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BN Semantics 2 –
The revenge of d-separation

Graphical Models – 10708
Carlos Guestrin
Carnegie Mellon University

September 20th, 2006

Readings:
K&F: 3.3, 3.4
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Local Markov assumption & I-maps

Flu Allergy

Sinus

Headache Nose

Local Markov Assumption:
A variable X is independent
of its non-descendants given 
its parents 
(Xi ⊥ NonDescendantsXi | PaXi)

Local independence 
assumptions in BN 
structure G:

Independence 
assertions of P:

BN structure G is an  
I-map (independence 
map) if: 
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Today: The Representation Theorem

BN: Encodes independence
assumptions

Joint probability
distribution:Obtain

If conditional
independencies

in BN are subset of 
conditional 

independencies in P

If joint probability
distribution: Obtain

Then conditional
independencies

in BN are subset of 
conditional 

independencies in P
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Factorized distributions

Given 
Random vars X1,…,Xn

P distribution over vars
BN structure G over same vars

P factorizes according to G if

Flu Allergy

Sinus

Headache Nose
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BN Representation Theorem –
I-map to factorization

Joint probability
distribution:Obtain

If conditional
independencies

in BN are subset of 
conditional 

independencies in P

G is an I-map of P P factorizes 
according to G
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BN Representation Theorem –
I-map to factorization: Proof, part 1

Flu Allergy

Sinus

Headache Nose

ObtainG is an 
I-map of P 

P factorizes 
according to G

Number variables such that:
parent has lower number than child
i.e., Xi → Xj ⇒ i<j

DAGs always have (many) topological 
orderings

find by a modification of breadth first 
search (not exactly what is in the book)

Topological Ordering:
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BN Representation Theorem –
I-map to factorization: Proof, part 2

Local Markov Assumption:
A variable X is independent
of its non-descendants given its parents
(Xi ⊥ NonDescendantsXi | PaXi)

ALL YOU NEED:

Flu Allergy

Sinus

Headache Nose

ObtainG is an 
I-map of P 

P factorizes 
according to G
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Adding edges doesn’t hurt

Theorem: Let G be an I-map for P, any DAG G’
that includes the same directed edges as G is 
also an I-map for P.
Proof: 

Flu Allergy

Sinus

Headache Nose

Airplane Season
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Defining a BN

Given a set of variables and conditional 
independence assertions of P
Choose an ordering on variables, e.g., X1, …, Xn

For i = 1 to n
Add Xi to the network
Define parents of Xi, PaXi

, in graph as the minimal 
subset of {X1,…,Xi-1} such that local Markov 
assumption holds – Xi independent of rest of  
{X1,…,Xi-1}, given parents PaXi

Define/learn CPT – P(Xi| PaXi)
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BN Representation Theorem –
Factorization to I-map

G is an I-map of P P factorizes 
according to G

If joint probability
distribution: Obtain

Then conditional
independencies

in BN are subset of 
conditional 

independencies in P
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BN Representation Theorem –
Factorization to I-map: Proof

G is an I-map of P P factorizes 
according to G

If joint probability
distribution: Obtain

Then conditional
independencies

in BN are subset of 
conditional 

independencies in P

Homework 1!!!! ☺
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The BN Representation Theorem

If joint probability
distribution: Obtain

Then conditional
independencies

in BN are subset of 
conditional 

independencies in P

Joint probability
distribution:Obtain

If conditional
independencies

in BN are subset of 
conditional 

independencies in P

Important because: 
Every P has at least one BN structure G

Important because: 
Read independencies of P from BN structure G
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What you need to know thus far

Independence & conditional independence
Definition of a BN
Local Markov assumption
The representation theorems 

Statement: G is an I-map for P if and only if P
factorizes according to G
Interpretation
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Announcements

Upcoming recitation
Tomorrow 5 - 6:30pm in Wean 4615A 

review BN representation, representation theorem, d-separation 
(coming next)

Don’t forget to register to the mailing list at:
https://mailman.srv.cs.cmu.edu/mailman/listinfo/10708-announce

If you don’t want to take the class for credit (will sit 
in or audit) – please talk with me after class
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Independencies encoded in BN

We said: All you need is the local Markov 
assumption

(Xi ⊥ NonDescendantsXi | PaXi)
But then we talked about other (in)dependencies

e.g., explaining away

What are the independencies encoded by a BN?
Only assumption is local Markov
But many others can be derived using the algebra of 
conditional independencies!!!
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Understanding independencies in BNs
– BNs with 3 nodes

Z

YX

Local Markov Assumption:
A variable X is independent
of its non-descendants given 
its parents 

Z YX

Z YX

Z
YX

Indirect causal effect:

Indirect evidential effect:

Common cause:

Common effect:
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Understanding independencies in BNs
– Some examples

A

H

C
E

G

D

B

F

K

J

I
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Understanding independencies in BNs
– Some more examples

A

H

C
E

G

D

B

F

K

J

I
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An active trail – Example

A HC
E G

DB F

F’’

F’

When are A and H independent?
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Active trails formalized

A trail X1 – X2 – · · · –Xk is an active trail when 
variables O⊆{X1,…,Xn} are observed if for each 
consecutive triplet in the trail:

Xi-1→Xi→Xi+1, and Xi is not observed (Xi∉O)

Xi-1←Xi←Xi+1, and Xi is not observed (Xi∉O)

Xi-1←Xi→Xi+1, and Xi is not observed (Xi∉O)

Xi-1→Xi←Xi+1, and Xi is observed (Xi∈O), or one of 
its descendents 
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Active trails and independence?

Theorem: Variables Xi
and Xj are independent 
given Z⊆{X1,…,Xn} if the 
is no active trail between 
Xi and Xj when variables 
Z⊆{X1,…,Xn} are observed

A

H

C
E

G

D

B

F

K

J

I

10-708 – ©Carlos Guestrin 2006 22

More generally: 
Soundness of d-separation

Given BN structure G
Set of independence assertions obtained by   
d-separation:

I(G) = {(X⊥Y|Z) : d-sepG(X;Y|Z)}

Theorem: Soundness of d-separation
If P factorizes over G then I(G)⊆I(P)

Interpretation: d-separation only captures true 
independencies
Proof discussed when we talk about undirected models
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Existence of dependency when not 
d-separated

Theorem: If X and Y are 
not d-separated given Z, 
then X and Y are 
dependent given Z under 
some P that factorizes 
over G
Proof sketch: 

Choose an active trail 
between X and Y given Z
Make this trail dependent 
Make all else uniform 
(independent) to avoid 
“canceling” out influence

A

H

C
E

G

D

B

F

K

J

I
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More generally: 
Completeness of d-separation

Theorem: Completeness of d-separation
For “almost all” distributions that P factorize over to G, we 
have that I(G) = I(P)
“almost all” distributions: except for a set of measure zero of 
parameterizations of the CPTs (assuming no finite set of 
parameterizations has positive measure)

Proof sketch:



13

10-708 – ©Carlos Guestrin 2006 25

Interpretation of completeness

Theorem: Completeness of d-separation
For “almost all” distributions that P factorize over to G, we 
have that I(G) = I(P)

BN graph is usually sufficient to capture all 
independence properties of the distribution!!!!
But only for complete independence:

P ²(X=x⊥Y=y | Z=z), ∀ x∈Val(X), y∈Val(Y), z∈Val(Z)

Often we have context-specific independence (CSI)
∃ x∈Val(X), y∈Val(Y), z∈Val(Z): P ²(X=x⊥Y=y | Z=z)

Many factors may affect your grade
But if you are a frequentist, all other factors are irrelevant ☺
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Algorithm for d-separation

How do I check if X and Y are d-
separated given Z

There can be exponentially-many 
trails between X and Y

Two-pass linear time algorithm 
finds all d-separations for X
1. Upward pass

Mark descendants of Z
2. Breadth-first traversal from X

Stop traversal at a node if trail is 
“blocked”
(Some tricky details apply – see 
reading)

A

H

C
E

G

D

B

F

K

J

I
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What you need to know

d-separation and independence
sound procedure for finding independencies
existence of distributions with these independencies
(almost) all independencies can be read directly from 
graph without looking at CPTs
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Building BNs from independence 
properties

From d-separation we learned:
Start from local Markov assumptions, obtain all 
independence assumptions encoded by graph
For most P’s that factorize over G, I(G) = I(P)
All of this discussion was for a given G that is an I-map for P

Now, give me a P, how can I get a G?
i.e., give me the independence assumptions entailed by P
Many G are “equivalent”, how do I represent this?
Most of this discussion is not about practical algorithms, but 
useful concepts that will be used by practical algorithms



15

10-708 – ©Carlos Guestrin 2006 29

Minimal I-maps

One option: 
G is an I-map for P
G is as simple as possible

G is a minimal I-map for P if deleting any edges 
from G makes it no longer an I-map
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Obtaining a minimal I-map

Given a set of variables and 
conditional independence 
assumptions
Choose an ordering on 
variables, e.g., X1, …, Xn

For i = 1 to n
Add Xi to the network
Define parents of Xi, PaXi

, in 
graph as the minimal subset of 
{X1,…,Xi-1} such that local 
Markov assumption holds – Xi
independent of rest of  
{X1,…,Xi-1}, given parents PaXi

Define/learn CPT – P(Xi| PaXi)
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Minimal I-map not unique (or minimal)

Given a set of variables and 
conditional independence 
assumptions
Choose an ordering on 
variables, e.g., X1, …, Xn

For i = 1 to n
Add Xi to the network
Define parents of Xi, PaXi

, in 
graph as the minimal subset of 
{X1,…,Xi-1} such that local 
Markov assumption holds – Xi
independent of rest of  
{X1,…,Xi-1}, given parents PaXi

Define/learn CPT – P(Xi| PaXi)

Flu, Allergy, SinusInfection, Headache 
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Perfect maps (P-maps)

I-maps are not unique and often not simple 
enough

Define “simplest” G that is I-map for P
A BN structure G is a perfect map for a distribution P
if I(P) = I(G)  

Our goal:
Find a perfect map!
Must address equivalent BNs
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Inexistence of P-maps 1

XOR (this is a hint for the homework)
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Inexistence of P-maps 2

(Slightly un-PC) swinging couples example 
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Obtaining a P-map

Given the independence assertions that are true 
for P

Assume that there exists a perfect map G*

Want to find G*

Many structures may encode same 
independencies as G*, when are we done?

Find all equivalent structures simultaneously!
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I-Equivalence

Two graphs G1 and G2 are I-equivalent if I(G1) = I(G2)
Equivalence class of BN structures

Mutually-exclusive and exhaustive partition of graphs

How do we characterize these equivalence classes? 
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Skeleton of a BN

Skeleton of a BN structure G is 
an undirected graph over the 
same variables that has an 
edge X–Y for every X→Y or 
Y→X in G

(Little) Lemma: Two I-
equivalent BN structures must 
have the same skeleton

A

H

C
E

G

D

B

F

K

J

I
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What about V-structures?

V-structures are key property of BN 
structure

Theorem: If G1 and G2 have the same 
skeleton and V-structures, then G1 and 
G2 are I-equivalent

A

H

C
E

G
D

B

F

K

J

I
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Same V-structures not necessary

Theorem: If G1 and G2 have the same skeleton and 
V-structures, then G1 and G2 are I-equivalent

Though sufficient, same V-structures not necessary
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Immoralities & I-Equivalence

Key concept not V-structures, but “immoralities”
(unmarried parents ☺)

X → Z ← Y, with no arrow between X and Y
Important pattern: X and Y independent given their 
parents, but not given Z
(If edge exists between X and Y, we have covered the 
V-structure)

Theorem: G1 and G2 have the same skeleton 
and immoralities if and only if G1 and G2 are      
I-equivalent
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Obtaining a P-map

Given the independence assertions that are true 
for P

Obtain skeleton
Obtain immoralities

From skeleton and immoralities, obtain every 
(and any) BN structure from the equivalence 
class
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Identifying the skeleton 1

When is there an edge between X and Y?

When is there no edge between X and Y?
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Identifying the skeleton 2

Assume d is max number of parents (d could be n)

For each Xi and Xj
Eij ← true
For each U⊆ X – {Xi,Xj}, |U|· 2d

Is (Xi ⊥ Xj | U) ?
Eij ← true

If Eij is true
Add edge X – Y to skeleton
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Identifying immoralities

Consider X – Z – Y in skeleton, when should it be 
an immorality?

Must be X → Z ← Y (immorality):
When X and Y are never independent given U, if Z∈U

Must not be X → Z ← Y (not immorality):
When there exists U with Z∈U, such that X and Y are 
independent given U
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From immoralities and skeleton to 
BN structures
Representing BN equivalence class as a 
partially-directed acyclic graph (PDAG)

Immoralities force direction on other BN edges
Full (polynomial-time) procedure described in 
reading
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What you need to know

Minimal I-map 
every P has one, but usually many

Perfect map
better choice for BN structure
not every P has one
can find one (if it exists) by considering I-equivalence
Two structures are I-equivalent if they have same 
skeleton and immoralities


