BN Semantics 2 -

The revenge of d-separation

Graphical Models - 10708
Carlos Guestrin
Carnegie Mellon University
September 20th, 2006

Local Markov assumption \& I-maps

- Local ind ions assumptions in BN structure $G: I_{e}(G)$

Truth

- Independence assertions of P :
- BN structure G is an I-map (independence map) if:

Factorized distributions

Given
\square Random vars $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$
$\square P$ distribution over vars
$\square B N$ structure G over same vars

- P factorizes according to G if

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)
$$

BN Representation Theorem -I-map to factorization

If conditional independencies in BN are subset of conditional independencies in P
G is an I-map of P

Obtain

Joint probability distribution:

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)
$$

> | P factorizes |
| :---: |
| according to G |

Topological Ordering:

- Number variables such that:
\square parent has lower number than child
\square i.e., $X_{i} \rightarrow X_{j} \Rightarrow i<j$
- DAGs always have (many) topological orderings
\square find by a modification of breadth first
 search (not exactly what is in the book)

Adding edges doesn't hurt

Theorem: Let G be an I-map for \boldsymbol{P}, any DAG G' that includes the same directed edges as \mathbf{G} is also an I-map for \boldsymbol{P}.

- Proof:

Defining a BN

- Given a set of variables and conditional independence assertions of P
- Choose an ordering on variables, e.g., X_{1}, \ldots, X_{n}
- For $\mathrm{i}=1$ to n

Add X_{i} to the network
\square Define parents of $X_{i}, \mathrm{~Pa}_{\mathrm{x}_{\mathrm{i}}}$, in graph as the minimal subset of $\left\{X_{1}, \ldots, X_{i-1}\right\}$ such that local Markov assumption holds $-X_{i}$ independent of rest of $\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}-1}\right\}$, given parents $\mathrm{Pa}_{\mathrm{xi}_{\mathrm{i}}}$
Define/learn CPT - $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}_{\mathrm{x}_{\mathrm{i}}}\right)$

Homework 1!!!! :

The BN Representation Theorem

If conditional
independencies in BN are subset of conditional independencies in P

Obtain

Joint probability distribution:

Important because:
Every P has at least one BN structure G

If joint probability distribution:	Obtain
$P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)$	Then conditional independencies in BN are subset of conditional

Important because:
Read independencies of P from BN structure G

What you need to know thus far

- Independence \& conditional independence
- Definition of a BN
- Local Markov assumption
- The representation theorems

Statement: G is an I-map for P if and only if P factorizes according to G
\square Interpretation

Announcements

- Upcoming recitation
\square Tomorrow 5-6:30pm in Wean 4615A
- review BN representation, representation theorem, d-separation (coming next)
- Don't forget to register to the mailing list at:
$\square \underline{\text { https://mailman.srv.cs.cmu.edu/mailman/listinfo/10708-announce }}$
- If you don't want to take the class for credit (will sit in or audit) - please talk with me after class

Independencies encoded in BN

- We said: All you need is the local Markov assumption
$\square\left(\mathrm{X}_{\mathrm{i}} \perp\right.$ NonDescendants $\left._{\mathrm{x}_{\mathrm{i}}} \mid \mathrm{Pa}_{\mathrm{xi}}\right)$
- But then we talked about other (in)dependencies
\square e.g., explaining away
- What are the independencies encoded by a BN?
\square Only assumption is local Markov
\square But many others can be derived using the algebra of conditional independencies!!!

Active trails formalized

- A trail $X_{1}-X_{2}-\cdots-X_{k}$ is an active trail when variables $\boldsymbol{O} \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$ are observed if for each consecutive triplet in the trail:
$X_{i-1} \rightarrow X_{i} \rightarrow X_{i+1}$, and X_{i} is not observed $\left(X_{i} \notin \mathbf{O}\right)$
$\mathrm{X}_{\mathrm{i}-1} \leftarrow \mathrm{X}_{\mathrm{i}} \leftarrow \mathrm{X}_{\mathrm{i}+1}$, and X_{i} is not observed $\left(\mathrm{X}_{\mathrm{i}} \notin \boldsymbol{O}\right)$
$\square X_{i-1} \leftarrow X_{i} \rightarrow X_{i+1}$, and X_{i} is not observed $\left(X_{i} \notin \boldsymbol{O}\right)$
$\square X_{i-1} \rightarrow X_{i} \leftarrow X_{i+1}$, and X_{i} is observed ($X_{i} \in O$), or one of its descendents

Active trails and independence?

- Theorem: Variables X_{i} and X_{j} are independent given $Z \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$ if the is no active trail between X_{i} and X_{j} when variables $Z \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$ are observed

More generally: Soundness of d-separation

- Given BN structure G
- Set of independence assertions obtained by d-separation:

$$
\square \mathbf{I}(\mathrm{G})=\left\{(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}): d-\operatorname{sep}_{G}(\mathbf{X} ; \mathbf{Y} \mid \mathbf{Z})\right\}
$$

- Theorem: Soundness of d-separation
\square If P factorizes over G then $I(G) \subseteq I(P)$
- Interpretation: d-separation only captures true independencies
- Proof discussed when we talk about undirected models

Existence of dependency when not d-separated

- Theorem: If X and Y are not d-separated given \mathbf{Z}, then X and Y are dependent given \mathbf{Z} under some P that factorizes over G

Proof sketch:

Choose an active trail between X and Y given Z
Make this trail dependent
Make all else uniform
 (independent) to avoid "canceling" out influence

More generally:
 Completeness of d-separation

- Theorem: Completeness of d-separation
\square For "almost all" distributions that P factorize over to G, we have that $I(G)=I(P)$
\square "almost all" distributions: except for a set of measure zero of parameterizations of the CPTs (assuming no finite set of parameterizations has positive measure)
- Proof sketch:

Interpretation of completeness

- Theorem: Completeness of d-separation

For "almost all" distributions that P factorize over to G, we have that $I(G)=I(P)$

- BN graph is usually sufficient to capture all independence properties of the distribution!!!!
- But only for complete independence:
$\square P \vDash(\mathbf{X}=\mathbf{x} \perp \mathbf{Y}=\mathbf{y} \mid \mathbf{Z}=\mathbf{z}), \forall \mathbf{x} \in \operatorname{Val}(\mathbf{X}), \mathbf{y} \in \operatorname{Val}(\mathbf{Y}), \mathbf{z} \in \operatorname{Val}(\mathbf{Z})$
- Often we have context-specific independence (CSI)
$\exists \mathbf{x} \in \operatorname{Val}(\mathbf{X}), \mathbf{y} \in \operatorname{Val}(\mathbf{Y}), \mathbf{z} \in \operatorname{Val}(\mathbf{Z}): P \vDash(\mathbf{X}=\mathbf{x} \perp \mathbf{Y}=\mathbf{y} \mid \mathbf{Z}=\mathbf{z})$
Many factors may affect your grade
But if you are a frequentist, all other factors are irrelevant $)$

Algorithm for d-separation

- How do I check if X and Y are dseparated given Z

There can be exponentially-many trails between X and Y

- Two-pass linear time algorithm finds all d-separations for X

1. Upward pass
\square Mark descendants of \mathbf{Z}

- 2. Breadth-first traversal from X
\square Stop traversal at a node if trail is "blocked"
\square (Some tricky details apply - see
 reading)

What you need to know

- d-separation and independence
\square sound procedure for finding independencies
\square existence of distributions with these independencies
\square (almost) all independencies can be read directly from graph without looking at CPTs

Building BNs from independence properties

- From d-separation we learned:
\square Start from local Markov assumptions, obtain all independence assumptions encoded by graph
\square For most P 's that factorize over $G, I(G)=I(P)$
\square All of this discussion was for a given G that is an I-map for P

Now, give me a P, how can I get a G ?
i.e., give me the independence assumptions entailed by P

Many G are "equivalent", how do I represent this?
Most of this discussion is not about practical algorithms, but useful concepts that will be used by practical algorithms

Minimal I-maps

- One option:G is an I-map for P
$\square G$ is as simple as possible
- G is a minimal l-map for P if deleting any edges from G makes it no longer an I-map

Obtaining a minimal I-map

Given a set of variables and conditional independence assumptions
Choose an ordering on variables, e.g., X_{1}, \ldots, X_{n}
For $\mathrm{i}=1$ to n
\square Add X_{i} to the network
\square Define parents of $X_{i}, \mathrm{~Pa}_{\mathrm{x}_{\mathrm{i}}}$, in graph as the minimal subset of
$\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}-1}\right\}$ such that local
Markov assumption holds - X_{i}
independent of rest of
$\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}-1}\right\}$, given parents $\mathrm{Pa}_{\mathrm{xi}}$
Define/learn CPT - P($\left.\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}_{\mathrm{x}}\right)$

Minimal I-map not unique (or minimal)

- Given a set of variables and

Flu, Allergy, SinusInfection, Headache conditional independence assumptions
Choose an ordering on variables, e.g., $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ For $\mathrm{i}=1$ to n
\square Add X_{i} to the network
\square Define parents of $X_{i}, \mathrm{~Pa}_{\mathrm{x}_{\mathrm{i}}}$, in graph as the minimal subset of $\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}-1}\right\}$ such that local Markov assumption holds - X_{i} independent of rest of $\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}-1}\right\}$, given parents $\mathrm{Pa}_{\mathrm{xi}}$ \square Define/learn CPT - P($\left.\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}_{\mathrm{x}_{\mathrm{i}}}\right)$

Perfect maps (P-maps)

I-maps are not unique and often not simple enough

- Define "simplest" G that is I-map for P

A BN structure G is a perfect map for a distribution P if $I(P)=I(G)$

- Our goal:
\square Find a perfect map!
\square Must address equivalent BNs

Inexistence of P-maps 1

- XOR (this is a hint for the homework)

Inexistence of P-maps 2

- (Slightly un-PC) swinging couples example

Obtaining a P-map

- Given the independence assertions that are true for P
- Assume that there exists a perfect map G^{*} \square Want to find G^{*}
- Many structures may encode same independencies as G^{*}, when are we done?

Find all equivalent structures simultaneously!

I-Equivalence

- Two graphs G_{1} and G_{2} are I-equivalent if $I\left(G_{1}\right)=I\left(G_{2}\right)$
- Equivalence class of BN structures

Mutually-exclusive and exhaustive partition of graphs

- How do we characterize these equivalence classes?

Skeleton of a BN

- Skeleton of a BN structure G is an undirected graph over the same variables that has an edge $X-Y$ for every $X \rightarrow Y$ or $Y \rightarrow X$ in G
- (Little) Lemma: Two Iequivalent BN structures must have the same skeleton

- Theorem: If G_{1} and G_{2} have the same skeleton and V-structures, then G_{1} and G_{2} are I-equivalent

Same V-structures not necessary

- Theorem: If G_{1} and G_{2} have the same skeleton and V-structures, then G_{1} and G_{2} are I-equivalent
- Though sufficient, same V-structures not necessary

Immoralities \& I-Equivalence

- Key concept not V-structures, but "immoralities" (unmarried parents (\cdot)
$X \rightarrow Z \leftarrow Y$, with no arrow between X and Y
\square Important pattern: X and Y independent given their parents, but not given Z
\square (If edge exists between X and Y , we have covered the V-structure)
- Theorem: G_{1} and G_{2} have the same skeleton and immoralities if and only if G_{1} and G_{2} are I-equivalent

Obtaining a P-map

- Given the independence assertions that are true for P

Obtain skeleton
\square Obtain immoralities

- From skeleton and immoralities, obtain every (and any) BN structure from the equivalence class

Identifying the skeleton 1

- When is there an edge between X and Y ?
- When is there no edge between X and Y ?

Identifying the skeleton 2

- Assume d is max number of parents (d could be n)
- For each X_{i} and X_{j}
$\square \mathrm{E}_{\mathrm{ij}} \leftarrow$ true
\square For each $\mathbf{U} \subseteq \mathbf{X}-\left\{\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right\},|\mathbf{U}| \leq 2 \mathrm{~d}$
- Is $\left(X_{i} \perp X_{j} \mid \mathrm{U}\right)$?
$\square \mathrm{E}_{\mathrm{ij}} \leftarrow$ true
\square If E_{ij} is true
- Add edge X - Y to skeleton

Identifying immoralities

- Consider $\mathrm{X}-\mathrm{Z}-\mathrm{Y}$ in skeleton, when should it be an immorality?
- Must be $X \rightarrow Z \leftarrow Y$ (immorality):
\square When X and Y are never independent given \mathbf{U}, if $Z \in \mathbf{U}$
- Must not be $X \rightarrow Z \leftarrow Y$ (not immorality):

When there exists \mathbf{U} with $Z \in \mathbf{U}$, such that X and Y are independent given \mathbf{U}

From immoralities and skeleton to BN structures

- Representing BN equivalence class as a partially-directed acyclic graph (PDAG)
- Immoralities force direction on other BN edges
- Full (polynomial-time) procedure described in reading

What you need to know

- Minimal I-map
\square every P has one, but usually many
- Perfect map
\square better choice for BN structure
\square not every P has one
\square can find one (if it exists) by considering l-equivalence
\square Two structures are I-equivalent if they have same skeleton and immoralities

