**Koller & Friedman Chapter 13** 

# Structure Learning: the good, the bad, the ugly

Graphical Model – 10708

Carlos Guestrin

Carnegie Mellon University

October 24th, 2005

#### Announcements

Project feedback by e-mail soon

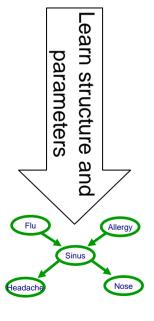
#### Where are we?

- Bayesian networks
- Undirected models
- Exact inference in GMs
  - □ Very fast for problems with low tree-width
  - ☐ Can also exploit CSI and determinism
- Learning GMs
  - ☐ Given structure, estimate parameters
    - Maximum likelihood estimation (just counts for BNs)
    - Bayesian learning
    - MAP for Bayesian learning
  - □ What about learning structure?

# Learning the structure of a BN



$$< x_1^{(1)}, ..., x_n^{(1)} >$$
 $< x_1^{(M)}, ..., x_n^{(M)} >$ 



#### Constraint-based approach

- BN encodes conditional independencies
- □ Test conditional independencies in data
- □ Find an I-map

#### Score-based approach

- Finding a structure and parameters is a density estimation task
- □ Evaluate model as we evaluated parameters
  - Maximum likelihood
  - Bayesian
  - etc.

# Remember: Obtaining a P-map? September 21<sup>st</sup> lecture... ©

- Given the independence assertions that are true for P
  - Obtain skeleton
  - Obtain immoralities
- From skeleton and immoralities, obtain every (and any)
   BN structure from the equivalence class

Ask indep. queries: (XLY IU)?

- Constraint-based approach:
  - □ Use Learn PDAG algorithm
  - □ Key question: Independence test

#### Independence tests

- Statistically difficult task!
- Intuitive approach: Mutual information

$$I(X_i, X_j) = \sum_{x_i, x_j} P(x_i, x_j) \log \frac{P(x_i, x_j)}{P(x_i)P(x_j)}$$

- Mutual information and independence:
  - $\square$  X<sub>i</sub> and X<sub>i</sub> independent if and only if  $I(X_i,X_i)=0$
- Conditional mutual information:

Conditional mutual information: 
$$(X \perp Y \mid U)$$
.

 $P(X,Y|U) = P(X|U) \cdot P(Y|U) \cdot I(X,Y|U) = \sum_{x,y,u} P(x,y,u) \cdot \log P(x,y|u)$ 
 $\forall x,y,u$ 

 $(X \perp Y | U)$ ?

# Independence tests and the constraint based approach

- Using the data D

$$\square$$
 Empirical distribution:  $\widehat{P}(x_i, x_j) = \frac{\mathsf{Count}(x_i, x_j)}{M}$ 

- Mutual information:  $\hat{I}(X_i, X_j) = \sum_{x_i, x_j} \hat{P}(x_i, x_j) \log \frac{\hat{P}(x_i, x_j)}{\hat{P}(x_i)\hat{P}(x_i)}$
- Similarly for conditional MI  $\hat{I}(X_i, X_i)(U)$
- Use learning PDAG algorithm:
  - $\square$  When algorithm asks:  $(X \perp Y | \mathbf{U})$ ?

- Must check if statistically-signifficant
  - □ Choosing *t*
  - See reading...

## Score-based approach



$$< x_1^{(1)}, ..., x_n^{(1)} >$$
 $< x_1^{(M)}, ..., x_n^{(M)} >$ 

#### **Possible structures**



#### Learn parameters



#### **Score structure**

•

#### Information-theoretic interpretation M - data point of maximum likelihood

Given structure, log likelihood of data:

In P(D(
$$\theta_{G}, G$$
) = log  $\int_{\mathbf{x}_{i}}^{\mathbf{x}_{i}} P(\mathbf{x}_{i}^{(i)} | \theta_{G}, G)$ 

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{i}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^{(i)} | \theta_{G}, G)$$

$$= \sum_{\mathbf{x}_{(i)}}^{\mathbf{x}_{i}} \sum_{j}^{\mathbf{x}_{i}} | \log P(\mathbf{x}_{j}^$$

# Information-theoretic interpretation of maximum likelihood 2

Given structure, log likelihood of data:

$$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G}) \log \hat{P}(x_i \mid Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G}) \log \hat{P}(x_i \mid Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G}) \log \hat{P}(x_i \mid Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G}) \log \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G}) \log \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G}) \log \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G}) \log \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G}) \log \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G}) \log \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G}) \log \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G}) \log \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in I_{x_i}, Pa_{x_i}, \mathcal{G}}^{n} \hat{P}(x_i, Pa_{x_i}, \mathcal{G})$$

$$= M \sum_{i \in$$

#### Decomposable score

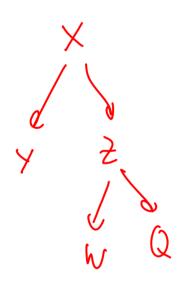


$$\log \widehat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = M \sum_{i} \widehat{I}(X_{i}, \mathbf{Pa}_{X_{i}, \mathcal{G}}) - M \sum_{i} \widehat{H}(X_{i})$$

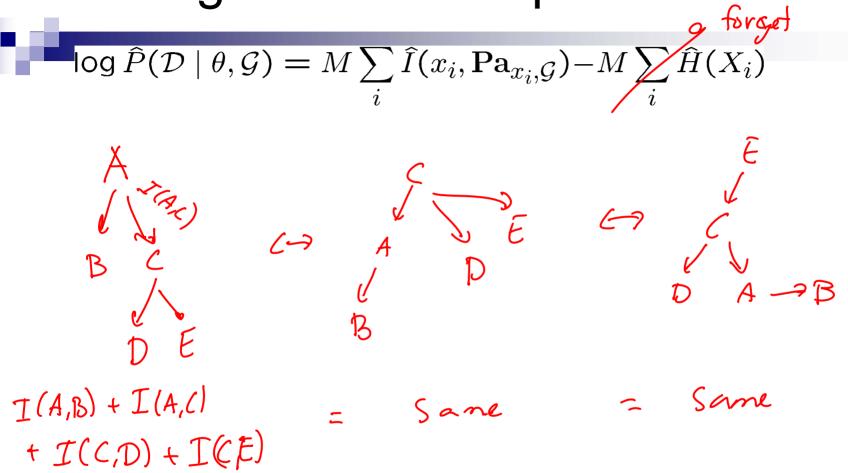
- Decomposable score: / node 2 ifs parents
  - Decomposes over families in BN (node and its parents)
  - □ Will lead to significant computational efficiency!!!
  - $\square$  Score(G:D) =  $\sum_{i}$  FamScore( $X_{i}|\mathbf{Pa}_{X_{i}}:D$ )

### How many trees are there?

Nonetheless – Efficient optimal algorithm finds best tree

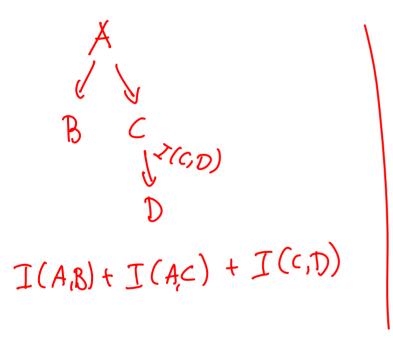


### Scoring a tree 1: I-equivalent trees



## Scoring a tree 2: similar trees

$$\log \widehat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = M \sum_{i} \widehat{I}(x_i, \mathbf{Pa}_{x_i, \mathcal{G}}) - M \sum_{i} \widehat{H}(X_i)$$



$$I(A,B)+I(A,C)+I(A,D)$$

#### Chow-Liu tree learning algorithm 1

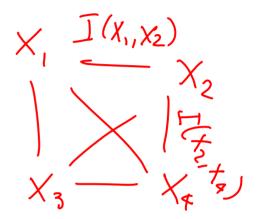
- For each pair of variables X<sub>i</sub>,X<sub>i</sub>
  - Compute empirical distribution:

$$\widehat{P}(x_i, x_j) = \frac{\mathsf{Count}(x_i, x_j)}{M}$$

Compute mutual information:

$$\widehat{I}(X_i, X_j) = \sum_{x_i, x_j} \widehat{P}(x_i, x_j) \log \frac{\widehat{P}(x_i, x_j)}{\widehat{P}(x_i) \widehat{P}(x_j)}$$

- Define a graph
  - $\square$  Nodes  $X_1,...,X_n$
  - $\square$  Edge (i,j) gets weight  $\widehat{I}(X_i, X_j)$



## Chow-Liu tree learning algorithm 2



- Optimal tree BN
  - Compute maximum weight spanning tree
  - Directions in BN: pick any node as root, breadth-firstsearch defines directions

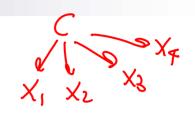
be cause of I-equivalence

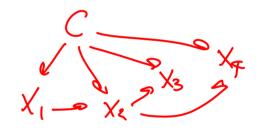


#### Can we extend Chow-Liu 1

- Tree augmented naïve Bayes (TAN) [Friedman et al. '97]
  - Naïve Bayes model overcounts, because correlation between features not considered
  - □ Same as Chow-Liu, but score edges with:

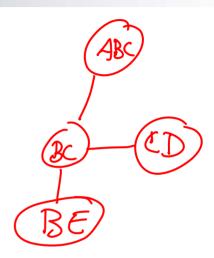
$$\widehat{I}(X_i, X_j \mid C) = \sum_{c, x_i, x_j} \widehat{P}(c, x_i, x_j) \log \frac{\widehat{P}(x_i, x_j \mid c)}{\widehat{P}(x_i \mid c)\widehat{P}(x_j \mid c)}$$





#### Can we extend Chow-Liu 2

- (Approximately learning) models with tree-width up to k
  - □ [Narasimhan & Bilmes '04]
  - □ But, O(n<sup>k+1</sup>)...



#### Maximum likelihood overfits!

$$\log \widehat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = M \sum_{i} \widehat{I}(x_{i}, \mathbf{Pa}_{x_{i}, \mathcal{G}}) - M \sum_{i} \widehat{H}(X_{i})$$

Information never hurts:

Adding a parent always increases score!!!

## Bayesian score

- Prior distributions:
  - P(G) Over structures
  - P(O61G) □ Over parameters of a structure

Over parameters of a structure 
$$P(\theta \in G)$$

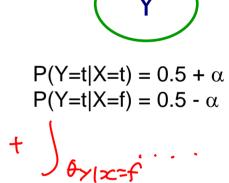
Posterior over structures given data:
$$P(G|D) \propto \log P(D|G) \cdot P(G) = \log P(G) + \log P(D|G)$$

$$P(D|G) = \int P(D, \theta \in G) d\theta = \int P(D|\theta \in G) \cdot P(\theta \in G) d\theta = \int P(D|G) d\theta$$

$$\log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$$

# Bayesian score and model complexity

- $\log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$
- Structure 1: X and Y independent  $\log P(D|G) = \log \int_{\partial x} P(Dx | \theta x) \cdot P(\theta x) \cdot P(Dx | \theta y) d\theta x d\theta y$   $= \log \int_{\partial x} P(Dx | \theta x) P(\theta x) d\theta x + \log \int_{\partial y} P(Dx | \theta y) P(\theta y) d\theta y$  = Score doesn't depend on alphaStructure 2: W
- Structure 2:(X) $\rightarrow$ ( Structure 2:(X)  $\rightarrow$  (Y)  $\log P(D|G) = \log \int_{\Theta_{x}} P(Dx|\Theta_{x}) P(\Theta_{x}|G) d\Theta_{x} + \log \int_{\Theta_{x}} P(Dx|G) P(Dx|G) P(\Theta_{x}|G) d\Theta_{x} + \log \int_{\Theta_{x}} P(\Theta_{x}|G) d\Theta_{x}$ 
  - Data points split between P(Y=t|X=t) and P(Y=t|X=f)
  - For fixed M, only worth it for large  $\alpha$ 
    - Because posterior of less diffuse



#### Bayesian, a decomposable score

$$\log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$$

- As with last lecture, assume:
  - (Ox=+ L Oy=+) □ Local and global parameter independence
- Also, prior satisfies parameter modularity:
  - $\square$  If  $X_i$  has same parents in G and G', then parameters have same prior

Paxi 6 = Paxi 6' = 
$$O$$
  $\Rightarrow$   $P(O_{xi|Paxi}|G) = P(O_{xi|Paxi}|G')$ 

Finally, structure prior  $P(G)$  satisfies structure modularity

- - Product of terms over families
  - $\square$  E.g.,  $P(G) \propto c^{|G|} / 2$
- Bayesian score decomposes along families!

#### BIC approximation of Bayesian score

- Bayesian has difficult integrals
- For Dirichlet prior, can use simple Bayes information criterion (BIC) approximation
  - □ In the limit, we can forget prior!
  - □ **Theorem**: for Dirichlet prior, and a BN with Dim(G) independent parameters, as  $M\rightarrow\infty$ :

$$\log P(D \mid \mathcal{G}) = \log P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) - \frac{\log M}{2} \text{Dim}(\mathcal{G}) + O(1)$$

$$\text{get work as complicated}$$

# BIC approximation, a decomposable score

Map Oxly = Count (Hoxx, Y+d)

■ BIC: Score<sub>BIC</sub>( $\mathcal{G}:D$ ) = log  $P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) - \frac{\log M}{2}$ Dim( $\mathcal{G}$ )

Using information theoretic formulation:

$$Score_{BIC}(\mathcal{G}:D) = M \sum_{i} \widehat{I}(x_{i}, Pa_{x_{i},\mathcal{G}}) - M \sum_{i} \widehat{H}(X_{i}) - \frac{\log M}{2} \sum_{i} Dim(P(X_{i} \mid Pa_{x_{i},\mathcal{G}}))$$

$$Introducte \quad P(G): \qquad - C.|G|$$

$$P(G) \neq C \quad \log P(G) = -C.|G| + K$$

# Consistency of BIC and Bayesian

- scores
- Consistency is limiting behavior, says nothing about finite sample size!!!
- A scoring function is consistent if, for true model G\*, as  $M \rightarrow \infty$ , with probability 1
  - $\Box$   $G^*$  maximizes the score
  - ☐ All structures **not I-equivalent** to G\* have strictly lower score
- Theorem: BIC score is consistent
- Corollary: the Bayesian score is consistent
- What about maximum likelihood?







(X) Same likelihood Soone

## Priors for general graphs

- For finite datasets, prior is important!
- Prior over structure satisfying prior modularity
- What about prior over parameters, how do we represent it?
  - $\square$  K2 prior. fix an  $\alpha$ ,  $P(\theta_{Xi|PaXi}) = Dirichlet(\alpha,...,\alpha)$
  - K2 is "inconsistent"

### BDe prior

- Remember that Dirichlet parameters analogous to "fictitious samples"
- Pick a fictitious sample size M'
- For each possible family, define a prior distribution P(X<sub>i</sub>, Pa<sub>Xi</sub>)
  - Represent with a BN
  - Usually independent (product of marginals)
- BDe prior:
- Has "consistency property":

#### Score equivalence

- If G and G' are I-equivalent then they have same score
- Theorem: Maximum likelihood and BIC scores satisfy score equivalence
- Theorem:
  - $\square$  If P(G) assigns same prior to I-equivalent structures (e.g., edge counting)
  - □ and parameter prior is dirichlet
  - then Bayesian score satisfies score equivalence if and only if prior over parameters represented as a BDe prior!!!!!!

## Chow-Liu for Bayesian score

ullet Edge weight  $w_{X_i o X_i}$  is advantage of adding  $X_i$  as parent for  $X_i$ 

- Now have a directed graph, need directed spanning forest
  - □ Note that adding an edge can hurt Bayesian score choose forest not tree
  - $\square$  But, if score satisfies score equivalence, then  $w_{X_{i} \to X_{i}} = w_{X_{i} \to X_{i}}$ !
  - □ Simple maximum spanning forest algorithm works

#### Structure learning for general graphs

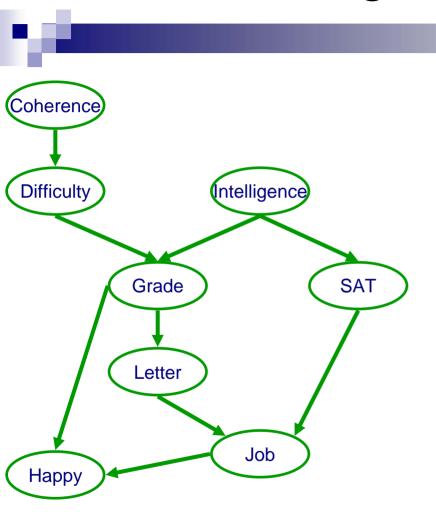
In a tree, a node only has one parent

#### Theorem:

□ The problem of learning a BN structure with at most d parents is NP-hard for any (fixed) d≥2

- Most structure learning approaches use heuristics
  - □ Exploit score decomposition
  - (Quickly) Describe two heuristics that exploit decomposition in different ways

#### Understanding score decomposition



#### Fixed variable order 1

- Pick a variable order <</p>
  - $\square$  e.g.,  $X_1, \dots, X_n$
- $X_i$  can only pick parents in  $\{X_1,...,X_{i-1}\}$ 
  - □ Any subset
  - □ Acyclicity guaranteed!
- Total score = sum score of each node

#### Fixed variable order 2

- Fix max number of parents to k
- For each i in order <</p>
  - $\square$  Pick  $\mathbf{Pa}_{Xi} \subseteq \{X_1, \dots, X_{i-1}\}$ 
    - Exhaustively search through all possible subsets
    - $Pa_{Xi}$  is maximum  $U\subseteq \{X_1,...,X_{i-1}\}$  FamScore $(X_i|U:D)$
- Optimal BN for each order!!!
- Greedy search through space of orders:
  - ☐ E.g., try switching pairs of variables in order
  - If neighboring vars in order are switch, only need to recompute score for this pair
    - O(n) speed up per iteration
    - Local moves may be worse

#### Learn BN structure using local search

Starting from Chow-Liu tree

Local search,

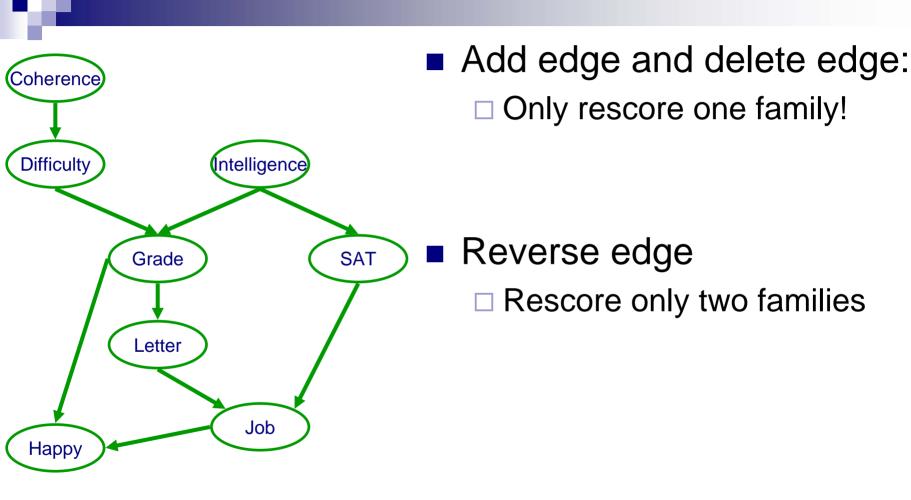
possible moves:

Only if acyclic!!!

- Add edge
- Delete edge
- Invert edge

Select using favorite score

# Exploit score decomposition in local search



#### Order search versus graph search

- Order search advantages
  - □ For fixed order, optimal BN more "global" optimization
  - □ Space of orders much smaller than space of graphs
- Graph search advantages
  - □ Not restricted to k parents
    - Especially if exploiting CPD structure, such as CSI
  - □ Cheaper per iteration
  - □ Finer moves within a graph

## Bayesian model averaging

- So far, we have selected a single structure
- But, if you are really Bayesian, must average over structures
  - □ Similar to averaging over parameters  $\log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$
- Inference for structure averaging is very hard!!!
  - Clever tricks in reading

# What you need to know about learning BN structures

- Decomposable scores
  - □ Maximum likelihood
  - □ Information theoretic interpretation
  - Bayesian
  - □ BIC approximation
- Priors
  - Structure and parameter assumptions
  - □ BDe if and only if score equivalence
- Best tree (Chow-Liu)
- Best TAN
- Nearly best k-treewidth (in O(N<sup>k+1</sup>))
- Search techniques
  - □ Search through orders
  - □ Search through structures
- Bayesian model averaging