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Local Markov assumption & I-maps

- *

s Localindependence
assumptions in BN @
structure G: T4 (¢ -
Tﬁjébendence

|
assertions(of)P:

T.(P

m BN structure G is an
I-map (independence

map) it T,(;) ¢ ()

Local Markov Assumption:
A variable X is independent
of its non-descendants given

its parents
(Xi L NonDescendantsy; | Pay;)
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Today: The Representation Theorem
= S
BN:
1-map: 61y an SFriap

If conditional
independencies
in BN are subset of
conditional

independencies in P P(Xy,..., Xn) = ,HIP(‘\—:' | Pax,)
Tc(e) ¢ T (p) J_

Encodes independence
assumptions
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Joint probability
distribution:

Then conditional

If joint probability independencies

distribution: in BN are subset of
. conditional
P(X1,...,Xn) = .H p(‘\—i | an;) independencies in P

i=1
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Factorized distributions
= JEE

m Given
Random vars Xg,..., X, @
P distribution over vars
BN structure G over same vars

m P factorizes according to G if

n
P(X1,..,Xn) =[] P(XZ- | PaXi)
=1




BN Representation Theorem —

. gamap to factorization

If conditional
independencies
in BN are subset of
conditional
independencies in P

Joint probability
distribution:

n
P(Xl._ - ,Xn) = H P(*\’i | PaX,—)
i=1

P factorizes

Gis an I-map of P according to G

BN Representation Theorem —

- ofnap to factorization: Proof, part 1

Gis an P factorizes
I-map of P according to G

P(X1.....Xn) = H P (X{ Pa.\',)
i=1

Topological Ordering:
m  Number variables such that:

parent has lower number than child @
i.e, X —= X = i<
m DAGs always have (many) topological / l AN

orderings ’ .@
eadachg
find by a modification of breadth first -

search (not exactly what is in the book)




BN Representation Theorem —

. gamap to factorization: Proof, part 2

Gisan
I-map of P

P factorizes
according to G

P(Xq1,...,Xn) = H P (,X!- | Pa_\-a)
i=1

ALL YOU NEED:

Local Markov Assumption:
A variable X is independent

of its non-descendants given its parents
(Xi L NonDescendantsy; | Pay;)

D=

Adding edges doesn’t hurt
" JEE
m Theorem: Let G be an I-map for P, any DAG G’

that includes the same directed edges as G is
also an I-map for P.

m Proof:

@ G
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m’a

eadachg




Defining a BN
“ JEE
m Given a set of variables and conditional
independence assertions of P

m Choose an ordering on variables, e.g., X;, ..., X,

mFori=1ton
Add X; to the network

Define parents of X;, Pay, in graph as the minimal
subset of {X,,..., X1} such that local Markov
assumption holds — X; independent of rest of
{X1,....X .1}, given parents Pay;

Define/learn CPT — P(X|| Pay)

BN Representation Theorem —
Factorization to I-map
"

Then conditional

If joint probability independencies
distribution: in BN are subset of
conditional

n 3 . )
P(Xq1,....Xn) =] p(‘\—i | an;) independencies in P
i=1

P factorizes

according to G Gis an I-map of P
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BN Representation Theorem —
Factorization to I-map: Proof
S

Then conditional

If joint probability independencies
distribution: in BN are subset of
. conditional

P(Xq,...,Xn) =[] p(‘\—i | an;) independencies in P
i=1

P factorizes

Gis an |-map of P

according to G

Homework 1! ©
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The BN Representation Theorem
= S

If conditional

independencies Joint probability

. distribution:
in BN are subset of

conditional i n i
independencies in P P(X1.....Xn) = [] P(Xi| Pay,)

i=1

Important because:
Every P has at least one BN structure G

Then conditional

If joi.nt propability independencies
distribution: in BN are subset of
conditional

independencies in P

0
f’()(l._ S .Xu) = 1_[ r (-Xr' | Pa.‘.’,)
i=1

i

Important because:
Read independencies of P from BN structure G




What you need to know thus far
“ JEE

m Independence & conditional independence

m Definition of a BN

m Local Markov assumption

m The representation theorems

Statement: G is an I-map for P if and only if P
factorizes according to G

Interpretation
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Announcements
" JE
m Upcoming recitation

Tomorrow 5 - 6:30pm in Wean 4615A

= review BN representation, representation theorem, d-separation
(coming next)

m Don't forget to register to the mailing list at:
https://mailman.srv.cs.cmu.edu/mailman/listinfo/10708-announce

m |f you don’t want to take the class for credit (will sit
in or audit) — please talk with me after class
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Independencies encoded in BN
* JE
m We said: All you need is the local Markov
assumption
(X; L NonDescendants,; | Pay;)
m But then we talked about other (in)dependencies
e.g., explaining away

m What are the independencies encoded by a BN?
Only assumption is local Markov

But many others can be derived using the algebra of
conditional independencies!!!
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Understanding independencies in BNs

— BNs with 3 nodes[iLocal Markov Assumption:
" A variable X is independent

of its non-descendants given

Indirect causal effect: .
Its pare nts

Indirect evidential effect: Common effect:

OROn0)

Common cause:

ORN0
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Understanding independencies in BNs

— Some examples
" S

Understanding independencies in BNs

— Some more examples
"




An active trail — Example
* J

O—O—— OO~

When are A and H independent?
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Active trails formalized
" JE
m Atrail X; —X,—---=X,is an active trail when
variables OC{X,,...,X,} are observed if for each
consecutive triplet in the trail:
Xi.;—>Xi—X,,1, and X is not observed (X;g0)

X1« X«X,1, and X; is not observed (X;z0)
Xi.1<X—>X,1, and X; is not observed (X;z0)

Xi.;—>X«X,1, and X; is observed (X;€0), or one of
its descendents
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Active trails and independence?

“

m Theorem: Variables X,
and X; are independent
given ZC{Xy,....,X,} if the
IS no active trail between
X; and X; when variables

More generally:
Soundness of d-separation
" SN

m Given BN structure G
m Set of independence assertions obtained by
d-separation:
I(G) = {(XLY|Z) : d-seps(X;Y|2)}

m Theorem: Soundness of d-separation
If P factorizes over G then [(G)CI(P)

m Interpretation: d-separation only captures true
independencies

m Proof discussed when we talk about undirected models
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Existence of dependency when not

_ d—segarated

m Theorem: If Xand Y are
not d-separated given Z,
then X and Y are
dependent given Z under
some P that factorizes
over G

m Proof sketch:

Choose an active trall
between X and Y given Z
Make this trail dependent
Make all else uniform
(independent) to avoid
“canceling” out influence

23

More generally:

_ Comgleteness of d-separation

m Theorem: Completeness of d-separation
For “almost all” distributions that P factorize over to G, we
have that I(G) = I(P)
“almost all” distributions: except for a set of measure zero of

parameterizations of the CPTs (assuming no finite set of
parameterizations has positive measure)

m Proof sketch:




Interpretation of completeness
“ JEE
m Theorem: Completeness of d-separation
For “almost all” distributions that P factorize over to G, we
have that I(G) = I(P)
m BN graph is usually sufficient to capture all
independence properties of the distribution!!!!

m But only for complete independence:
P E(X=xLY=y | Z=2), V xeVal(X), yeVal(Y), zeVal(Z)

m Often we have context-specific independence (CSI)
dxeVal(X), yeVval(Y), zeVal(Z): P E(X=xL1Y=y | Z=2)
Many factors may affect your grade
But if you are a frequentist, all other factors are irrelevant ©
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Algorithm for d-separation
" A
m How do | check if X and Y are d-

separated given Z

There can be exponentially-many
trails between X and Y

m Two-pass linear time algorithm
finds all d-separations for X
m 1. Upward pass
Mark descendants of Z
m 2. Breadth-first traversal from X

Stop traversal at a node if trail is
“blocked”

(Some tricky details apply — see
reading)
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What you need to know
* J
m d-separation and independence
sound procedure for finding independencies

existence of distributions with these independencies

(almost) all independencies can be read directly from
graph without looking at CPTs

Building BNs from independence

_ grogerties

m From d-separation we learned:

Start from local Markov assumptions, obtain all
independence assumptions encoded by graph

For most P’s that factorize over G, I(G) = I(P)
All of this discussion was for a given G that is an I-map for P

m Now, give me a P, how can | get a G?
i.e., give me the independence assumptions entailed by P
Many G are “equivalent”, how do | represent this?

Most of this discussion is not about practical algorithms, but
useful concepts that will be used by practical algorithms




Minimal [-maps
“ JEE
m One option:

Gis an I-map for P
G is as simple as possible

m G is a minimal I-map for P if deleting any edges
from G makes it no longer an I-map

Obtaining a minimal I-map
" A
m Given a set of variables and

conditional independence
assumptions

m Choose an ordering on
variables, e.g., X;, ..., X,

m Fori=1ton
Add X; to the network
Define parents of X;, Paxi, in
graph as the minimal subset of
{X4,....X1} such that local
Markov assumption holds — X;
independent of rest of
{X4,.... X1}, given parents Pay;
Define/learn CPT — P(X|| Pay;)
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Minimal I-map not unigue (or minimal)
" I

m Given a set of variables and
conditional independence
assumptions

m Choose an ordering on
variables, e.g., X;, ..., X
m Fori=1ton
Add X; to the network
Define parents of X;, Pay, in
graph as the minimal subset of
{X4,..., X4} such that local
Markov assumption holds — X;
independent of rest of
{X4,... X1}, given parents Pay
Define/learn CPT — P(X|| Pay;)

n

31

Flu, Allergy, Sinusinfection, Headache

Perfect maps (P-maps)
" A
m |-maps are not unique and often not simple
enough

m Define “simplest” G that is I-map for P

A BN structure G is a perfect map for a distribution P
if 1I(P) =1(G)

m Our goal:
Find a perfect map!

Must address equivalent BNs

32
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Inexistence of P-maps 1
“ JEE
m XOR (this is a hint for the homework)

Inexistence of P-maps 2
" JEE
m (Slightly un-PC) swinging couples example

17



Obtaining a P-map
“ JEE
m Given the independence assertions that are true
for P

m Assume that there exists a perfect map G*
Want to find G*

m Many structures may encode same
independencies as G*, when are we done?
Find all equivalent structures simultaneously!

35

I-Equivalence
" A
m Two graphs G; and G, are I-equivalent if I(G,) = I(G,)
m Equivalence class of BN structures
Mutually-exclusive and exhaustive partition of graphs

m How do we characterize these equivalence classes?

18



Skeleton of a BN
"

m Skeleton of a BN structure G is
an undirected graph over the
same variables that has an
edge X-Y for every X—Y or
Y—=XinG

m (Little) Lemma: Two I-
equivalent BN structures must
have the same skeleton

" JJEE
m V-structures are key property of BN
structure

m Theorem: If G; and G, have the same
skeleton and V-structures, then G, and
G, are I-equivalent

19



Same V-structures not necessary

" JE
m Theorem: If G; and G, have the same skeleton and
V-structures, then G, and G, are |-equivalent

m Though sufficient, same V-structures not necessary

Immoralities & I-Equivalence
" JE
m Key concept not V-structures, but “immoralities”
(unmarried parents ©)
X — Z «+ Y, with no arrow between X and Y

Important pattern: X and Y independent given their
parents, but not given Z

(If edge exists between X and Y, we have covered the
V-structure)
m Theorem: G; and G, have the same skeleton
and immoralities if and only if G, and G, are
l-equivalent

40
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Obtaining a P-map
" J
m Given the independence assertions that are true
for P
Obtain skeleton
Obtain immoralities

m From skeleton and immoralities, obtain every
(and any) BN structure from the equivalence
class

|ldentifying the skeleton 1
" JJEE
m When is there an edge between X and Y?

m When is there no edge between X and Y?

42
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|ldentifying the skeleton 2
* J

m Assume d is max number of parents (d could be n)

m For each X;and X,
Ej < true
For each UC X — {X;,X}, |U|< 2d

= s (X, L X |U)?
E; < true

If E; is true
= Add edge X —Y to skeleton

43

ldentifying immoralities

= JEE
m Consider X —Z —Y in skeleton, when should it be
an immorality?

m Must be X — Z < Y (immorality):
When X and Y are never independent given U, if ZeU

m Must not be X — Z «+ Y (not immorality):

When there exists U with ZeU, such that X and Y are
independent given U

44
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From immoralities and skeleton to
BN structures
= SN

m Representing BN equivalence class as a
partially-directed acyclic graph (PDAG)

m Immoralities force direction on other BN edges

m Full (polynomial-time) procedure described in
reading

What you need to know
" JE

m Minimal I-map
every P has one, but usually many

m Perfect map
better choice for BN structure
not every P has one
can find one (if it exists) by considering I-equivalence

Two structures are I-equivalent if they have same
skeleton and immoralities

46
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