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Reading: MJ-Chap. 21
The need for multimodal belief §§:
states in dynamic models '

e An LDS defines only unimodal belief states
Xpoap1 = Xty + Kpg (Ve = CX i)

Pr+1|r+1 = Pf+l|f - KCPM‘,
- /‘ . E

e (a) A Kalman filter.will predict the location of the bird using a single Gaussian
centered on the obstacle.

e (b) A more realistic model allows for the bird’s evasive action, predicting that it will
fly to one side or the other.
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A road map to more complex 3
00
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dynamic models 5
discrete discrete continuous
discrete continuous continuous
Mixture model Mixture model Factor analysis
e.g., mixture of multinomials e.g., mixture of Gaussians
©® ® ® - ® ® ® - ©
HMM HMM
(for discrete sequential data, e.g., text) (for continuous sequential data,
e.g., speech signal)

Factorial HMM Switching SSM
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Factorial HMM

e The belief state at each time is

R, N
7 G \ Q, ' Q_.'-;
and in the most general case has a N KJU

\
state space O(d¥) for & dtnary chains /T_‘H A\ /?h\\ /?m\\
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e The common observed child \l '| \')/\ '\l/\ |
|

couples all the parents (explaining
away).

e But the parameterization cost for
fHMM is O(kc?) for k chain-specific @ @ @
transition models A(Q" | Q")

rather than O(a4) for p(X; | X,,)
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Special case: switching HMM

e Different chains have
different state space and
different semantics

° The exact calculation is Multi-View Face Tracking with Factorial and Switching HMNM
intractable and we must use

approximate inference methods

Hidden Markov decision trees

Y, % Y (Jordan,Ghahramani,&Saul,197)

e A combination of decision trees with factorial HMMs
e This gives a "command structure" to the factorial representation
e Appropriate for multi-resolution time series

e Again, the exact calculation is intractable and we must use
approximate inference methods




Switching LDS

e Possible world:
e multiple motion state:

eg

T T
wa\k—l

e Task:

e Trajectory prediction

e Model:

L1
e Combination of HMM and LDS

o My
Si—{52—{%
PG =X | Xy =X Sm ) =N (X AX Q) X ¥ Y

PO, =, 1 X, =X,) = H(1,:Cx, R) @ X3
p(S = j151=1)=M(,)) t

e Belief state has O(A) Gaussian modes: @

Data association
(correspondence problem) o

e Optimal belief state has O(k")
modes.

e Common to use nearest
neighbor approximation.

e For each time slice, can enforce
that at most one source causes
each observation

e Correspondence problem also
arises in shape matching and
stereo vision.




Triangulating fHMM

e Isthe following triangulation correct?

e We have created cliques of size A+1, and there are O(k7) of them.
The junction tree algorithm is not efficient for factorial HMMs.

Mixed Membership Model (M?3)

e Mixture versus admixture

A Bayesian mixture model A Bayesian admixture model:
Mixed membership model




Population admixture: M3 in
genetics

\
e The genetic materials of each modern individual are inherited

from multiple ancestral populations, each DNA locus may
have a di'fferent generic origin ...
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Genetic Structure
of Human Populations
Moah & Rosenberg,' fonathan K Pritchard? James L Weber,!

Howard M. Cann,* Kenneth K. Kidd,"* Lev A. Thivotovsky,*
Marcus W, Feldman’

SCIENCE VOL 298 20 DECEMBER 2002

e Ancestral labels may have (e.g., Markovian) dependencies
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Latent Dirichlet Allocation: M3in | g2
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ext mining :
e A document is a bag of words each generated from a
randomly selected topic
—> _“Arts" “HBudgets" “Children™ “Eduocation™
NEW MILLION CHILDREN SCHOCL
FILM TAX WOMEN STUDENTS
SHOW FROGRAM FEQFLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC
BEST SPENDING PARENTS TEACHEH
ACTOR NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI
The Wiliam Randolph Hearst Fousdation will give 1,26 willis to Lncals L'n"nDl‘r
Metropolitan Opera Co,, New York Philbarmonic asd Juillised  School.  “Onr bosd
%t that we had & real opportumity to make & omark on the future of the prlhnlmlx
nets with these ;s am act every bic as importast as on itional
im health, nmdr.ll research, edueation awd the social
eesident Randolph A. Hearst said Mouday in o
K 4 wlﬂr.'h will |

-n.—.h_ The Juilliard School, Whete wnaic aud the perfoning Arta are
muzhl !nllg‘l. 0. The Hearst Founcbation ;lltwlmg muppoctes af the Lincaln
Center ummum Corparate b will made i vl 00,000 demation,

toa.




Inference in Mixed Membership
Models

e Mixture versus admixture

p0)= 3 [-] [H[H P16, )P(Z, |ﬂn)jp(nﬂ |a)]p(¢ &)z, - dp
{z,m} n m
e Inference is very hard in M3, all hidden variables are coupled and not factorizable!

p(z,10)~ 3 I[]_[(]_[ PXm | 8.)P(Z, | ﬂn)]p(ﬁn | a)]p(vﬁlé)dﬁ,/daﬁ
{z1m} n m

Approaches to inference

e Exact inference algorithms
e The elimination algorithm
e The junction tree algorithms

e Approximate inference techniques

e Monte Carlo algorithms:
Stochastic simulation / sampling methods
Markov chain Monte Carlo methods
e Variational algorithms:
Belief propagation
Assumed density filtering
Variational inference




Example: Particle filtering
(sequential Monte Carlo)

e Represent belief state as weighted set of samples (non-parametric).
e Can handle nonlinear transition/emission and multi-modality.

e Easy to implement.

e Only works well in small dimensions.

weighted prior f ® ®@e Pixit-1)Iyll:i-1))
proposal / ><K P(x(t)Ix(t-1))

unweighted e = Pxioly(lit-1))

prediction
weighting M xX(t))

weighted
posterior e ®  P(x(0) I y(l:1)
resample
- - -
Y - -
unweighted 5 Pixit) | v(l:t))

posterion

Example: Structured Variational
approximation o

e Finds an optimal ¢*() in a tractable family to approximate the
original joint p()
g*( cargminF(g|l p)

e There can be many different choices of s and F().

(b}
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fHMM Mean field approx. Structured variational approx.




Example: Assumed density
filtering (ADF)

\
e ADF forces the belief state to live in some restricted family %
e.g., product of histograms, Gaussian.

e Given a prior o, , € #, do one step of exact Bayesian updating
to get @, ¢ # . Then do a projection step to find the closest
approximation in the family:

_ /ﬁf Y exact
a, eargminKL(, || ¢) [ ,/p{(- .,/pl
=4 / P
aj_1 ap ajyl approx

e The Boyen-Koller (BK) algorithm is ADF applied to a DBN

e e.g., let Fbe a product of (singleton) marginals:

e This is also a variational method, and the updating step can
still be intractable

Monte Carlo methods

e Draw random samples from the desired distribution

e Yield a stochastic representation of a complex distribution

e marginals and other expections can be approximated using sample-
based averages

1
ELF (] =1, 2. A ()

e Asymptotically exact and easy to apply to arbitrary models

e Challenges:

e how to draw samples from a given dist. (not all distributions can be
trivially sampled)?

e how to make better use of the samples (not all sample are useful, or
eqally useful, see an example later)?

e how to know we've sampled enough?
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Example: naive sampling :
e Construct samples according to probabilities given in a BN.
EO BO A0 MO JO
EO BO A0 MO JO
EO BO AO MO J1
EO BO A0 MO JO
EO BO A0 MO JO
EO BO A0 MO Jo
E1l BO Al M1 J1
Alarm example: (Choose the right sampling sequence) EO BO AO MO J0
1) Sampling:P(B)=<0.001, 0.999> suppose it is false,
B0. Same for EO. P(A|BO, E0)=<0.001, 0.999> suppose EO BO AO MO Jo
itis false...
2) Frequency counting: In the samples right, EO BO A0 MO JO
P(J|A0)=P(J,A0)/P(A0)=<1/9, 8/9>.
(XX
o000
o000
00
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Example: naive sampling .
e Construct samples according to probabilities given in a BN.
EO BO A0 MO JO
Alarm example: (Choose the right sampling
sequence) EO BO A0 MO JO
EO BO A0 MO J1
3) what if we want to compute P(J|AL) ?
we have only one sample ... EO BO A0 MO Jo
PJ]AL)=P(J,A1)/P(AL1)=<0, 1>. EO BO AO MO Jo
4) what if we want to compute P(J|B1) ? EO BO A0 MO JO
No such sample available!
P(JJAL)=P(J,B1)/P(B1) can not be defined. El BO Al M1 J1
EO BO A0 MO JO
For a model with hundreds or more variables,
rare events will be very hard to garner evough EO BO A0 MO Jo
samples even after a long time or sampling ... E0 BO A0 MO 30

10



o000
o000
e000
o000
')

Monte Carlo methods (cond.) :

e Direct Sampling
e We have seen it.
e Very difficult to populate a high-dimensional state space
e Rejection Sampling
e Create samples like direct sampling, only count samples which is
consistent with given evidences.
e Likelihood weighting, ...
e Sample variables and calculate evidence weight. Only create the
samples which support the evidences.
e Markov chain Monte Carlo (MCMC)
e Metropolis-Hasting
e Gibbs
o000
o000
0000
o000
. . . -
Rejection sampling :

e Suppose we wish to sample from dist. [T1(X)=IT"(X)/Z.

T1(X) is difficult to sample, but IT'(X) is easy to evaluate
Sample from a simpler dist Q(X)
Rejection sampling

x"~Q(X), accept x” w.p.IT'(x")/ AQ(x")
Correctness:
p(x) = [T AQ)IR()
[l ()1 4Qx) IQ(x)atx
= 9
pitfall ... [T (ke ka(x,)
U,

kq(x)

()

Xy

11



Rejection sampling

e Pitfall: &
e Using Q=N (o) to sample P=/#(u,c,)
o |f Oq exceeds Sp by 1%, and dimensional=1000, 25
e The optimal acceptance rate k:(o-q/csp)dzllzo,OOO
e Big waste of samples!

e Adaptive rejection sampling
e Using envelope functions to define Q

Inp(x)

. . [ X X ]
Unnormalized importance sels
sampling -

e Suppose sampling from A:) is hard.

e Suppose we can sample from a "simpler" proposal distribution
QX") instead.

e If Qdominates P(i.e., Q(x) > 0 whenever Ax) > 0), we can
sample from @Q and reweight:

(f(X)) :j f (x)P(x)dx

=[ 10 ooD Quaar

1 m P(x™)
T
:%; f(x™Mw™

where x™ ~ Q(X)
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[ X X ]
0000
0000
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Normalized importance sampling | ¢
\
e Suppose we can only evaluate P (x) = aAX) (e.g. for an
MRF).
e We can get around the nasty normalization constant o as
follows: .
o Let r(X):% = (rOO), - J'gEX;Q(XdX [Pidx—a
e Now
P
(F00), =] PG == j f(x) QEX ; Qx)ax
_ j f (x)P(X)Q(x)dx
I/‘(X)Q(X)O’X
Z Zf:();m) r where x™ ~ Q(X)
= ; f(xMw™  wherew™ = Z:m’"m
[ X X ]
0000
[ X XX
. . ::o
Weighted resampling .

|
e Problem of importance sampling: depends on how well @

matches P

e If P(X)f(x) is strongly varying and has a significant proportion of its mass
concentrated in a small region, ., will be dominated by a few samples

38 /i

F*(x)

e Note that if the high-prob mass region of @ falls into the low-prob mass
region of 2, the variance of r" =P(x")/Q(x™) can be small even if the
samples come from low-prob region of £and potentially erroneous .

e Solution
e Use heaVy tail Q P(Xm)/Q( /H) P

m

e Weighted resampling  * Z P(xIQ(x") Z rr

13
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Weighted resampling :
e Sampling importance resampling (SIR):
1. Draw Nsamples from G X| ... Xy
i ights: a_ PMIQUTY 7
2. Constructing weights: w; ... wy,, w =S IR Y
3. Sub-sample x from {X] ... X\p w.p. (w; ... wp)
e Particular Filtering
e A special weighted resampler i i i
e Yield samples from posterior p(.X] ¥;.) @ @ @
[ X X ]
0000
0000
[
M M [ X ]
Sketch of Particle Filters :
e The starting point 1Y P01 X)
PG| Yy ) PO 1A
PX|Y) = pP(X 1Y Vi) =
e T P 1 Yy ) PO | X)X,
e Thus p(X(Y,.,) is represented by
m_ m_ _poiX")
{)(r PG Y1a), w; _ﬁf(”’m’}
e A sequential weighted resampler
e Time update
P 1Y) = [ PG LX) PUXG | Yy )aX, Pl
= w/p(X,.11X;) (sample from a mixture model)  px., (v, ) /} l g \\'
e Measurement update PO
PGP0 ) LU DL
p(Xm Yrm) =
[P 1Y pWs 1 X)X,y PEabie) =S5O L O0—((OH)o— )
= l/\/rT1 = pXa | Yy), Wl = %J (reweight)

14



Rao-Blackwellised sampling

e Sampling in high dimensional spaces causes high variance in the
estimate.

e RB idea: sample some variables Xp, and conditional on that,
compute expected value of rest X analytically:

Ep(X\e)[f(X)]:_[p(XpYXd |e)f(Xp1Xd)prdXd

= Ip(xp le) '[p(xd [x, | e)f(xp,xd)o’xdjdxp

X, Xy

= [ p0x, 1€)E e, o[ (3, X,
Z%ZE;’(Xd\x:.e) [f(Xpm’Xd)]’ X, ~ plx,le)
e This has lower variance, because of the identity:
var[r(Xp,Xd)J:var[E[r(Xp,Xd)lXp”+ E[var[r(Xp,Xd)lXpJJ

e Hence varlE[r(X,,X,)| X, [[<varlz(X,.X,)| , so 7(X,.X,)=E[f(X,.X,)|X,]
is a lower variance estimator.

Markov chain Monte Carlo
(MCMC) oo

e Importance sampling does not scale well to high dimensions.
e Rao-Blackwellisation not always possible.
e MCMC is an alternative.

e Construct a Markov chain whose stationary distribution is the
target density = A X|e).

e Run for Tsamples (burn-in time) until the chain
converges/mixes/reaches stationary distribution.

e Then collect M (correlated) samples x,, .

e Key issues:
e Designing proposals so that the chain mixes rapidly.
e Diagnosing convergence.
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