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Probabilistic 
Graphical Models

10-708

VariationalVariational Inference   Inference   

Eric Xing Eric Xing 

Lecture 18, Nov 14, 2005

Reading: KF-Chap. 9

For a distribution p(X|θ) associated with a complex graph, 
computing the marginal (or conditional) probability of arbitrary
random variable(s) is intractable

Variational methods
formulating probabilistic inference as an optimization problem:
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Variational Methods
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Lower bounds of exponential 
functions

Exponential representation of graphical models:

Includes discrete models, Gaussian, Poisson, exponential, 
and many others
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Example: the Boltzmann
distribution on atomic lattice

Lemma: Every marginal distribution q(XH) defines a lower 
bound of likelihood:

where xE denotes observed variables (evidence).

{ }
( )( ) , )(),()(  

)(exp)(

HEHE

HHE

EEA
Edp

xxxx

xxx

′−−−

′−≥ ∫
1

Upgradeable to higher order bound Upgradeable to higher order bound [Leisink and Kappen, 2000]

Representing q(XH) by exp{-E’(XH)}:

Lower bounding likelihood
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Lemma: Every marginal distribution q(XH) defines a lower 
bound of likelihood:

where xE denotes observed variables (evidence).
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Representing q(XH) by exp{-E’(XH)}:
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Lower bounding likelihood

Kullback-Leibler Distance:

“Boltzmann’s Law” (definition of “energy”):
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KL and variational (Gibbs) free 
energy
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KL and Log Likelihood
Jensen’s inequality

KL and Lower bound of likelihood

Setting q()=q(z|x) closes the gap (c.f. EM) 
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Difficulty: Hq is intractable for general q

“solution”: approximate Hq
and/or, 
relax or tighten Q

where Q is the equivalent sets of realizable distributions, e.g., all valid 
parameterizations of exponential family distributions, marginal polytopes
[winright et al. 2003].

A variational representation of 
probability distributions
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Optimize q(XH) in the space of tractable families

i.e., subgraph of Gp over which exact computation of Hq is  
feasible

Tightening the optimization space

exact objective:
tightened feasible set: 
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Mean field methods

Do not optimize q(XH) explicitly, but focus on the set of beliefs

e.g.,

Relax the optimization problem

approximate objective:
relaxed feasible set:

The loopy BP algorithm: 
a fixed point iteration procedure that tries to solve b*
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Belief Propagation
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Loopy Belief Propagation Loopy Belief Propagation 
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Exact:

Regions:

(intractable)

(Kikuchi, 1951)

Region-based Approximations to 
the Gibbs Free Energy
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Bethe Approximation to Gibbs 
Free Energy

Bethe free energy

Equal to the exact Gibbs free energy when the factor graph is a tree 
because in that case,

But otherwise, it may or may not give a lower bound of the likelihood

Optimize each b(xa)'s. 
For discrete belief, constrained opt. with Lagrangean multiplier 
For continuous belief, not yet a general formula
Not always converge
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Minimizing the Bethe Free Energy
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Bethe = BP

Identify

to obtain BP equations:

Belief in a region is the product of:
Local information (factors in region)
Messages from parent regions
Messages into descendant regions from parents who are not 
descendants.

Message-update rules obtained by enforcing marginalization 
constraints.
Kikuchi free energy

Generalized Belief Propagation  
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Mean Field ApproximationMean Field Approximation
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Exact:

Clusters:

(intractable)

Cluster-based approx. to the 
Gibbs free energy (Wiegerinck 2001, 

Xing et al 03,04)
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Mean field approx. to Gibbs free 
energy

Given a disjoint clustering, {C1, … , CI}, of all variables
Let 

Mean-field free energy

Will never equal to the exact Gibbs free energy no matter what 
clustering is used, but it does always define a lower bound of the 
likelihood 

Optimize each qi(xc)'s. 
Variational calculus …
Do inference in each qi(xc) using any tractable algorithm
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Theorem: The optimum GMF approximation to the 
cluster marginal is isomorphic to the cluster posterior of 
the original distribution given internal evidence and its 
generalized mean fields:

GMF algorithm: Iterate over each qi

The Generalized Mean Field 
theorem
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Theorem: The GMF algorithm is guaranteed to 
converge to a local optimum, and provides a lower 
bound for the likelihood of evidence (or partition 
function) the model.

Convergence theorem

Gibbs predictive distribution:
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Approximate p(X) by fully factorized q(X)=Πiqi(Xi)

For Boltzmann distribution p(X)=exp{∑i < j θijXiXj+θioXi}/Z :

Xi

ℑxj〉qj resembles a “message” sent from node j to i 
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The naive mean field 
approximation
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Cluster marginal of a square block Ck:

⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧
++∝ ∑ ∑∑

∈ ∈
∈

∈∈k
kMBCk

kMBjkCi kC
k

k
Cji Xqjiij

Ci
iijiijC XXXXXXq

,
)(

'
,, '

exp)( θθθ 0

Virtually a reparameterized Ising model of small size.

Generalized MF approximation to 
Ising models

GMF approximation to Ising
models

GMF2x2

GMF4x4

BP

Attractive coupling: positively weighted
Repulsive coupling: negatively weighted
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Automatic Variational Inference
Currently for each new model we have to 

derive the variational update equations 
write application-specific code to find the solution

Each can be time consuming and error prone

Can we build a general-purpose inference engine which 
automates these procedures?

a general, iterative message passing algorithm 

clustering completely defines approximation

preserves dependencies 
flexible performance/cost trade-off
clustering automatable 

recovers model-specific structured VI algorithms, including:

fHMM, LDA 
variational Bayesian learning algorithms

easily provides new structured VI approximations to complex 
models

Cluster-based MF
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Example 1: Bayesian Gaussian 
Model

Likelihood function

Conjugate priors

Factorized variational distribution

mean precision (inverse variance)

Variational Posterior Distribution

where
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Initial Configuration
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After Updating q(τ)
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Converged Solution
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Example 2: Latent Dirichlet 
Allocation

Blei, Jordan and Ng (2003)
Generative model of documents (but broadly applicable e.g. 
collaborative filtering, image retrieval, bioinformatics)
Generative model: 

choose
choose topic
choose word

N
M

wz

�

�

�

Latent Dirichlet Allocation
Variational approximation

Data set:
15,000 documents 
90,000 terms
2.1 million words

Model:
100 factors
9 million parameters

MCMC could be totally infeasible for this problem
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GMFr

GMFb

BP

Example 3: Sigmoid belief 
network

Example 4: Factorial HMM


