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Probabilistic 
Graphical Models

10-708

Markov Chain Monte Carlo and Markov Chain Monte Carlo and 
Belief Propagation   Belief Propagation   

Eric Xing Eric Xing 

Lecture 17, Nov 9, 2005

Reading: MJ-Chap. 21, KF-Chap. 9

Markov chain Monte Carlo 
(MCMC)

Importance sampling does not scale well to high dimensions.
Rao-Blackwellisation not always possible.
MCMC is an alternative.
Construct a Markov chain whose stationary distribution is the 
target density  = P(X|e).
Run for T samples (burn-in time) until the chain       
converges/mixes/reaches stationary distribution.
Then collect M (correlated) samples xm .
Key issues:

Designing proposals so that the chain mixes rapidly.
Diagnosing convergence.
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Markov Chains
Definition:

Given an n-dimensional state space
Random vector X = (x1,…,xn)
x(t) = x at time-step t
x(t) transitions to x(t+1) with prob

P(x(t) | x(t-1),…,x(1)) = T(x(t) | x(t-1)) = T(x(t-1) x(t)) 

Homogenous: chain determined by state x(0), fixed transition 
kernel T (rows sum to 1)
Equilibrium: π(x) is a stationary (equilibrium) distribution if 

π(x') = Σxπ(x) T(x x'). 
i.e., is a left eigenvector of the transition matrix πTT = πTT.
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Markov Chains
An MC is irreducible if  transition graph connected
An MC is aperiodic if it is not trapped in cycles
An MC is ergodic (regular) if you can get from state x to x ' 
in a finite number of steps.
Detailed balance: prob(x(t) x(i-1)) = prob(x(t-1) x(t))

summing over x(t-1)

Detailed bal stationary dist exists
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Metropolis-Hastings
Treat the target distribution as stationary distribution
Sample from an easier proposal distribution, followed by an 
acceptance test
This induces a transition matrix that satisfies detailed balance

MH proposes moves according to Q(x'|x) and accepts samples with 
probability A(x'|x).
The induced transition matrix is
Detailed balance means

Hence the acceptance ratio is
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Metropolis-Hastings
1. Initialize x(0)

2. While not mixing  // burn-in

x=x(t)

t += 1,
sample u ~ Unif(0,1)
sample x* ~ Q(x*|x)

- if

x(t) = x*  // transition
- else
x(t) = x // stay in current state 

Reset t=0, for t =1:N
x(t+1)) Draw sample (x(t))
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Draw sample (x(t))
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Mixing time
The ε mixing time Tε is the minimal number of steps (from any 
starting distribution) until Dvar(P(T), π) ≤ ε, where Dvar is the 
variational distance between the two distance:

Chains with low bandwidth (conductance) regions of space 
take a long time to mix.
This arises for GMs with deterministic or highly skewed 
potentials.
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MCMC example 

q(x*|x) ~ N(x(i),100)
p(x) ~ 0.3 exp(-0.2x2) + 0.7 exp(-0.2(x-10)2)
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Summary of MH
Random walk through state space
Can simulate multiple chains in parallel
Much hinges on proposal distribution Q

Want to visit state space where p(X) puts mass
Want A(x*|x) high in modes of p(X) 
Chain mixes well

Convergence diagnosis
How can we tell when burn-in is over?
Run multiple chains from different starting conditions, wait until they start 
“behaving similarly”.
Various heuristics have been proposed.

Gibbs sampling
Gibbs sampling is an MCMC algorithm that is especially 
appropriate for inference in graphical models.

The procedue
we have variable set X={x1, x2, x3,... xN} for a GM

at each step one of the variables Xi is selected (at random or according 
to some fixed sequences), denote the remaining variables as X-i , and its 
current value as x-i

(t-1)

Using the "alarm network" as an example, say at time t we choose XE, and we 
denote the current value assignments of the remaining variables, X-E , 
obtained from previous samples, as 

the conditonal distribution p(Xi| x-i
(t-1)) is computed

a value xi
(t) is sampled from this distribution

the sample xi
(t) replaces the previous sampled value of Xi in  X.

i.e., 
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Markov Blanket
Markov Blanket in BN

A variable is independent from 
others, given its parents, children 
and children‘s parents (d-
separation).

MB in MRF
A variable is independent all its 
non-neighbors, given all its direct 
neighbors.

⇒ p(Xi| X-i)= p(Xi| MB(Xi))

Gibbs sampling
Every step, choose one variable 
and sample it by P(X|MB(X)) 
based on previous sample.

Gibbs sampling of the alarm 
network

To calculate P(J|B1,M1)

Choose (B1,E0,A1,M1,J1) as a 
start

Evidences are B1, M1, 
variables are A, E, J.

Choose next variable as A

Sample A by 
P(A|MB(A))=P(A|B1, E0, M1, 
J1) suppose to be false.

(B1, E0, A0, M1, J1)

Choose next random variable 
as E, sample E~P(E|B1,A0) 

...
MB(A)={B, E, J, M}
MB(E)={A, B}
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Gibbs sampling is a special case of MH
The transition matrix updates each node one at a time using 
the following proposal: 

This is efficient since for two reasons
It leads to samples that is always accepted 

Thus 

It is efficient since                  only depends on the values in Xi’s Markov 
blanket

Gibbs sampling
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Scheduling and ordering: 
Sequential sweeping: in each "epoch" t, touch every r.v. in some order 
and yield an new sample,       , after every r.v. is resampled
Randomly pick an r.v. at each time step 

Blocking:
Large state space: state vector X comprised of many components (high 
dimension)
Some components can be correlated and we can sample components 
(i.e., subsets of r.v.,) one at a time

Gibbs sampling can fail if there are deterministic constraint

Gibbs sampling

)(tx

X Y

Z

Z is xor

• Suppose we observe Z = 1. The posterior has 2 modes: P(X = 1, Y = 0|Z = 1)
and P(X = 0, Y = 1|Z = 1). if we start in mode 1, P(X|Y = 0, Z = 1) leaves X = 1, 
so we can’t move to mode 2 (Reducible Markov chain).

• If all states have non-zero probability, the MC is guaranteed to be regular.
• Sampling blocks of variables at a time can help improve mixing.
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Chains

Chains
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The                   of simulation

Run several chains
Start at over-dispersed 
points
Monitor the log lik.
Monitor the serial 
correlations
Monitor acceptance ratios

Re-parameterize (to get 
approx. indep.)
Re-block (Gibbs)
Collapse (int. over other 
pars.)
Run with troubled pars. 
fixed at reasonable vals.

Collapsed Gibbs sampling of M3

model (Tom Griffiths & Mark Steyvers)

Collapsed Gibbs sampling
Integrate out π

For variables z = z1, z2, …, zn

Draw zi
(t+1) from P(zi|z-i, w)

z-i = z1
(t+1), z2

(t+1),…, zi-1
(t+1), zi+1

(t), …, zn
(t)
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Gibbs sampling 

Need full conditional distributions for variables
Since we only sample z we need

number of times word w assigned to topic j

number of times topic j used in document d

β

Gibbs sampling

i wi di zi
1
2
3
4
5
6
7
8
9

10
11
12
.
.
.

50

MATHEMATICS
KNOWLEDGE

RESEARCH
WORK

MATHEMATICS
RESEARCH

WORK
SCIENTIFIC

MATHEMATICS
WORK

SCIENTIFIC
KNOWLEDGE

.

.

.
JOY

1
1
1
1
1
1
1
1
1
1
2
2
.
.
.
5

2
2
1
2
1
2
2
1
2
1
1
1
.
.
.
2

iteration
1



11

Gibbs sampling
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Gibbs sampling
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Gibbs sampling
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Gibbs sampling
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Gibbs sampling
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Gibbs sampling
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Gibbs sampling
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Document tagging

Toward Toward variationalvariational inferenceinference
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Undirected graph 
(Markov random field)

Directed graph
(Bayesian network)
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factor graphs

interactions

variables

From GM to factored graphs

Beliefs and messages in FG
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The “belief” is the BP approximation 
of the marginal probability.
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BP Message-update Rules

( A sum product algorithm )
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Belief Propagation on trees

BP Message-update Rules

BP on trees always converges to exact marginals (cf. Junction 
tree algorithm)
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Loopy Belief Propagation
If BP is used on graphs with loops, messages may circulate 
indefinitely
Empirically, a good approximation is still achievable

Stop after fixed # of iterations
Stop when no significant change in beliefs
If solution is not oscillatory but converges, it usually is a good 
approximation

Example: Ising models

An Ising model on 2-D image
Nodes encode hidden 
information (patch-
identity).
They receive local 
information from the 
image (brightness, 
color).
Information is 
propagated though the 
graph over its edges.
Edges encode 
‘compatibility’ between 
nodes.

?air or water ?
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Belief Propagation on loopy 
graphs

BP Message-update Rules

May not converge or converge to a wrong solution
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Variational (Gibbs) Free Energy
Kullback-Leibler Distance:

“Boltzmann’s Law” (definition of “energy”):
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Gibbs Free Energy         ; 
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Exact:

Regions:

(intractable)

(Kikuchi, 1951)

Region-based Approximations to 
the Gibbs Free Energy
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Bethe Approximation to Gibbs 
Free Energy

Bethe free energy

Equal to the exact Gibbs free energy when the factor graph is 
a tree because in that case,
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Minimizing the Bethe Free Energy
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Bethe = BP

Identify

to obtain BP equations:
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Belief in a region is the product of:
Local information (factors in region)
Messages from parent regions
Messages into descendant regions from parents who are not 
descendants.

Message-update rules obtained by enforcing marginalization 
constraints.
Kikuchi free energy

Generalized Belief Propagation  
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Generalized Belief Propagation
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Generalized Belief Propagation


