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Reading: KF-Chap. 9
Variational Methods o

e For a distribution p(X|#) associated with a complex graph,
computing the marginal (or conditional) probability of arbitrary
random variable(s) is intractable

e Variational methods
e formulating probabilistic inference as an optimization problem:

eg. f*=argn)gsx { F(f) }

a (tractable) probability distribution
or, solutions to certain probabilistic queries




Lower bounds of exponential
functions o
- |
-—7 | ‘
exp(x) > exp(u)(x — u+1)
exp(x) > éexp(,u)((X — 1) +3(x—u)’ +6(x - +1))
Exponential Family '

e EXponential representation of graphical models:
p(X|0) = exp{z ea@(xoa)—/v(e)}

e Includes discrete models, Gaussian, Poisson, exponential,
and many others

E(X)= —Z 6.9, (XDa) is referred to as the energy of state X

- P(X]0) =expl{-£(X) - A(6)}
=exp{-E (X, Xz)— A, %)}




Example: the Boltzmann
distribution on atomic lattice

pX) = éexp{ EQ/J/Y/XJ + 26’,0)(,}
i<J /

Lower bounding likelihood

Representing q(Xy) by exp{-E’(Xy)}:

Lemma: Every marginal distribution q(X,) defines a lower
bound of likelihood:

p(xz) > Ja’xH exp{-£'(x,)}
(1= Axe) —(E (X x2)—E'(x,))),

where x. denotes observed variables (evidence).

Upgradeable to higher order bound [Leisink and Kappen, 2000]




Lower bounding likelihood

Representing q(Xy) by exp{-E’(Xy)}:

Lemma: Every marginal distribution q(X,) defines a lower
bound of likelihood:

p(Xz) > C—(E(XH,XE)>(](XH) +Ia’xHq(xH) logg(x,,)
—C-(E),~H

Al

where xc denotes observed variables (evidence).

<E>q: expected energy <E>q+/—/q : Gibbs free energy

H, : entropy

KL and variational (Gibbs) free | &t
energy o

e Kullback-Leibler Distance:

_ 9(z)
KL(g 1l p) = ga(z)ln o(2)

e “Boltzmann’s Law” (definition of “energy”):

p(z)= éexp[— E(2)]

KL(gll p) =D q(2)E(z)+> g(z)Ing(z)+InC

Gibbs Free Energy &(q);
minimized when ¢(Z) = p(£)




KL and Log Likelihood

e Jensen’s inequality
£(6;%)=log p(x | 0)
=log Y p(x.216)
p(x.210)
Ioth/(z\X) oz 1)
px.210)
9(z1x)

22 9(z1x)leg = ((0;x)= <4(9;X,z)>q +H, = 2£(q)

e KL and Lower bound of likelihood
KL(qllp)
) = _ P(le() p(XZI())
l((),x)flogp(x|())flog Z (2)lo p(Z|X6’) ‘o Inp(D)
. | p(xz|9) (z)
27(2) og 92 pzix0)

P(XZIO Z (2)log g(z)

- L)oo pzixd = L(0x)=£L(q)+ KLl p)

e Setting ¢()=¢(z]x) closes the gap (c.f. EM)

A variational representation of
probability distributions -

g=arg max —(E) —H
=argmin E) +H
where Q is the equivalent sets of realizable distributions, e.g., all valid

parameterizations of exponential family distributions, marginal polytopes
[winright et al. 2003].

Difficulty: H, is intractable for general q
“solution”:  approximate H,

and/or,
relax or tighten Q
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Mean field methods g
!
e Optimize q(Xy) in the space of tractable families
e I1.e., subgraph of G, over which exact computation of H, is
feasible
e Tightening the optimization space
e exact objective: Hq
o tightened feasible set: Q—>T (TcQ)
q" =argmin <E>q +H,
(X X ]
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Belief Propagation e

e Do not optimize q(X,,) explicitly, but focus on the set of beliefs

o eg,b={b,=1(x,x,), b=1(x)}

e Relax the optimization problem

e approximate objective: Heerna =H (b, ;. B)
o relaxed feasible set: M, ={r ZO|ZT(X/) =1,ZT(X,-,XJ-) =7(x)) }

Uzamwy{<E%+F®)}

e The loopy BP algorithm:
e afixed point iteration procedure that tries to solve b*




Loopy Belief Propagation

Region-based Approximations to
the Gibbs Free Energy (kikuchi, 1951)

Exact: &[g(X)]  (intractable)
Regions: &[{6.(X.)}]




Bethe Approximation to Gibbs
Free Energy

e Bethe free energy

G = ZZb )Inf, (x Z(l d)Zb )Inb(x

e Equal to the exact Gibbs free energy when the factor graph is a tree
because in that case,

b9 =TT )[4 )

e But otherwise, it may or may not give a lower bound of the likelihood
e Optimize each H(x,)'s.

e For discrete belief, constrained opt. with Lagrangean multiplier

e For continuous belief, not yet a general formula

e Not always converge

Minimizing the Bethe Free Energy

L= GBefﬁe + Z 7//{2 b/ (X/) _1}

Yy zza,(x,.){szxa)—b,-(x,.)}

a /ieN(a) x; X, \x;

oL :
abi(xi)zo bi(Xi)ocexp( di - aeNZ‘?'/I o ))

L 0 = b(x)xex (—E(x)+ > 2 (X)J
b, (X,) o Pt A




Bethe = BP

e Identify
/7“ai()(i):In Hthi(Xi)
beN (i)-a

e to obtain BP equations:

) : b (X;) oc Hma—ﬂ(xi)

aeN (i)

— = b, (X,) < f,(X,) H Hmb—n(xi)

ieN(a) beN(i)\a

Generalized Belief Propagation

e Belief in a region is the product of:
e Local information (factors in region)
e Messages from parent regions

e Messages into descendant regions from parents who are not
descendants.

e Message-update rules obtained by enforcing marginalization
constraints.

e Kikuchi free energy




Generalized Belief Propagation o
1245 2356 4578 5689
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Generalized Belief Propagation o
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Generalized Belief Propagation

1245 2356 4578 5689
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Mean Field Approximation

Cluster-based approx. to the H
Gibbs free energy e oo | ®

Exact: &[g(X)]  (intractable)
Clusters: 6[{g.(X.)}]

< \// e \\_//,,\

@ﬁ;@%@
i)
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Mean field approx. to Gibbs free
energy

e Given a disjoint clustering, {C,, ..., C}, of all variables |

o Let g(X) = H g.(X.,),

e Mean-field free energy
Gue = ZZH‘Z‘(Xc, E() +ZZ‘7/(X4 Jing,(x.,)

€9, Gur =2 2 gl )glx, Boxx) + X X gl ix)+ XY gl )nglx,)  maive mean fei

I<j X;X;

e Will never equal to the exact Gibbs free energy no matter what
clustering is used, but it does always define a lower bound of the
likelihood

e Optimize each ¢(x))'s.
e Variational calculus ...
e Do inference in each ¢(x,) using any tractable algorithm

The Generalized Mean Field §§:
theorem o

Theorem: The optimum GMF approximation to the
cluster marginal is isomorphic to the cluster posterior of
the original distribution given internal evidence and its
generalized mean fields:

q;(XH,c,-) =p(Xy |XE,c,»<XH,MB,> )

qjv:/

GMF algorithm: Iterate over each ¢

13
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Convergence theorem o
\
Theorem: The GMF algorithm is guaranteed to
converge to a local optimum, and provides a lower
bound for the likelihood of evidence (or partition
function) the model.
. . [ X X ]
The naive mean field sels
approximation -

e Approximate p(X) by fully factorized ¢g(X)=I1,¢(X)

e For Boltzmann distribution p(X)=exp{X, . ; 0,XX+0,,X}/Z"

mean field equation: Q Q
g.(X) :exp{ﬁ,-oX, +JZ, ‘9/J'X/<XJ’><;, +A’} Q "\@D/" Q

= pXCILX)), 1 e ) d b

= <Xj>q resembles a “message” sent from node j to i
]

'{(Xj)qj . ] € W, }orms the “mean field” applied to X; from its neighborhood

14



Ising models

Generalized MF approximation to
|

Cluster marginal of a square block C,:

/,jeCy reCy ieCy . jeMBy
k'eMBCy,

7(Xck)“eXp{ 2 OpXiXi+ 2 00X+ 2 6”J’X’<Xf>q(xf)}

Virtually a reparameterized Ising model of small size.

GMF approximation to Ising
models HH

Attractive coupling: positively weighted
Repulsive coupling: negatively weighted

15
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Automatic Variational Inference 5
e Currently for each new model we have to
e derive the variational update equations
e write application-specific code to find the solution
e Each can be time consuming and error prone
e Can we build a general-purpose inference engine which
automates these procedures?
[ X X ]
0000
0000
HE
Cluster-based MF :

e a general, iterative message passing algorithm

e clustering completely defines approximation

e preserves dependencies
e flexible performance/cost trade-off
e clustering automatable

e recovers model-specific structured VI algorithms, including:
e fHMM, LDA
e variational Bayesian learning algorithms

e easily provides new structured VI approximations to complex
models

16



Example 1: Bayesian Gaussian
Model

e Likelihood function

z._\_-’\".l'r r

p(D|p,7) = (é—ﬁ) J2exp i—% .il(xn - au)z}

VAN

mean precision (inverse variance)
e Conjugate priors

p(ulkos Xo) = N(uluo Agth)
p(tlag,bg) = G(7lag,bo)

e [actorized variational distribution

q(p, 7) = q(u)q(r)

Variational Posterior Distribution

a(n) = N(ulpn, A1)
q(t) = G(rlay,bn)

where

Aomo + (T)Nz
Ao + N(7)
AN == A0—+—N<T>

HN =

N
ay = G'U—i_E

by = bo+ % <Z($n - ,u,)2>

I




Initial Configuration

After Updating ¢(u)

2

(b)
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After Updating ¢(t)

(d)




Example 2: Latent Dirichlet
Allocation

\
e Blei, Jordan and Ng (2003)

e Generative model of documents (but broadly applicable e.g.
collaborative filtering, image retrieval, bioinformatics)

e Generative model:

e choose 8 ~ Dir(a)
e choose topic zn ~ Mult(89)
e choose word Wy, ~ p(Wn[Zn; 3)

Latent Dirichlet Allocation

e Variational approximation

| 10 " ([) 'a(l>
9(0,2) = ¢,(0)¢.(2) ) L) = | ¢ )
= DII’(€| y= f(a”<z>))>< \9! <;i) {E‘j ——— \i-') C-:/ Nl u

Multi(z ¢ =#(, (in¢)) O o= Bow, exp{Eyllog(8:) 7]}

e Data set: i o+ 211:1 (D

15,000 documents
90,000 terms
2.1 million words
e Model:
100 factors
9 million parameters

e MCMC could be totally infeasible for this problem
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Example 3: Sigmoid belief

network
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Example 4: Factorial HMM

e
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naive 1chain 2 chan 3chain  BP
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