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Probabilistic 
Graphical Models

10-708

Towards Complex Graphical Towards Complex Graphical 
Models and Approximate Models and Approximate 

Inference   Inference   

Eric Xing Eric Xing 

Lecture 16, Nov 7, 2005
Reading: MJ-Chap. 21

The need for multimodal belief 
states in dynamic models
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An LDS defines only unimodal belief states

(a) A Kalman filter will predict the location of the bird using a single Gaussian 
centered on the obstacle. 
(b) A more realistic model allows for the bird’s evasive action, predicting that it will 
fly to one side or the other.
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A road map to more complex 
dynamic models
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Mixture model
e.g., mixture of multinomials

Mixture model
e.g., mixture of Gaussians

Factor analysis
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HMM 
(for discrete sequential data, e.g., text)

HMM
(for continuous sequential data, 
e.g., speech signal)

State space model
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Factorial HMM Switching SSM 

Factorial HMM
The belief state at each time is

and in the most general case has a 
state space O(dk) for k d-nary chains

The common observed child Yt
couples all the parents (explaining 
away).

But the parameterization cost for 
fHMM is O(kd2) for k chain-specific 
transition models                  ,                      
rather than O(d2k) for 
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Special case: switching HMM

... ... ... ...
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Person 1

Person k

The scene

Different chains have       
different state space and 
different semantics 
The exact calculation is 
intractable and we must use 
approximate inference methods

Hidden Markov decision trees

A combination of decision trees with factorial HMMs
This gives a "command structure" to the factorial representation
Appropriate for multi-resolution time series 
Again, the exact calculation is intractable and we must use 
approximate inference methods

(Jordan,Ghahramani,&Saul,197)
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Switching LDS
Possible world: 

multiple motion state:

Task: 
Trajectory prediction

Model:
Combination of HMM and LDS

Belief state has O(kt) Gaussian modes:
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Data association 
(correspondence problem)

Optimal belief state has O(kt) 
modes.
Common to use nearest 
neighbor approximation.
For each time slice, can enforce 
that at most one source causes 
each observation
Correspondence problem also 
arises in shape matching and 
stereo vision.
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Triangulating fHMM
Is the following triangulation correct?

Here is a triangulation

We have created cliques of size k+1, and there are O(kT) of them. 
The junction tree algorithm is not efficient for factorial HMMs.
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⇒⇒??

Mixed Membership Model (M3)
Mixture versus admixture

⇒⇒

A Bayesian mixture model A Bayesian admixture model: 
Mixed membership model 
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Population admixture: M3 in 
genetics

The genetic materials of each modern individual are inherited 
from multiple ancestral populations, each DNA locus may 
have a different generic origin …

Ancestral labels may have (e.g., Markovian) dependencies  

Latent Dirichlet Allocation: M3 in 
text mining 

A document is a bag of words each generated from a 
randomly selected topic
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Inference in Mixed Membership 
Models

Mixture versus admixture

Inference is very hard in M3, all hidden variables are coupled and not factorizable!
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Approaches to inference
Exact inference algorithms

The elimination algorithm
The junction tree algorithms

Approximate inference techniques

Monte Carlo algorithms:
Stochastic simulation / sampling methods
Markov chain Monte Carlo methods

Variational algorithms: 
Belief propagation
Assumed density filtering 
Variational inference 
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Example: Particle filtering 
(sequential Monte Carlo)

Represent belief state as weighted set of samples (non-parametric).
Can handle nonlinear transition/emission and multi-modality.
Easy to implement.
Only works well in small dimensions.

Example: Structured Variational
approximation

Finds an optimal q*() in a tractable family to approximate the 
original joint p()

There can be many different choices of T and F().
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fHMM Mean field approx. Structured variational approx.
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Example: Assumed density 
filtering (ADF)

ADF forces the belief state to live in some restricted family F, 
e.g., product of histograms, Gaussian.
Given a prior             , do one step of exact Bayesian updating 
to get            . Then do a projection step to find the closest 
approximation in the family:

The Boyen-Koller (BK) algorithm is ADF applied to a DBN
e.g., let F be a product of (singleton) marginals:

This is also a variational method, and the updating step can 
still be intractable 
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Monte Carlo methods
Draw random samples from the desired distribution 

Yield a stochastic representation of a complex distribution
marginals and other expections can be approximated using sample-
based averages

Asymptotically exact and easy to apply to arbitrary models

Challenges:
how to draw samples from a given dist. (not all distributions can be 
trivially sampled)?

how to make better use of the samples (not all sample are useful, or 
eqally useful, see an example later)?

how to know we've sampled enough?
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Example: naive sampling
Construct samples according to probabilities given in a BN.

Alarm example: (Choose the right sampling sequence)
1) Sampling:P(B)=<0.001, 0.999> suppose it is false, 
B0. Same for E0. P(A|B0, E0)=<0.001, 0.999> suppose 
it is false... 
2) Frequency counting: In the samples right, 
P(J|A0)=P(J,A0)/P(A0)=<1/9, 8/9>.
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Example: naive sampling
Construct samples according to probabilities given in a BN.

Alarm example: (Choose the right sampling 
sequence)

3) what if we want to compute P(J|A1) ? 
we have only one sample ...
P(J|A1)=P(J,A1)/P(A1)=<0, 1>.

4) what if we want to compute P(J|B1) ? 
No such sample available!
P(J|A1)=P(J,B1)/P(B1) can not be defined.

For a model with hundreds or more variables, 
rare events will be very hard to garner evough 
samples even after a long time or sampling ...
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Monte Carlo methods (cond.)

Direct Sampling 
We have seen it.
Very difficult to populate a high-dimensional state space 

Rejection Sampling
Create samples like direct sampling, only count samples which is
consistent with given evidences.

Likelihood weighting, ...
Sample variables and calculate evidence weight. Only create the 
samples which support the evidences.

Markov chain Monte Carlo (MCMC)
Metropolis-Hasting
Gibbs

Rejection sampling
Suppose we wish to sample from dist. Π(X)=Π'(X)/Z.

Π(X) is difficult to sample, but Π'(X) is easy to evaluate
Sample from a simpler dist Q(X)
Rejection sampling

Correctness:

Pitfall …
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Rejection sampling
Pitfall:

Using Q=N(µ,σqI) to sample P=N(µ,σpI) 
If σq exceeds σp by 1%, and dimensional=1000,
The optimal acceptance rate k=(σq/σp)d≈1/20,000
Big waste of samples!

Adaptive rejection sampling
Using envelope functions to define Q

Unnormalized importance 
sampling

Suppose sampling from P(·) is hard.
Suppose we can sample from a "simpler" proposal distribution 
Q(·) instead.
If Q dominates P (i.e., Q(x) > 0 whenever P(x) > 0), we can 
sample from Q and reweight:
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Normalized importance sampling
Suppose we can only evaluate P'(x) = αP(x) (e.g. for an 
MRF).
We can get around the nasty normalization constant α as 
follows:
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Weighted resampling
Problem of importance sampling: depends on how well Q
matches P

If P(x)f(x) is strongly varying and has a significant proportion of its mass 
concentrated in a small region, rm will be dominated by a few samples

Note that if the high-prob mass region of Q falls into the low-prob mass 
region of P, the variance of                                  can be small even if the 
samples come from low-prob region of P and potentially erroneous .

Solution
Use heavy tail Q.
Weighted resampling
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Weighted resampling
Sampling importance resampling (SIR):

1. Draw N samples from Q: X1 … XN

2. Constructing weights: w1 … wN ,
3. Sub-sample x from {X1 … XN} w.p. (w1 … wN)

Particular Filtering

A special weighted resampler
Yield samples from posterior p(Xt|Y1:t)
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Sketch of Particle Filters
The starting point

Thus p(Xt|Y1:t) is represented by

A sequential weighted resampler
Time update

Measurement update
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Rao-Blackwellised sampling
Sampling in high dimensional spaces causes high variance in the 
estimate.
RB idea: sample some variables Xp, and conditional on that, 
compute expected value of rest Xd analytically:

This has lower variance, because of the identity:

Hence                                                   , so    
is a lower variance estimator.
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Markov chain Monte Carlo 
(MCMC)

Importance sampling does not scale well to high dimensions.
Rao-Blackwellisation not always possible.
MCMC is an alternative.
Construct a Markov chain whose stationary distribution is the 
target density  = P(X|e).
Run for T samples (burn-in time) until the chain       
converges/mixes/reaches stationary distribution.
Then collect M (correlated) samples xm .
Key issues:

Designing proposals so that the chain mixes rapidly.
Diagnosing convergence.


