yl) (1) -~
m Key concept not V-structures, but “immoralities’
(unmarried parents @)

X = Z <« Y, withno arrgw between X and Y

Important pattern: X and Y independent given their
parents, but not given Z

(If edge exists between X and Y, we have covered the
V-structure)
m Theorem: G; and G, have the same skeleton
and immoralities If and only if G, and G, are
l-equivalent —

———




Obtaining a P-map
" J
m Given the independence assertions that are true
for P
Obtain skeleton
Obtain immoralities

m From skeleton and immoralities, obtain every
(and any) BN structure from the equivalence
class
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ldentifying the skeleton 1
"
m When Is there an edge between X and Y?

A Xy A7 (a-nl/boy
(XL ¥ [2)

m When Is there no edge between X and Y?

g2 - Y2



ldentifying the skeleton 2
" J

m Assume_ d Is max number of parents (d could be n)

m For each X; and X
E; < true

For each UC X —{X;, X}, |[U|< Rd
Is (x 1X |‘3 — —
If E; IS true
s Add edge X — Y to skeleton
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ldentifying immoralities
" A
m Consider X —Z —Y In skeleton, when shoul%}t be

?
an immorality” N otk >< 92 Ny
(\/\/\/p 170«]’A 0
m Must be X — Z < Y (immorality): ”“ffjlvf;iﬁ%

When X and Y are never mdependen jlven U, if ZeU
AU {05805 0. 2ed (X1Y 1)

m Must not be X — Z < Y (not immorality):

——

When there exists U with Z€U, such that X and Y are
independent given U pessible  dire!

AL 7

xe= 2V

X & EDY
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From immoralities and skeleton to
BN structures
"

m Representing BN equivalence class as a
partially-directed acyclic graph (PDAG)

,_(h — Aonr' 'll Ca XN
N et XX —>Q
24" W%
Als A
wv*&

Al ¢0{?A \1/
a%’rﬁh“’d’ w —V
— 9‘,@95( (v \ Muesd

v NA
TAh C [&\SS 6§ A

m Immoralities force direction on other BN edges

m Full (polynomial-time) procedure described In
reading



What you need to know
" J

m Minimal I-map

every P has one, but usually many
m Perfect map

better choice for BN structure

not every P has one
can find one (if it exists) by considering I-equivalence

Two structures are I-equivalent if they have same
skeleton and immoralities
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Announcements
"
m |'ll lead a special discussion session:
Today 2-3pm in NSH 1507

/_\ . . .
» talk about homework, especially programming question
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Review
"
m Bayesian Networks

Compact representation for @
probability distributions

Exponential reduction in @

number of parameters

Exploits independencies

m Next — Learn BNs
parameters
structure
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Thumbtack — Binomial Distgbution
" A

s P(Heads) = 0, P(Tails) = 1-6 &
6

/\,\\JT
:/f 6

m Flips are 1.1.d.:
Independent events

|dentically distributed according to Binomial
distribution

m Sequence D of oy Heads and o Tails

P(D|0) =0%H(1—6)"T
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Maximum Likelihood Estimation
" A

Data: Observed set D of Oy Heads and Oy Talils
—IypotheS|s Blnomlal distribution®

_earning 0 is an optlmlzatlon problem
What's the objective function?

MLE: Choose 0 that maximizes the probability of
observed data:

P

0 = arg meax P(D | 0)

= arg meax In P(D | 9)
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Mas

Your first learning algorithm

:é/l\C\

" A
0 — argm@ax In P(D | 0) = lno th
— a1 _ pyer O (nez
argm@ax INGH(1 —0) 5 5
O [A(l-0): ~
ob 5

m Set derivative to zero: i nP(D | 0) =0
) W[ (-0

/ . O dyhe + B

. ) @Hm} g (n=0)\ = bgfkw Ay In (-0)

v -0 =D (é
— - Y- dH*i\




Learning Bayes nets

S 000
Known structure Unknown structure
T NP R X

Fully observable g &3 TS

. her K [ AR UZFg  Seyk
MISSIng data \ 1) ks 6/"> b‘/d"-:?r/h =N -“Ft(*v h&k
(—D ¥ '-'—’é/ {1:?, )(g -:-Sl>
e CPTs —
| P(Xi| Pay;)
¥ (M)
v structure parameters
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Learning the CPTs
"

N For each discrete variable X
e O(Xi| Pag) = POGIYH R
MCe
~ hL{ COMA‘} (S(;:x.' )l: -‘z:-d
w (M) ’P(’(":x"[xy,}:ﬂ o Y
\/ > (()(,u\’} (\/:‘5@

Count(X; = z;, X; = w;)
Count(X; = x;)
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MLE: P(X;=g; | X; =z;) =




Learning the CPTs
" J

>

MLE:

For each discrete variable X;

Count(X, = x;, X; = x;
P(X;=ua; | X; =) = (Xi =z, Xj = z;)

/ Count(X; = z;)



Maximum likelihood estimation (MLE) of

BN parameters — example GD\’
O lepn structure, Iog likelihood of data: .’ .‘
Iog P(D ‘ Qg,g) = °j T P(F F“\ GE Q(k\ S- g“ H,I,C"Nﬁ
P oq Tl PCF: 49) p) P | 4“) ;(O)V ) P(ZW%
) t ls —}D( 3/3%
] 8) o Joo PAR) 1 fog (e y
52 (:(03 P ij g DK ls(b\)]

) T lgpet) 13 byp @05 -7
N
A ay

chg L. mrasrm("* S
< @6:‘*\%17 l0‘3 C/F , - L\B Oa¢ ?QS:{"(_"G\

Of-t



Maximum likelihood estimation (MLE) of

BN parameters — General case

m Data; x@,... x(M

m Restriction: x0[Pa,;] — assignment to Pay; in xU)
. L/‘-\_—/ . .

m Given structure, log likelihood of data:

log P(D | 6g,G) = loa Es IT P (2] 523 Xg P;(g)




Taking derivatives of MLE of BN

Earameters — General case
H

uuuuu



General MLE for a CPT

=
m Take a CPT: P(X|U)
m Log likelihood term for this CPT

m Parameter 0y_,-,

Count(X = 2,U = u)

—
—
Tl
o
/L"\
P
|
&=
-
—
|
Z
I
S

X=elU=u™ " Count(U = u)
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Parameter sharing

_ ibasics now, more later in the semester)

m Suppose we want to model customers’ rating for books

m You know:
features of customers, e.g., age, gender, income,...
features of books, e.g., genre, awards, # of pages, has pictures,...
ratings: each user rates a few books

m A simple BN:

10-708 — ©Carlos Guestrin 2006
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Using recommender system
" A
m Answer probabilistic question:




Learning parameters of
recommender system BN
" SN

m How many parameters do |
have to learn?




Parameter sharing for
recommender system BN

m Use same parameters

In many CPTs T T (o )//'@\< ) [ttt fous
— O
( I V
e 51 (e )0
m How many parameters =~ (= )
do | have to learn? o _—

m How many samples
do | have?
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MLE with simple parameter sharing
" S
m Estimating o = @\
-

b1_ e Sell-Help | Cookbook
3 15

Age | Male | Fermale
Youth| B 1-B
Adult v 1-y

Youth | Adult b..Genre Self-Help | Cookbook
u - T / 2 ] 1-5

Age | Male | Female
Youth | B 1-B

Adut| y | 1 \.\( R ) | Sell-Help | Cookbook
3"
1-8

m Estimating f3:

Age | Male | Female (u Gender T Sell-Help | Cookbook
Youlh| B 1B £ . 3 1-5
Adult 3 1-y

u1 .Gender

u2 -Gender

"': .Age

For each r, node

Gender | Genre Dislikes | Neutral Likes
Male Self-Help E [4 1-g-f
Male | Cookbook n [:] 1-n-8

Female | Seli-Help L K 1-rK

Female | Cookbook A u 1-A-p

m Estimating e:
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What you need to know about

. ganing BINS thus far

m Maximum likelihood estimation
decomposition of score
computing CPTs

m Simple parameter sharing

why share parameters?
computing MLE for shared parameters
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