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Reading: MJ-Chap. 21, KF-Chap. 9
Markov chain Monte Carlo
(MCMC) 3

e Importance sampling does not scale well to high dimensions.
e Rao-Blackwellisation not always possible.
e MCMC is an alternative.

e Construct a Markov chain whose stationary distribution is the
target density = A X|e).

e Run for Tsamples (burn-in time) until the chain
converges/mixes/reaches stationary distribution.

e Then collect M (correlated) samples x,, .

e Key issues:
e Designing proposals so that the chain mixes rapidly.
e Diagnosing convergence.




Markov Chains

e Definition:
e Given an n-dimensional state space
e Random vector X = (x;,...,X;)
e X0 =xattime-step t
e X0 transitions to x®1 with prob

P(x® | xt1) .. x®) = T(xO | xtD) = T(xt1 > xO)

e Homogenous: chain determined by state x©, fixed transition

kernel T (rows sumto 1)

e Equilibrium: #(x) is a stationary (equilibrium) distribution if
X") = X, 2(X) T(X>X").
i.e., is a left eigenvector of the transition matrix 7'T = #TT.
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Markov Chains

e An MC isirreducible if transition graph connected
e An MC is aperiodic if it is not trapped in cycles

e An MC is ergodic (regular) if you can get from state x to x'
in a finite number of steps.

e Detailed balance: prob(x®->x0-1) = prob(xtD->x0)
p(x(f))r(x(f—l) IX(?‘)) — p(x(f—l))r(x(f) |X(7‘—1))
summing over x(t1

PO = 3 pXIIT (6 )

e Detailed bal - stationary dist exists




Metropolis-Hastings

e Treat the target distribution as stationary distribution

e Sample from an easier proposal distribution, followed by an
acceptance test

e This induces a transition matrix that satisfies detailed balance

e MH proposes moves according to Q(x |x) and accepts samples with
probability A(x |x).

e The induced transition matrix is 7 (x — x') = Q(x'| x)A(x'| x)
e Detailed balance means
7(X)QX'| X)A(x'| x) = m(x")Q(x | X )A(x | x')

e Hence the acceptance ratio is

Ax'| x) = min[1 ﬂ(X)Q(XIX)]
L r(x)Q(x' x)

Metropolis-Hastings

1. Initialize x9

2. While not mixing 7 burn-in
o x=x(0
e f+=1,
e sample v~ Unif(0,1)
e sample x* ~ Q(x*|x)

-if v<A(x*|x) = min(L”(X*)QWJ Function
7 (X)Q(x*| x) Draw sample (x(t))
X0 = x* /[ transition
- else
X0 = x /I stay in current state

e Resett=0, for #=1:N
e X(t+1)) € Draw sample (x(t))




Mixing time

e The emixing time T_is the minimal number of steps (from any
starting distribution) until D, (A", 7) <, where D, is the
variational distance between the two distance:

var

def
Do (14, 1) = iUE‘M (A)— 1, (A)‘

e Chains with low bandwidth (conductance) regions of space
take a long time to mix.

e This arises for GMs with deterministic or highly skewed
potentials.

MCMC example

g(x*|x) ~ N(x,100)
p(x) ~ 0.3 exp(-0.2x2) + 0.7 exp(-0.2(x-10)?)




Summary of MH

e Random walk through state space
e Can simulate multiple chains in parallel
e Much hinges on proposal distribution @

Want to visit state space where p(X) puts mass
Want A(x*|x) high in modes of p(.X)
Chain mixes well

e Convergence diagnosis

How can we tell when burn-in is over?

Run multiple chains from different starting conditions, wait until they start
“behaving similarly”.

Various heuristics have been proposed.
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Gibbs sampling :
e Gibbs sampling is an MCMC algorithm that is especially
appropriate for inference in graphical models. E EHE
e The procedue =) [
e we have variable set X={x,, x,, X;,... x,} fora GM @m;wfi\@mz

at each step one of the variables X/ is selected (at random or according
to some fixed sequences), denote the remaining variables as X ;, and its
current value as x (*1)

Using the "alarm network" as an example, say at time t we choose Xz and we
denote the current value assignments of the remaining variables, X ¢,

H i 7-1 7-1 7-1 7-1 7-1
obtained from previous samples, as x% ):{Xﬁf, D x I XD xel >}

the conditonal distribution p(X] x (D) is computed
a value x{" is sampled from this distribution

the sample x(? replaces the previous sampled value of X;in X.

e, xP=xouxy
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Markov Blanket 5
\
e Markov Blanket in BN
e Avariable is independent from
others, given its parents, children
and children's parents (d-
separation).
e MB in MRF
e A variable is independent all its
non-neighbors, given all its direct
neighbors.
= pX} X)= p(X} MB(X)
e Gibbs sampling
e Every step, choose one variable
and sample it by P(X|MB(X))
based on previous sample.
. . e0o R
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MB(A)={B, E, J, M}
MB(E)={A, B}

To calculate P(J|B1,M1)

Choose (B1,E0,A1,M1,J1) as a
start

Evidences are B1, M1,
variables are A, E, J.

Choose next variable as A

Sample A by
P(A|MB(A))=P(A|B1, EO, M1,
J1) suppose to be false.

(B1, EO, A0, M1, J1)

Choose next random variable
as E, sample E~P(E|B1,A0)




Gibbs sampling

e Gibbs sampling is a special case of MH

e The transition matrix updates each node one at a time using
the following proposal:

Q(x;, %) = (%', %)) = p(x;'| X_;)

e This is efficient since for two reasons
e It leads to samples that is always accepted

() PR X)) 5 (X))
A((X"X”H(X”X”))’m'”(l’ PO 1X )R X ) — (¢, X ,))]

— min| 1, 2O X )P IX,) =min(1,1)
"plx; X )p(xIX) ’

Thus T((X/,X_/.)—>(X/',X_/))=p(X/.'|X_/)

e ltis efficient since p(x;|x_;) only depends on the values in X’s Markov
blanket
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Gibbs sampling :
e Scheduling and ordering:
e Sequential sweeping: in each "epoch" t, touch every r.v. in some order
and yield an new sample, x, after every r.v. is resampled
e Randomly pick an r.v. at each time step
e Blocking:
e Large state space: state vector X comprised of many components (high
dimension)

e Some components can be correlated and we can sample components
(i.e., subsets of r.v.,) one at a time

e Gibbs sampling can fall if there are deterministic constraint

Suppose we observe Z= 1. The posterior has 2 modes:
and AX=0, ¥Y=1|Z=1). if we start in mode 1, AX|Y=0, Z=1) leaves X=1,
so we can't move to mode 2 (Reducible Markov chain).

If all states have non-zero probability, the MC is guaranteed to be regular.

Z is xor Sampling blocks of variables at a time can help improve mixing.
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1. of simulation

Run several chains

Start at over-dispersed
points

Monitor the log lik.

Monitor the serial
correlations

Monitor acceptance ratios

\
Re-parameterize (to get

approx. indep.)
Re-block (Gibbs)

Collapse (int. over other
pars.)

Run with troubled pars.
fixed at reasonable vals.

Collapsed Gibbs sampling of M3
model (Tom Griffiths & Mark Steyvers)

Collapsed Gibbs sampling

e |Integrate out 7

For variables z = z,, z,, ..., Z

vy L

Draw z®% from P(z||z; w)

z,=z,09,z2,®0 7z &z 0O 70

N
El
NS




Gibbs sampling

e Need full conditional distributions for variables
e Since we only sample z we need

Plzi = jlz—i, w) o< Plw;|z; = f, 54, w_g) P(2z; = j|z_s)
n)+8 n%ta

n(') .+ Wg n(di_ + T

—i,9 —i

n{) number of times word w assigned to topic j

number of times topic j used in document d
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Gibbs sampling
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Gibbs sampling
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Gibbs sampling
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Gibbs sampling
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Document tagging

“Arts" “Budgets” “Children™ “Eduocation”

NEW MILLION CHILDREN  SCHOOL
FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE: BILLION YEARS
PLAY FEDERAL FAMILIES
MUSICAL YEAR WORK
HEST SPENDING PARENTS TEACHER,
ACTOR NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA MONEY MEN STATE
THEATER, PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITT

The Williim Randolph Hearst Fouudation will give $1.25 willion to Lineoln Center,

Metropalitan Opera Co, New York Philbarmonic and Juillised Schoal.  “Ome board
felt that we had a real opportunity to make a mark on the future of the psrtnrmmg
arts with these groots an act every bit as important as onr traditional arcas of «
in health, medieal ros , education and the social services”  Hearst F
President Randolph A. Hearst sadd Monday i aonon Linealn Center's
00 for its new building, which will ¢ o young artists awed provide
The Metropolitan Opera Co. and New York Philharmonic will
. The Juilliangd School, whem: music and the perboning acts are
will gt ! ‘The Hearst  Foundation, a leading supporter of the Linealn
Cnahr Cilmu]nhd.:d Caorporade: Fuuel, will made: s wsnal sonad 2000000 donation,
(1N

Toward variational inference
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From GM to factored graphs '
!
4 Parents(i)
R 2\
Q')?i o
Undirected graph Directed graph
(Markov random field) (Bayesian network)
P(x) = %HWi(Xi)H ‘//(ij)(xi ) Xj) P(X) = H P(Xi | Xparents(i))
i (g, N
\ factor graphs /
interactions
variables
e0o
esce
. . o000
Beliefs and messages in FG '

b/ (’\//) o ﬁ(’\//) H ma—)/' (’\//)

aeN(r)

I !

“beliefs” “messages”

f o b, XD T TIm(x)

ieN(a) ceN(i)\a

D 1
— L —
E T The “belief” is the BP approximation

of the marginal probability.
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BP Message-update Rules '
Using b,.,;(X;) = D b,(X,), we get
X, \x;
ma—>/'(’\//'): Z fa(Xa) H Hmb—y'(xj)
X,\x; JeN(a)\i beN(j)\a
( A sum product algorithm)
:i . A
Belief Propagation on trees '
K k
® ® O
Mki l
i
| —O =@k @—O—0
Kk

e o o
e BP Message-update Rules
M5 (%) o 2w (X ()T T M () by (x;) o< v, ()] T M (%)

1. lexternal evidence
Compatibilities (interactions)

e BP on trees always converges to exact marginals (cf. Junction
tree algorithm)

17



Loopy Belief Propagation

\
e If BP is used on graphs with loops, messages may circulate

indefinitely
e Empirically, a good approximation is still achievable
e Stop after fixed # of iterations
e Stop when no significant change in beliefs
e |If solution is not oscillatory but converges, it usually is a good
approximation

e Example: Ising models

An Ising model on 2-D image

e Nodes encode hidden
information (patch-
identity).

e They receive local
information from the
image (brightness,
color).

e Information is
propagated though the
graph over its edges.

e Edges encode
‘compatibility’ between
nodes.

air or water ? .




Belief Propagation on loopy
graphs '
k K |
® ®*—0

| —0—0®k @—O@—0F

|

o—0—©
e BP Message-update Rules
UIRTENEDNZCTENIZ1CR] | LIICH! by (%) o= 9 () [ M (%)

I Texternal evidence
Compatibilities (interactions)

e May not converge or converge to a wrong solution

Variational (Gibbs) Free Energy

e Kullback-Leibler Distance:
b(X)

D p)= 2 b(X)In
; p(X)
e “Boltzmann’s Law” (definition of “energy”):
1
p(X) =—-exp[-E(X)]

U (b) —H(b)

}
DIl p)=Y b(X)E(X)+ > b(X)Inb(X)+InZ

Gibbs Free Energy &(b);
minimized when b(X) = p(X)
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Region-based Approximations to | 3%
the Gibbs Free Energy («ikuchi, 1951) &
|
Exact:  &[bH(X)] (intractable)
Regions: 6[{5.(X,)}]
Bethe Approximation to Gibbs
Free Energy -

e Bethe free energy

Baerre = ;;b,,(xa)m(ba(xa)

é(Xa)}Z(l—d’)Z@(&)ln b(x,)

/ X;

e Equal to the exact Gibbs free energy when the factor graph is
a tree because in that case,

b)) =TTa)[Tax)

20



Minimizing the Bethe Free Energy

\
L = 6367"/72 + Z 7/{2 b/ (X/) _1}

53 zza,(x,){zba<xa>—b,-<x,>}

a ieN(a) x; X, \x;

oL ) .
abi(xi) - :> bi(xi) exp[di _1aEN(i)/1ai(Xi)]
oL
ob, (X,) B —> b,(X,) ocexp(— Ea(Xa)+iE%:a),1ai(Xi)J
Bethe = BP :
o |dentify

A (Xi) =In Hmo—>i (Xi)

beN (i)2a

e to obtain BP equations:

_’T - bi(xi)oc Hma—n(xi)
§ aeN (i)
Ti g ba(xa) o fa(xa) H Hmb%i(xi)
icN (a) beN (i)\a
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Generalized Belief Propagation

e Belief in a region is the product of:
e Local information (factors in region)
e Messages from parent regions

e Messages into descendant regions from parents who are not

descendants.

e Message-update rules obtained by enforcing marginalization

constraints.
e Kikuchi free energy

Generalized Belief Propagation

1245 2356 4578

5689

> > >
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Generalized Belief Propagation

1245 2356 4578 5689

> > >
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Generalized Belief Propagation
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Generalized Belief Propagation -
1245 2356 4578 5689
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