10708 Probabilistic Graphical Models: Final Exam

Due Dec 15th by 2pm electronically to 10708-instr@cs.cmu.edu or paper version to Monica Hopes,

or by fax to 412-268-3431

Your final must be done individually. You may not discuss the questions with anyone other
than Carlos or the TAs (you are free to ask us questions by e-mail or in person if you are
having problems with a question). The exam is open book, but not open-Google, i.e., you
can use any materials we discussed in class or linked to from the class website. You are
not allowed to look at other sources. However, you may use a calculator or Matlab to do
numerical computations, if necessary. If you hand in your assignment early, you can get
bonus points.

| HanDIN | BONUS |
Dec 11, 2pm | 4 pts
Dec 12, 2pm | 3 pts
Dec 13, 2pm | 2 pts
Dec 14, 2pm | 1 pts

You may not use late days on the final.

1 Short answer [9 pts] [Ajit]

1. Using Jensen’s inequality show that, for discrete variable X,
(a) Hp(X) =0
(b) D(P[|Q) =0

Theorem 1 (Jensen’s Inequality) Let f be a concave function and P a distribution
over a random variable X. Then Ep[f(X)] < f(Ep[X]).

(Hint: intuitively, H,(X) = Ep[—log(p(X))].)

2. You want to learn the structure of a Gaussian graphical model using a score-based
method. If the parameter prior P(0g|G) is Gaussian explain why using the Bayesian
score is preferable to BIC.



3. This problem is designed to make you comfortable with the canonical parameterization
of Gaussian distributions. (Notation: Throughout this exam, we will refer to Gaussians
in standard form as N(-; i, 2) and Gaussians in canonical form as N.(-;7, A). When we
ask you to give us a Gaussian distribution, we want you to write it using this notation.)
You are given the joint distribution over X and Y in standard form:

P(X,Y)=N(X,Y;n= [2}722 {0%5 09'755 ])

(a) Write down P(X,Y’) in canonical form.
(b) Write down P(Y’) in canonical form.
(c) Using your answers from parts (a) and (b), write down P(X|Y") in canonical form.

(Hint 1: To multiply two Gaussians in canonical form, you simply add the param-
eters, and to divide two Gaussians in canonical form, you subtract the parameters,
filling in with zeros as necessary. Refer to the Kalman filter slides for more de-
tails.)

(Hint 2: Your answer to part (c) in canonical form will be represented as a
multivariate distribution over X and Y, not a univariate distribution over X as
would be the case in standard form.)

2 Context-Specific Independence [13 pts] [Khalid]

Let Y be a binary-valued random variable with n binary-valued random variables X, ..., X,
as its parents. Each X; in turn has no parents. The variables are all binary and take values
in {0,1}.

X; ~ Bernoulli(6;),7 = 1,...,n; while Y is a determinisitic OR function of the X;’s.

P(Y =OR(Xy,...,X,))
P(Y =1-OR(Xy,...,X,))

1
0

2.1

What is the time complexity of naively computing the marginal probability P(Y = 1) using
the standard tabular variable elimination? (Hint: if you use a tabular representation of
P(Y | Xi,...,X,), what is the size of the table?)



2.2

Note that the complexity in the previous question arises because node Y has n parents. Can
you introduce some intermediate variables so that no node in the new graph has more than
two parents? What is the complexity of computing the marginal probability P(Y = 1) using
the standard variable elimination algorithm in this new (equivalent) graph?

2.3

Now, consider a noisy version of the above problem (this is usually called a noisy-OR CPT),
where in addition to Xj,...,X,,Y, we have “noisy” variables X7,..., X! Y’'. As before,
each X; has no parent; each X/ has X; as a parent; Y has X7,..., X/ as its parents, and Y’
has Y as its parent.

X; ~ Bernoulli(6;)
PIX{=0[X) = (1-A)"

Y = OR(X)...,X)
PY' =0Y) = (1-))"

Thus, the variables X/ are the noisy versions of X;; Y is a deterministic OR function of X/,
and Y’ is a noisy version of Y.

Use the intuition of the previous parts and show how to compute the marginal probability
of P(Y' = 1) using variable elimination but with a low time complexity.

3 Structure Learning in Undirected Models [13 pts] [Khalid]

For this problem, assume that you have i.i.d. data sampled from a distribution P(X). P is
represented by a Markov Random Field whose graph structure is unknown. However, you
do know that each node has at most d neighbors.

3.1

Show why knowing the Markov blanket of each node is sufficient for determining the graph
structure.

3.2

For any node X and its Markov blanket MB(X), we know that
PE (X LX—{X}—MB(X)MB(X)).
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Briefly, why might you need a lot of data to test for this conditional independence di-
rectly?

3.3

For disjoint sets of variables A and B, let conditional entropy be defined as,

H(A|B) = ZP —a,B=b)logP(A =a|B=Dh)
Prove that for any node X, H(X|MB(X)) = H(X|X — {X}).

3.4
For disjoint sets of variables A, B and C, we have that
H(A|B,C) < H(A|B).

In other words, information never hurts. Prove that MB(X) = argminy H(X|Y).

3.5

Using the intuition developed in the previous parts, describe a structure learning algorithm
for Markov Random Fields, assuming the constraint that each node has at most d neighbors.
Your algorithm should run in O(n (Z) c) time, where n is the number of nodes in your model,
and c is the complexity of computing the conditional entropy H(X|Y), when |Y| < d.

3.6

If we removed the constraint that each node have at most d neighbors and instead changed
our optimization problem to include a penalty term, MB(X) = argminy{H(X|Y) + Y|},
how would the time complexity of the algorithm change?

4 KL Projection in Assumed Density Filtering [13 pts]
[Khalid]

In class, we discussed the Boyen-Koller algorithm, an instance of assumed density filtering,
where the belief state is represented by a clique tree. At each time step, the belief state
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becomes more complex, and we project it into a simpler clique tree by doing a simple
marginalization. This approach may seem like a hack, but, in this question, you will show
that this marginalization is a well-defined, KL.-minimizing projection.

Consider the clique tree T7 (corresponding to the complex belief state in Boyen-Koller):

ABC — BCD — CDE

Let the cliques be calibrated, so that we have all the clique marginal probabilities.
Consider also the clique tree T, (corresponding to the simpler belief state in BK):

AB—-BC —-CD - DFE
A KL projection of a distribution P over a set of distributions S is given by,
Py = arg minQGSKL(PHQ)

Let P denote the distribution given by the calibrated clique tree T}; and let S denote the set
of distributions represented by clique tree Ty (i.e., for which T is an I-map). Show that the
KL Projection of P over S'is given by setting the clique probabilities in 75 to be the marginals
of the corresponding clique probabilities in 77. That is, Pr,(AB) = > Pr,(ABC), and so
on.

5 I-Equivalence [13 pts] [Khalid]

Let G; and G5 be two graphs over X'. For this problem, you will prove that G; and G, have
the same skeleton and the same set of immoralities if and only if they are I-equivalent.

Definition 1 (Minimal Active Trail) Consider an active trail T = Xy, Xo, ..., X,,. We
call this active trail minimal if no subset of the nodes in T forms an active trail between
Xy and X,,. In other words, T is minimal if no other active trail between Xy and X,,
“shortcuts” any of the nodes in T'.

Definition 2 (Triangle) Consider a trail T = X1, Xs,..., X,,. We call any three consec-
utive nodes in the trail a triangle if their undirected skeleton is fully connected (i.e., forms a
3-clique). In other words, X; 1, X;, X;11 form a triangle if we have X;_ 1 = X; = X;11 and
Xio1 = Xig1.

5.1

Give an example of two I-equivalent graphs G; and G, that have the same skeleton, but
different v-structures.



5.2

Prove that the only possible triangle in a minimal active trail is one where X, | «+— X; —
X1, with an edge between X; ; and X;,1, and where either X; ; or X, is the center of
a v-structure in the trail. (Hint: prove by cases.)

5.3

Consider two networks G; and G, that have the same skeleton and same immoralities. Prove,
using the notion of minimal active trail, that G; and G, imply precisely the same conditional
independence assumptions, i.e., that if X and Y are d-separated given Z in G;, then X and
Y are also d-separated given Z in G,. (Hint: prove by contradiction.)

5.4

Finally, prove that two networks G; and Gy that induce the same conditional independence
assumptions must have the same skeleton and the same immoralities. (Hint: prove by
contradiction.)

6 (Gaussian Graphical Models [13 pts] [Khalid]
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(a) Gaussian Graphical Model (b) Junction Tree



In Figure 1(a) we give you a Gaussian graphical model with the following conditional prob-
ability distributions (all given in canonical form):

P(A) = N (A;n=9,A=1)
P(B) = N.(B;n=1,A=0.6)

P(C|A) = m(am:{ﬁhz[_ﬂ _11])

0.5 [ 025 —0.25
P(DIB) = NC(D’B;":{—O.J’A: —0.25 0.2 })
0 I -9 05
P(E|C,D) = N.(E,C,D;n= |0 |,A=] -9 81 —45
0 | 0.5 —4.5 025

P(F|E) = NC(F,E;nzlgyA:{; 3])

In this problem, you will use the Shafer-Shenoy message passing scheme for Gaussians to
perform exact inference on this model.

6.1

Give an elimination ordering for the Bayesian network in Figure 1(a) that would result in
the junction tree in Figure 1(b).

6.2

Using the Family Preserving Property, assign the given CPDs to appropriate cliques in the
junction tree. Then, remembering how to multiply Gaussians in canonical form from question
1.3, compute the initial clique potentials Hgo), Hgo), Hgo), and Hio). Your answers should be
Gaussian distributions in canonical form.

6.3

Compute P(C, D, F) using Shafer-Shenoy message passing. Write down the three messages
that were needed to compute this probability. Both your final answer and your messages
should be represented as Gaussian distributions in canonical form.

(Hint: The Shafer-Shenoy algorithm for Gaussian graphical models is analogous to the al-
gorithm presented in class for discrete models. However, you will need to take into account
how to multiply potentials together and how to marginalize out variables in the canonical



Gaussian setting. See the Kalman filter slides, as well as problem 1.3 of this exam, for more
details.)

6.4

Given the messages computed for 6.3, what additional message would you need if you wanted
to compute P(A|C)? Write down this message as a Gaussian distribution in canonical form.
(Note: you do not need to compute P(A|C).)

6.5

Given that a minimal junction tree for a Bayesian network with n nodes can have at most n
cliques, what is the time complexity of Shafer-Shenoy on a Gaussian graphical model with n
nodes and induced tree width w? Briefly justify your answer in one or two sentences. (Hint:
Time complexity of matrix inversion for a k x k matrix is O(k%).) What is the running
time of a discrete model over the same BN structure, where each variable takes on at most
c values?

6.6 [Extra Credit] [3 pts]

If we wanted to compute P(C, D, E), an alternative to message passing would have been to
multiply together all the CPDs, form a single matrix for the distribution P(A, B,C, D, E, F)
and directly marginalize out all the other variables. What is the time complexity of this
operation? Briefly justify your answer in one or two sentences.

7 Tree-augmented Naive Bayes [13 pts] [Ajit]

You are given R complete records over discrete variables (features) X, ..., X,, and over a dis-
crete class C. One approach to modeling the class-conditional distribution P(C|Xj, ..., X,)
is tree-augmented naive Bayes (TAN), which finds the optimal spanning tree on the features
and induces a directed tree by picking an arbitrary root

1. Given infinite data R — oo why does the choice of directed tree not matter ?

2. Fix the spanning tree on features. Let 6* be the parameters learned using infinite data.
Let 6 be the parameters learned using finite data. We want to minimize the variance
of our parameters ¢. Explain why the choice of directed tree matters. (Hint: What
part of the dataset is used to learn each parameter of a CPT? The more data you have,
the lower you expect the variance over the parameter to be.)



3. Given the spanning tree on features, provide pseudocode for an algorithm that picks
the directed tree that maximizes a decomposable score in O(n?c) time, where c is the
cost of computing the score of a node given its parents.

4. (Extra Credit [5 pts]) Given the spanning tree on features, provide pseudocode for an
dynamic programming algorithm that picks the directed poly-tree that maximizes a
decomposable score. A poly-tree is a directed acyclic graph where each node can have
more than one parent, and where it’s skeleton has no undirected cycles. What is the
complexity of your algorithm in terms of n ?

8 Variational Free Energy [13 pts] [Ajit]

Once upon a time there were three bears, a mother bear, a father bear, and a baby bear. The
mother was a frequentist; the father a pragmatic Bayesian. However, the baby bear thought
that his parents were terribly silly — his mother prone to knitting sweaters that were far too
snug, that overfit; his father far too stern in his insistence that he choose a single sweater to
wear each day. The baby bear preferred to think of himself as wearing a distribution over
sweaters, making him the only proper Bayesian bear in the whole forest.

(interlude) Raindrops on roses, whiskers on kittens, bright copper kettles, warm woolen
mittens, brown paper packages tied up with string, along with parameter estimation, these
are a few of bears’ favorite things (end interlude).

Knowing the bears’ fondness for parameter estimation, a little blonde girl comes along to
steal their work. Finding no one home, she looks at the desks of each bear and finds,

Definition 3 (Maximum Likelihood) If y are the observed variables and 6 the model

parameters then the maximum likelihood criterion is

O = argmaxlog p(y|0)
%

Definition 4 (Maximum a Posteriori) If y are the observed variables and 6 the model
parameters then the maximum a posteriori criterion is

Orrap = arggnax log p(d]y)

Definition 5 (Fully Bayesian) Ify are the observed variables and 0 the model parameters
then the fully Bayesian criterion demands the full posterior

p(0)p(y|0)

p(ly) = e



8.1 EM-ML

It is well known to any frequentist bear that, denoting the latent variables z and introducing
any distribution over latent variables, ¢(z),

log p(yld) > > q(2) log %

= By [logp(y, 2(0)] + Hq(2)] = F(q,0).

The EM algorithm consists of maximizing a lower bound on p(y|#) by iterating the following
steps over time t:

(t+1)

E-step: ¢ — argmax F(q, 8")
q

M-step: 0D = argmax F(¢+Y, 6)
9

1. In the E-step, prove that ¢! = p(z|y, 6®)).

2. In class it was explained that the M-step updated parameters using expected counts.
Show that in the E-step expected counts are computed using

R
Ey[Count(Ap = ap, Ay = ay)] = Y 1(AY =ao)P(Ay =ay|0),01")
j=1
where OU) is the j* record in the data set, Ay are the observed variables, Ay the
unobserved (latent) variables, and #®) the estimate of the Bayesian network parameters
at step t of the EM algorithm. 1(Ag) = ap) is an indicator function for whether
variables Ao take on value ap is record j.

3. You are given two inference routines, one for variable elimination and another for
junction trees. Which routine is more appropriate for the E-step in part 2 7 Briefly
explain you answer.

8.2 EM-MAP

The father bear has scrawled down the following equation:

logp(0ly) > Eqyzllog p(y, 2|0)] + H(g(2)] + logp(0) = F(q,0) (1)

where ¢(z) is some distribution over unobserved variables z, which is typically called the
variational free distribution, and p(f) is a parameter prior. The EM algorithm consists of
maximizing a lower bound on p(6|y).

(t+1)

E-step: ¢ = argmax F(q, V)
q

M-step: 0D = argmax F(¢**Y, 9)
0
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1. Prove equation 1.

8.3 Fully Bayesian

The bears come home to find the little blonde girl rummaging through their desks. Regular
bears would simply maul her. However, since these are not regular bears they chain the girl
up and give her choice: answer the following questions or be eaten alive.

1. Briefly explain why computing p(y) exactly is difficult ?

2. Assuming some free distribution that factors over latent variables and parameters,

a(z0) = a(=)q(9), prove that

log p(y) > /Q(G) ln%dGJr/ Zq y’z)le) df = F(q(2),q(9))

3. Prove that maximizing F(q(z),q(f)) corresponds to minimizing the KL-divergence
D(a(z 0)[lp(z, 0ly))-

We can estimate the marginal likelihood p(y) by maximizing the lower bound F(q(z), ¢(0))
with the following EM-style algorithm (which you do not need to prove):

E-step: ¢"*Y(z) x exp/q(t)(G) In p(y, z|0) db
M-step: ¢tV (8) o p(6) exp/lnp(y,z[@) tD(2) dz

When asked to derive this, the little blonde girl decided that she’d rather be eaten alive.
The end.

9 Feedback [o pts]

The following are questions that we use to calibrate the exam in future years. Your answers
are appreciated.

1. How many hours did it take to complete the exam 7
2. Which two questions did you find hardest ?

3. Which two questions did you find easiest ?
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