
10708 Graphical Models: Homework 2
Due October 11th, beginning of class

September 27, 2006

Instructions: There are seven questions on this assignment. Each question has the name
of one of the TAs beside it, to whom you should direct any inquiries regarding the question.
The last problem involves coding, which should be done in MATLAB. Do not attach your
code to the writeup. Instead, copy your implementation to

/afs/andrew.cmu.edu/course/10/708/Submit/your_andrew_id/HW2

Refer to the web page for policies regarding collaboration, due dates, and extensions.

1 I-equivalence [10 pts] [Khalid]

1. Prove that two network structures G1 and G2 are I-equivalent if and only if the following
two conditions hold:

(a) The two graphs have the same set of trails, and

(b) A trail is active in G1 iff it is active in G2.

2. Let G1 and G2 be two graphs over X . Prove that if G1 and G2 have the same skeleton
and the same set of v-structures then they are I-equivalent.
(Hint: use the result from part 1)

2 Decomposable Scores [10 pts] [Ajit]

Decomposable scoring functions are those where the score of a network given data D can be
represented as the sum of scores of each node given its parents and the data:

score(G : D) =
∑

i

FamScore(Xi|PaG
i : D)
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In greedy structure search we explore the space of structures by applying a local operator
to an existing Bayes net. Examples of local operators include adding an edge, deleting an
edge, and reversing an edge. In this question you will show that if the scoring function
is decomposable, then computing the change in score caused by a local operator can be
computed efficiently.

1. Prove proposition 15.4.5 (Koller & Friedman p. 656)

2. Prove proposition 15.4.6 (Koller & Friedman p. 656)

3 Learning Edge Directions [15 pts] [Ajit]

In this question, we consider a simpler form of structure learning for BNs: Assume we have a
skeleton and want to build a BN from it. For each edge, we want to either assign a direction
to this edge or delete it from the graph. For this problem, you can assume you are using
some decomposable score, FamScore(Xi|PaXi

).

1. Consider the skeleton X1 − −X2 − −X3, what are the possible BNs that we are con-
sidering in this problem? What is the score of each of the graphs?

2. Now, consider the skeleton X1−−X2−−X3−−X4. Does the decision about the edge
X1 −−X2 affect the family score of X3? Justify your answer.

3. Using the intuitions above, design a linear time dynamic programming algorithm for
finding the optimal BN from a chain skeleton X1 −−X2 −−X3 −−X4 −− · · ·−−Xn.

4 Greedy Structure Search [15 pts] [Khalid]

Suppose we have a general network structure search algorithm, A, that takes a set of basic
operators on network structures as a parameter. This set of operators defines the search space
for A, as it defines the candidate network structures that are the “immediate successors”
of any current candidate network structure, i.e., the successor states of any state reached
in the search. Thus, for example, if the set of operators is [add an edge not currently in
the network], then the successor states of any candidate network G is the set of structures
obtained by adding a single edge anywhere in G (so long as acyclicity is maintained).
Given a set of operators, A does a simple greedy search over the set of network structures,
starting from the empty network (no edges), using the BIC scoring function. Now, consider
two sets of operators we can use in A. Let A[add] be A using the set of operations [add an
edge not currently in the network], and let A[add,delete] be A using the set of operations [add
an edge not currently in the network, delete an edge currently in the network].
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1. Show a distribution where, regardless of the amount of data in our training set (i.e.,
even with infinitely many samples), the answer produced by A[add] is worse (i.e., has
a lower BIC score) than the answer produced by A[add,delete]. (It’s easiest to represent
your true distribution in the form of a Bayesian network, i.e., a network from which
sample data is generated.)

2. Show a distribution where, regardless of the amount of data in our training set,
A[add,delete] will converge to a local maximum. In other words, the answer returned
by the algorithm has a lower score than the optimal (highest-scoring) network. What
can we conclude about the ability of our algorithm to find the optimal structure?

5 Variable Elimination [10 pts] [Khalid]
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Figure 1: Football network

After two losses in three games to start the season, the world champion Pittsburgh Steelers
seem to be in a world of trouble. Not knowing what else to do, Coach Cowher has enlisted
your help in trying to turn things around during the bye week. In Figure 1, you will find a
Bayes net that hopefully contains the key to a successful season. The variables of interest
are: Weather (W), Opponent (O), Fans (F), Big Ben (B), Steelers Win (S), Good Health
(G), Chunky Soup (C), Motorcycle (M), and Happy (H).
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Coach Cowher would like to know the answers to the following questions, but keep in mind,
he does not like to be kept waiting. There’s only one thing he hates more than losing, and
that is exponential computational complexity.

1. What is the chance that the Steelers win given that Big Ben eats his Chunky Soup? [
P (S = T |C = T ) = ? ]

2. How fired up are the fans given that Big Ben is in good health? [ P (F = T |G = T ) =
? ]

3. P (M = T |G = T ) = ?

4. P (M = T |G = T, S = T ) = ?

5. P (W = T |G = T, B = F, S = T ) = ?

Additionally, report the ordering used and the factors produced after eliminating each vari-
able for the first query [P (S = T |C = T )].

6 Conditional Probabilities in Variable Elimination [15pts]

[Khalid]

Consider a factor produced as a product of some of the CPDs in a Bayesian network B:

τ(W) =
k∏

i=1

P (Yi|PaYi
)

where W = ∪k
i=1({Yi} ∪PaYi

).

1. Show that τ is a conditional probability in some network. More precisely, construct
another Bayesian network B′ and a disjoint partition W = Y ∪ Z such that τ(W) =
PB′(Y|Z).

2. Show that the intermediate factors produced by the variable elimination algorithm are
also conditional probabilities in some network.

7 Tree-Augmented Näıve Bayes [25pts] [Ajit]

In many classification tasks näıve Bayes is either competitive with, or is, the best method,
even though, näıve Bayes ignores dependencies between features. This seems to be an
argument against structure learning, until one realizes that most structure learning methods
are trying to model the joint distribution, which does not necessarily corresponds to a good
estimate of the class-conditional distribution.
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Tree-Augmented Näıve Bayes (TAN) is a model which focuses its search on the class con-
ditional distribution; augmenting näıve Bayes by adding correlations between features such
that each feature has the class node, and one other feature, as parents. Figure 2 is an
example of a TAN model.

C

W X Y Z

Figure 2: An example of tree-augmented näıve Bayes. Note that the induced graph on the
evidence variables (w, x, y, z) forms a tree.

The algorithm for learning TAN models is a variant of the Chow-Liu algorithm for learning
tree-structured Bayes nets. Let C represent the class variable, and {Xi}n

i=1 be the features
(non-class variables).

1. Compute the conditional mutual information given C between each pair of distinct
variables,

I(Xi; Xj|C) =
∑

xi,xj ,c

P̃ (xi, xj, c) log
P̃ (xi, xj|c)

P̃ (xi|c)P̃ (xj|c)

where P̃ (·) is an empirical distribution (computed using the training data). Intuitively,
this quantity represents the gain in information of adding Xi as a parent of Xj given
that C is already a parent of Xj.

2. Build a complete undirected graph on the features X1, . . . , Xn where the weight of the
edge between Xi and Xj is I(Xi; Xj|C). Call this graph GF .

3. Find a maximum weighted spanning tree1 on GF . Call it TF .

4. Pick an arbitrary node in TF as the root, and set the direction of all the edges in TF

to be outward from the root. Call the directed tree T ′
F . (Hint: Use DFS).

5. The structure of the TAN model consists of a näıve Bayes model on C, X1, . . . , Xn

augmented by the edges in T ′
F .

The task is breast cancer typing, classifying a tumor as either malignant or benign. The
data is provided in breast.csv.

1Kruskal’s or Prim’s algorithm can be used to find a maximum weighted spanning tree
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7.1 Structure Learning

Implement the above algorithm for learning the structure of a TAN model, and submit your
code as tanstruct.m. Using the breast cancer data, draw the structure (directed acyclic
graph) produced using this algorithm in your writeup.

7.2 Classification

In this question you will compare the classification accuracy of näıve Bayes and TAN. First,
randomly withhold 183 records as a test set. Then, using a training set of size m, for
m = 100, 200, 300, 400, 500

1. Learn the structure of a TAN model and estimate the parameters using the following
smoothing estimator. For the parameter corresponding to P (xi|Pai) estimate it using

θxi|Pai
= αP̃ (xi|Pai) + (1− α)P̃ (xi)

α =
mP̃ (Pai)

mP̃ (Pai) + s

where s is a smoothing parmeter. For this question, use s = 5. This is known as
back-off smoothing.

2. Learn a näıve Bayes model and estimate the parameters using back-off smoothing.

3. Compare the classification accuracy of näıve Bayes and TAN on the test set.

Plot classification error vs. the number of training samples in your writeup. Submit the
code used to run these experiments as tancompare.m.
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