Koller & Friedman Chapter 13

Structure Learning: the good, the bad, the ugly

Graphical Model – 10708

Carlos Guestrin

Carnegie Mellon University

October 24th, 2005

Announcements

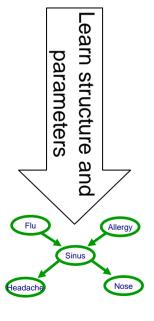
Project feedback by e-mail soon

Where are we?

- Bayesian networks
- Undirected models
- Exact inference in GMs
 - □ Very fast for problems with low tree-width
 - ☐ Can also exploit CSI and determinism
- Learning GMs
 - ☐ Given structure, estimate parameters
 - Maximum likelihood estimation (just counts for BNs)
 - Bayesian learning
 - MAP for Bayesian learning
 - □ What about learning structure?

Learning the structure of a BN

$$< x_1^{(1)}, ..., x_n^{(1)} >$$
 $< x_1^{(M)}, ..., x_n^{(M)} >$



Constraint-based approach

- BN encodes conditional independencies
- □ Test conditional independencies in data
- □ Find an I-map

Score-based approach

- Finding a structure and parameters is a density estimation task
- □ Evaluate model as we evaluated parameters
 - Maximum likelihood
 - Bayesian
 - etc.

Remember: Obtaining a P-map? September 21st lecture... ©

- Given the independence assertions that are true for P
 - Obtain skeleton
 - Obtain immoralities
- From skeleton and immoralities, obtain every (and any)
 BN structure from the equivalence class

Ask indep. queries: (XLY IU)?

- Constraint-based approach:
 - □ Use Learn PDAG algorithm
 - □ Key question: Independence test

Independence tests

- Statistically difficult task!
- Intuitive approach: Mutual information

$$I(X_i, X_j) = \sum_{x_i, x_j} P(x_i, x_j) \log \frac{P(x_i, x_j)}{P(x_i)P(x_j)}$$

- Mutual information and independence:
 - \square X_i and X_i independent if and only if $I(X_i,X_i)=0$
- Conditional mutual information:

Conditional mutual information:
$$(X \perp Y \mid U)$$
.

 $P(X,Y|U) = P(X|U) \cdot P(Y|U) \cdot I(X,Y|U) = \sum_{x,y,u} P(x,y,u) \cdot \log P(x,y|u)$
 $\forall x,y,u$

 $(X \perp Y | U)$?

Independence tests and the constraint based approach

- Using the data D

$$\square$$
 Empirical distribution: $\widehat{P}(x_i, x_j) = \frac{\mathsf{Count}(x_i, x_j)}{M}$

- Mutual information: $\hat{I}(X_i, X_j) = \sum_{x_i, x_j} \hat{P}(x_i, x_j) \log \frac{\hat{P}(x_i, x_j)}{\hat{P}(x_i)\hat{P}(x_i)}$
- Similarly for conditional MI $\hat{I}(X_i, X_i)(U)$
- Use learning PDAG algorithm:
 - \square When algorithm asks: $(X \perp Y | \mathbf{U})$?

- Must check if statistically-signifficant
 - □ Choosing *t*
 - See reading...

Score-based approach

$$< x_1^{(1)}, ..., x_n^{(1)} >$$
 $< x_1^{(M)}, ..., x_n^{(M)} >$

Possible structures

Learn parameters

Score structure

•

Information-theoretic interpretation M - data point of maximum likelihood

Given structure, log likelihood of data:

In P(D(
$$\theta_{G}, G$$
) = log $\int_{\mathbf{x}_{i}}^{\mathbf{x}_{i}} P(\mathbf{x}_{i}^{(i)} | \theta_{G}, G)$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{i}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^$$

Information-theoretic interpretation of maximum likelihood 2

Given structure, log likelihood of data:

$$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G}) \log \hat{P}(x_i \mid Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G}) \log \hat{P}(x_i \mid Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G}) \log \hat{P}(x_i \mid Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G}) \log \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G}) \log \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G}) \log \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G}) \log \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G}) \log \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G}) \log \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G}) \log \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G}) \log \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in$$

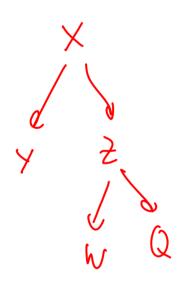
Decomposable score

$$\log \widehat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = M \sum_{i} \widehat{I}(X_{i}, \mathbf{Pa}_{X_{i}, \mathcal{G}}) - M \sum_{i} \widehat{H}(X_{i})$$

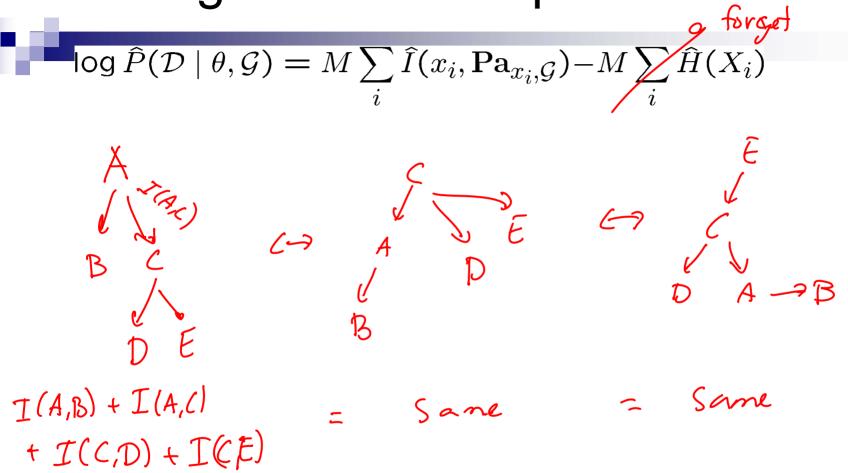
- Decomposable score: / node 2 ifs parents
 - Decomposes over families in BN (node and its parents)
 - □ Will lead to significant computational efficiency!!!
 - \square Score(G:D) = \sum_{i} FamScore($X_{i}|\mathbf{Pa}_{X_{i}}:D$)

How many trees are there?

Nonetheless – Efficient optimal algorithm finds best tree

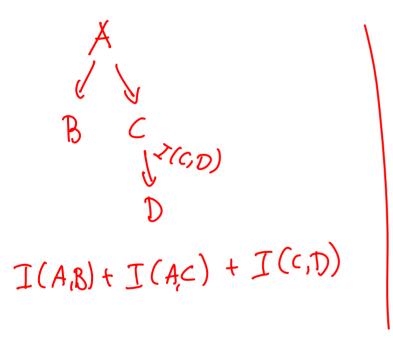


Scoring a tree 1: I-equivalent trees



Scoring a tree 2: similar trees

$$\log \widehat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = M \sum_{i} \widehat{I}(x_i, \mathbf{Pa}_{x_i, \mathcal{G}}) - M \sum_{i} \widehat{H}(X_i)$$



$$I(A,B)+I(A,C)+I(A,D)$$

Chow-Liu tree learning algorithm 1

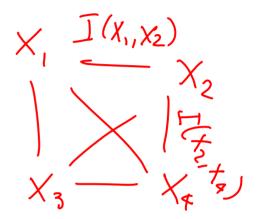
- For each pair of variables X_i,X_i
 - Compute empirical distribution:

$$\widehat{P}(x_i, x_j) = \frac{\mathsf{Count}(x_i, x_j)}{M}$$

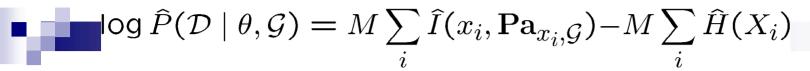
Compute mutual information:

$$\widehat{I}(X_i, X_j) = \sum_{x_i, x_j} \widehat{P}(x_i, x_j) \log \frac{\widehat{P}(x_i, x_j)}{\widehat{P}(x_i) \widehat{P}(x_j)}$$

- Define a graph
 - \square Nodes $X_1,...,X_n$
 - \square Edge (i,j) gets weight $\widehat{I}(X_i, X_j)$



Chow-Liu tree learning algorithm 2



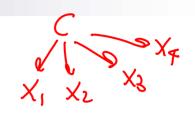
- Optimal tree BN
 - Compute maximum weight spanning tree
 - Directions in BN: pick any node as root, breadth-firstsearch defines directions

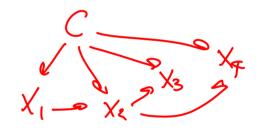
be cause of I-equivalence

Can we extend Chow-Liu 1

- Tree augmented naïve Bayes (TAN) [Friedman et al. '97]
 - Naïve Bayes model overcounts, because correlation between features not considered
 - □ Same as Chow-Liu, but score edges with:

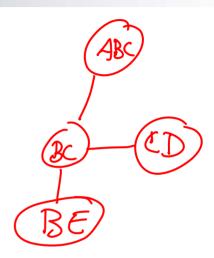
$$\widehat{I}(X_i, X_j \mid C) = \sum_{c, x_i, x_j} \widehat{P}(c, x_i, x_j) \log \frac{\widehat{P}(x_i, x_j \mid c)}{\widehat{P}(x_i \mid c)\widehat{P}(x_j \mid c)}$$





Can we extend Chow-Liu 2

- (Approximately learning) models with tree-width up to k
 - □ [Narasimhan & Bilmes '04]
 - □ But, O(n^{k+1})...



Maximum likelihood overfits!

$$\log \widehat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = M \sum_{i} \widehat{I}(x_{i}, \mathbf{Pa}_{x_{i}, \mathcal{G}}) - M \sum_{i} \widehat{H}(X_{i})$$

Information never hurts:

Adding a parent always increases score!!!

Bayesian score

- Prior distributions:
 - P(G) Over structures
 - P(O61G) □ Over parameters of a structure

Over parameters of a structure
$$P(\theta \in G)$$

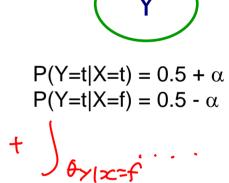
Posterior over structures given data:
$$P(G|D) \propto \log P(D|G) \cdot P(G) = \log P(G) + \log P(D|G)$$

$$P(D|G) = \int P(D, \theta \in G) d\theta = \int P(D|\theta \in G) \cdot P(\theta \in G) d\theta = \int P(D|G) d\theta$$

$$\log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$$

Bayesian score and model complexity

- $\log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$
- Structure 1: X and Y independent $\log P(D|G) = \log \int_{\partial x} P(Dx | \theta x) \cdot P(\theta x) \cdot P(Dx | \theta y) d\theta x d\theta y$ $= \log \int_{\partial x} P(Dx | \theta x) P(\theta x) d\theta x + \log \int_{\partial y} P(Dx | \theta y) P(\theta y) d\theta y$ = Score doesn't depend on alphaStructure 2: W
- Structure 2:(X) \rightarrow (Structure 2:(X) \rightarrow (Y) $\log P(D|G) = \log \int_{\Theta_{x}} P(Dx|\Theta_{x}) P(\Theta_{x}|G) d\Theta_{x} + \log \int_{\Theta_{x}} P(Dx|G) P(Dx|G) P(\Theta_{x}|G) d\Theta_{x} + \log \int_{\Theta_{x}} P(\Theta_{x}|G) d\Theta_{x}$
 - Data points split between P(Y=t|X=t) and P(Y=t|X=f)
 - For fixed M, only worth it for large α
 - Because posterior of less diffuse



Bayesian, a decomposable score

$$\log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$$

- As with last lecture, assume:
 - (Ox=+ L Oy=+) □ Local and global parameter independence
- Also, prior satisfies parameter modularity:
 - \square If X_i has same parents in G and G', then parameters have same prior

Paxi 6 = Paxi 6' =
$$O$$
 \Rightarrow $P(O_{xi|Paxi}|G) = P(O_{xi|Paxi}|G')$

Finally, structure prior $P(G)$ satisfies structure modularity

- - Product of terms over families
 - \square E.g., $P(G) \propto c^{|G|} / 2$
- Bayesian score decomposes along families!

BIC approximation of Bayesian score

- Bayesian has difficult integrals
- For Dirichlet prior, can use simple Bayes information criterion (BIC) approximation
 - □ In the limit, we can forget prior!
 - □ **Theorem**: for Dirichlet prior, and a BN with Dim(G) independent parameters, as $M\rightarrow\infty$:

$$\log P(D \mid \mathcal{G}) = \log P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) - \frac{\log M}{2} \text{Dim}(\mathcal{G}) + O(1)$$

$$\text{get work as complicated}$$

BIC approximation, a decomposable score

Map Oxly = Count (Hoxx, Y+d)

■ BIC: Score_{BIC}($\mathcal{G}:D$) = log $P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) - \frac{\log M}{2}$ Dim(\mathcal{G})

Using information theoretic formulation:

$$Score_{BIC}(\mathcal{G}:D) = M \sum_{i} \widehat{I}(x_{i}, Pa_{x_{i},\mathcal{G}}) - M \sum_{i} \widehat{H}(X_{i}) - \frac{\log M}{2} \sum_{i} Dim(P(X_{i} \mid Pa_{x_{i},\mathcal{G}}))$$

$$Introducte \quad P(G): \qquad - C.|G|$$

$$P(G) \neq C \quad \log P(G) = -C.|G| + K$$

Consistency of BIC and Bayesian

- scores
- Consistency is limiting behavior, says nothing about finite sample size!!!
- A scoring function is consistent if, for true model G*, as $M \rightarrow \infty$, with probability 1
 - \Box G^* maximizes the score
 - ☐ All structures **not I-equivalent** to G* have strictly lower score
- Theorem: BIC score is consistent
- Corollary: the Bayesian score is consistent
- What about maximum likelihood?

(X) Same likelihood Soone

Priors for general graphs

- For finite datasets, prior is important!
- Prior over structure satisfying prior modularity
- What about prior over parameters, how do we represent it?
 - \square K2 prior. fix an α , $P(\theta_{Xi|PaXi}) = Dirichlet(\alpha,...,\alpha)$
 - K2 is "inconsistent"

BDe prior

- Remember that Dirichlet parameters analogous to "fictitious samples"
- Pick a fictitious sample size M'
- For each possible family, define a prior distribution P(X_i, Pa_{Xi})
 - Represent with a BN
 - Usually independent (product of marginals)
- BDe prior:
- Has "consistency property":

Score equivalence

- If G and G' are I-equivalent then they have same score
- Theorem: Maximum likelihood and BIC scores satisfy score equivalence
- Theorem:
 - \square If P(G) assigns same prior to I-equivalent structures (e.g., edge counting)
 - □ and parameter prior is dirichlet
 - then Bayesian score satisfies score equivalence if and only if prior over parameters represented as a BDe prior!!!!!!

Chow-Liu for Bayesian score

ullet Edge weight $w_{X_i o X_i}$ is advantage of adding X_i as parent for X_i

- Now have a directed graph, need directed spanning forest
 - □ Note that adding an edge can hurt Bayesian score choose forest not tree
 - \square But, if score satisfies score equivalence, then $w_{X_{i} \to X_{i}} = w_{X_{i} \to X_{i}}$!
 - □ Simple maximum spanning forest algorithm works

Structure learning for general graphs

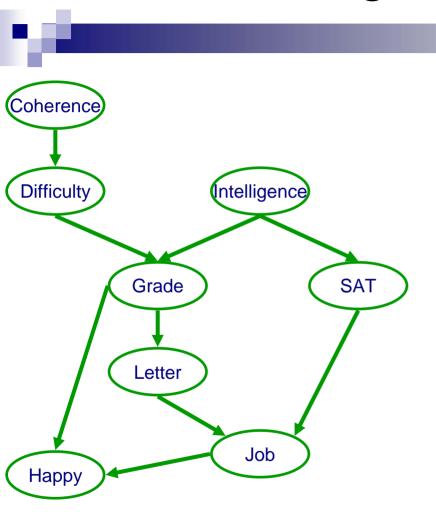
In a tree, a node only has one parent

Theorem:

□ The problem of learning a BN structure with at most d parents is NP-hard for any (fixed) d≥2

- Most structure learning approaches use heuristics
 - □ Exploit score decomposition
 - (Quickly) Describe two heuristics that exploit decomposition in different ways

Understanding score decomposition



Fixed variable order 1

- Pick a variable order <</p>
 - \square e.g., X_1, \dots, X_n
- X_i can only pick parents in $\{X_1,...,X_{i-1}\}$
 - □ Any subset
 - □ Acyclicity guaranteed!
- Total score = sum score of each node

Fixed variable order 2

- Fix max number of parents to k
- For each i in order <</p>
 - \square Pick $\mathbf{Pa}_{Xi} \subseteq \{X_1, \dots, X_{i-1}\}$
 - Exhaustively search through all possible subsets
 - Pa_{Xi} is maximum $U\subseteq \{X_1,...,X_{i-1}\}$ FamScore $(X_i|U:D)$
- Optimal BN for each order!!!
- Greedy search through space of orders:
 - ☐ E.g., try switching pairs of variables in order
 - If neighboring vars in order are switch, only need to recompute score for this pair
 - O(n) speed up per iteration
 - Local moves may be worse

Learn BN structure using local search

Starting from Chow-Liu tree

Local search,

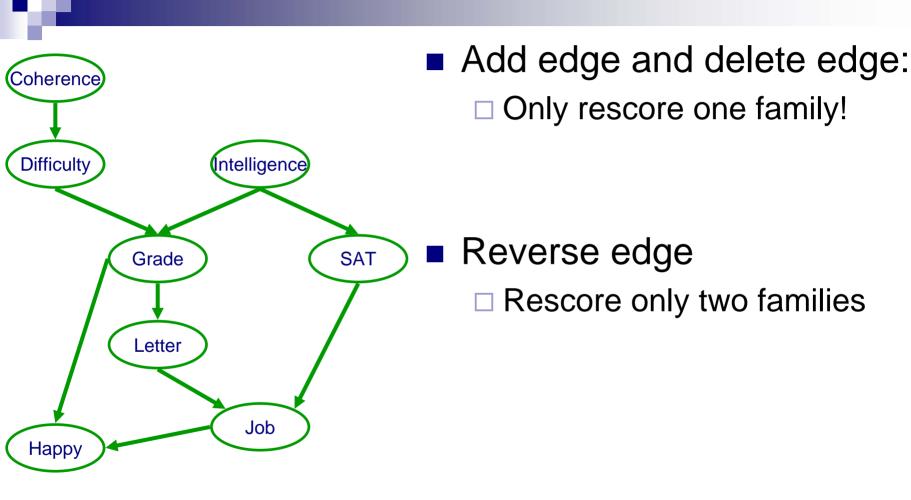
possible moves:

Only if acyclic!!!

- Add edge
- Delete edge
- Invert edge

Select using favorite score

Exploit score decomposition in local search



Order search versus graph search

- Order search advantages
 - □ For fixed order, optimal BN more "global" optimization
 - □ Space of orders much smaller than space of graphs
- Graph search advantages
 - □ Not restricted to k parents
 - Especially if exploiting CPD structure, such as CSI
 - □ Cheaper per iteration
 - □ Finer moves within a graph

Bayesian model averaging

- So far, we have selected a single structure
- But, if you are really Bayesian, must average over structures
 - □ Similar to averaging over parameters $\log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$
- Inference for structure averaging is very hard!!!
 - Clever tricks in reading

What you need to know about learning BN structures

- Decomposable scores
 - □ Maximum likelihood
 - □ Information theoretic interpretation
 - Bayesian
 - □ BIC approximation
- Priors
 - Structure and parameter assumptions
 - □ BDe if and only if score equivalence
- Best tree (Chow-Liu)
- Best TAN
- Nearly best k-treewidth (in O(N^{k+1}))
- Search techniques
 - □ Search through orders
 - □ Search through structures
- Bayesian model averaging