Koller & Friedman Chapter 13

Structure Learning 2: the good, the bad, the ugly

Graphical Model – 10708

Carlos Guestrin

Carnegie Mellon University

October 26th, 2005

Consistency of BIC and Bayesian

- scores
- Consistency is limiting behavior, says nothing about finite sample size!!!
- A scoring function is consistent if, for true model G*, as $M \rightarrow \infty$, with probability 1
 - \Box G^* maximizes the score
 - ☐ All structures **not I-equivalent** to *G** have strictly lower score
- Theorem: BIC score is consistent
- Corollary: the Bayesian score is consistent
- What about maximum likelihood?

(X) Same likelihood Soone

Priors for general graphs

- For finite datasets, prior is important!
- Prior over structure satisfying prior modularity

- What about prior over parameters, how do we represent it?
 - \square K2 prior. fix an α , $P(\theta_{Xi|PaXi}) = Dirichlet(\alpha,..., \alpha)$
 - □ K2 is "inconsistent"

P(X: | A)
$$\leftarrow$$
 2x "samples" of X:
P(X: | A) \leftarrow 2x "samples" " "

BDe prior

- Remember that Dirichlet parameters analogous to "fictitious samples"
- Pick a fictitious sample size M'
- For each possible family, define a prior distribution $P(X_i, Pa_{xi})$
 - Represent with a BN
 - □ Usually independent (product of marginals) P(xi) \(\frac{\(\text{\colored}}{\(\text{\colored}}\)\)\(\frac{\(\text{\colored}}{\(\text{\colored}}\)\) $P(X_1, X_2, X_3) = P(X_1) P(X_2) P(X_3)$
- BDe prior:

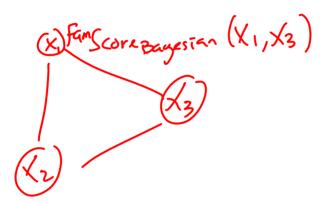
Has "consistency property":

Score equivalence

- If G and G' are I-equivalent then they have same score
- Theorem: Maximum likelihood and BIC scores satisfy score equivalence
- Theorem:
 - \square If P(G) assigns same prior to I-equivalent structures (e.g., edge counting)
 - and parameter prior is dirichlet
 - then Bayesian score satisfies score equivalence if and only if prior over parameters represented as a BDe prior!!!!!!

Chow-Liu for Bayesian score

■ Edge weight $w_{X_{j}\to X_{i}}$ is advantage of adding X_{j} as parent for X_{i}



- Now have a directed graph, need directed spanning forest
 - □ Note that adding an edge can hurt Bayesian score choose forest not tree
 - \square But, if score satisfies score equivalence, then $w_{X_i \to X_i} = w_{X_i \to X_i}$!
 - □ Simple maximum spanning forest algorithm works

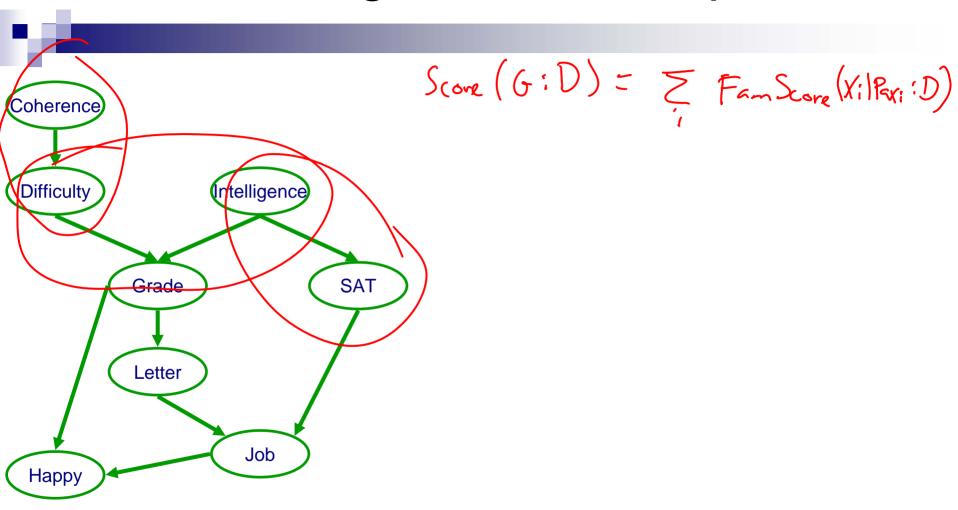
Structure learning for general graphs

In a tree, a node only has one parent

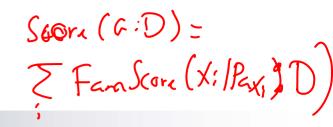
- Theorem:
 - □ The problem of learning a BN structure with at most d parents is NP-hard for any (fixed) d≥2

- Most structure learning approaches use heuristics
 - □ Exploit score decomposition
 - (Quickly) Describe two heuristics that exploit decomposition in different ways

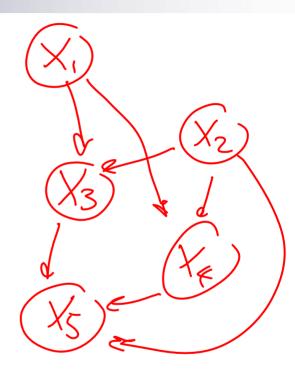
Understanding score decomposition



Fixed variable order 1



- Pick a variable order <</p>
 - \square e.g., $X_1,...,X_n$
- X_i can only pick parents in $\{X_1,...,X_{i-1}\}$
 - □ Any subset
 - □ Acyclicity guaranteed!
- Total score = sum score of each node



Fixed variable order 2

- Fix max number of parents to k
- For each i in order <</p>
 - \square Pick $\mathbf{Pa}_{Xi} \subseteq \{X_1, \dots, X_{i-1}\}$
 - Exhaustively search through all possible subsets
 - Pa_{X_i} is maximum $U\subseteq \{X_1,...,X_{i-1}\}$ FamScore $(X_i|U:D)$
- Optimal BN for each order!!!
- Greedy search through space of orders:
 - □ E.g., try switching pairs of variables in order
 - If neighboring vars in order are switch, only need to recompute score for this pair
 - O(n) speed up per iteration
 - Local moves may be worse

Learn BN structure using local search

Starting from Chow-Liu tree

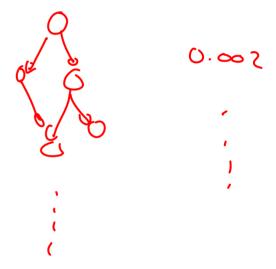
Local search,

possible moves:

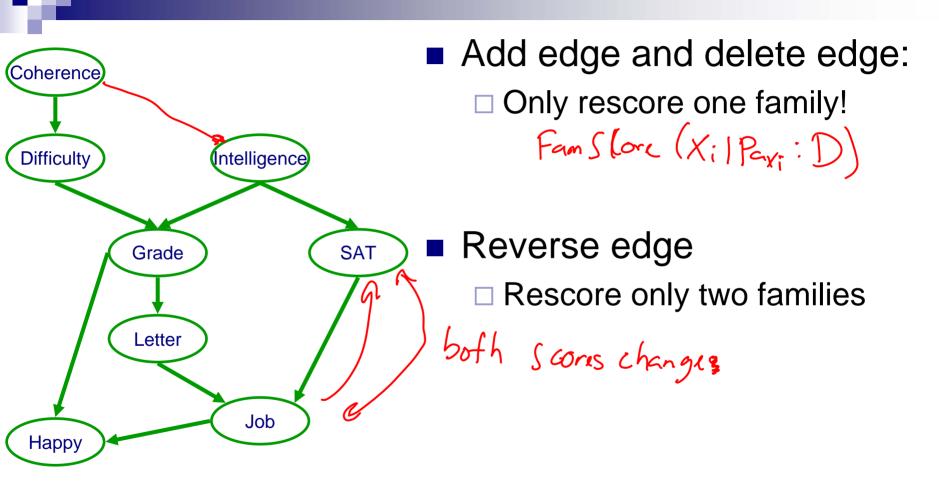
Only if acyclic!!!

- Add edge
- Delete edge
- Invert edge

Select using favorite score



Exploit score decomposition in local search



Order search versus graph search

- Order search advantages
 - □ For fixed order, optimal BN more "global" optimization
 - □ Space of orders much smaller than space of graphs

graphs 2(n2)

- Graph search advantages
 - □ Not restricted to k parents
 - Especially if exploiting CPD structure, such as CSI
 - □ Cheaper per iteration
 - □ Finer moves within a graph

Bayesian model averaging

- So far, we have selected a single structure
- But, if you are really Bayesian, must average over structures
 - □ Similar to averaging over parameters $\log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$
- Inference for structure averaging is very hard!!!
 - Clever tricks in reading

What you need to know about learning BN structures

- Decomposable scores
 - □ Maximum likelihood Scork
 - □ Information theoretic interpretation
 - □ Bayesian
 - □ BIC approximation
- Priors
 - Structure and parameter assumptions
 - □ BDe if and only if score equivalence
- Best tree (Chow-Liu)
- Best TAN
- Nearly best k-treewidth (in O(N^{k+1}))
- Search techniques
 - □ Search through orders
 - □ Search through structures
- Bayesian model averaging