

Use Chapter 3 of K&F as a reference for CSI
Reading for parameter learning: Chapter 12 of K&F

Context-specific independence
Parameter learning: MLE

Graphical Models – 10708

Carlos Guestrin

Carnegie Mellon University

October 5th, 2005

Announcements

- **Homework 2:**
 - Programming part in groups of 2-3
- **Recitation on Thursday 5-6, Wean 4615A**
 - Also covers details of programming part of HW2 & Matlab
- **Class project**
 - Teams of 2-3 students
 - Ideas on the class webpage, but you can do your own
- **Timeline:**
 - 10/19: 1 page project proposal
 - 11/14: 5 page progress report (20% of project grade)
 - 12/2: poster session (20% of project grade)
 - 12/5: 8 page paper (60% of project grade)
 - All write-ups in NIPS format (see class webpage)

Clique trees versus VE

■ Clique tree advantages

- Multi-query settings
- Incremental updates
- Pre-computation makes complexity explicit

■ Clique tree disadvantages

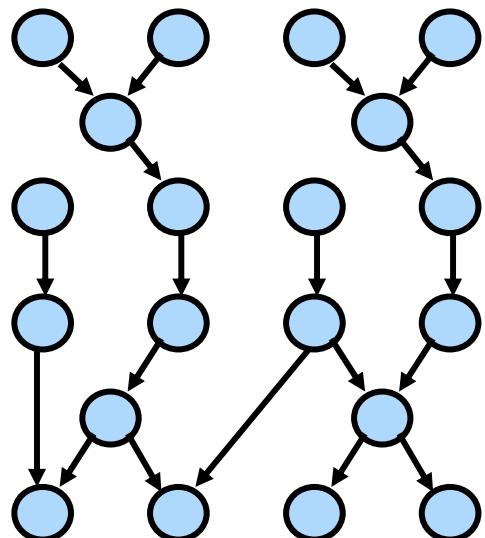
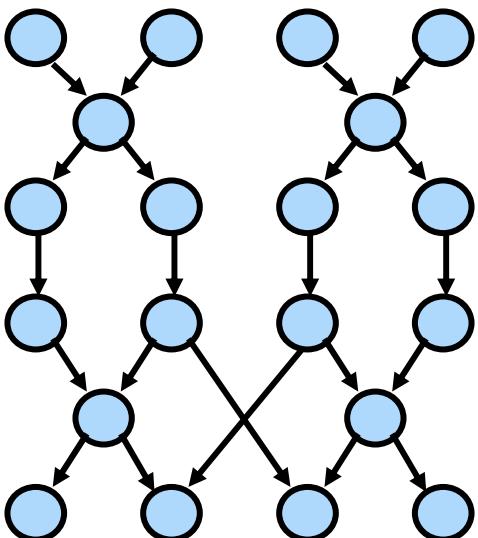
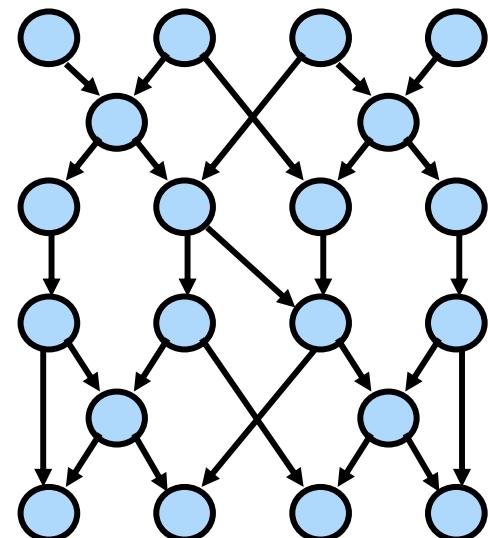
- Space requirements – no factors are “deleted”
- Slower for single query
- Local structure in factors may be lost when they are multiplied together into initial clique potential

Clique tree summary

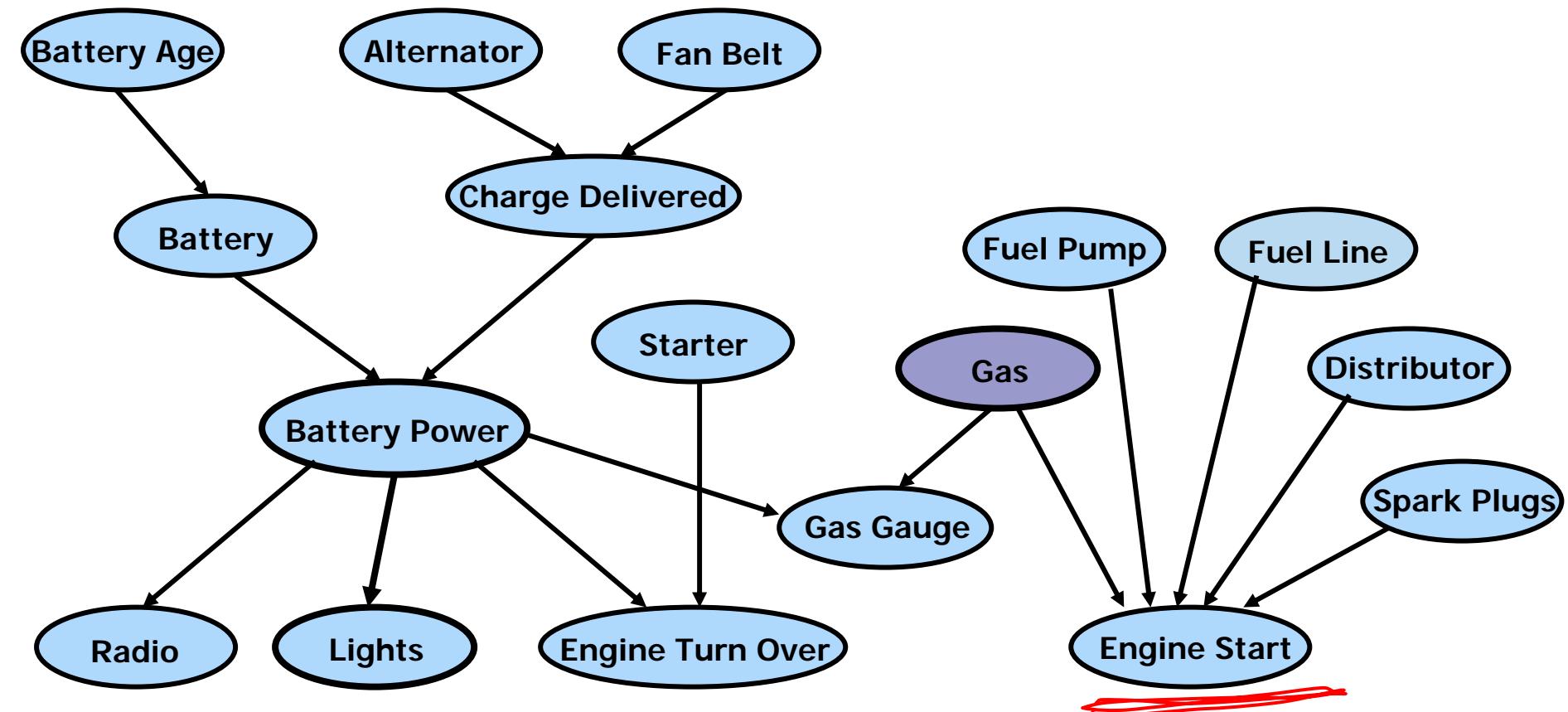
- Solve marginal queries for all variables in only twice the cost of query for one variable
- Cliques correspond to maximal cliques in induced graph
- Two message passing approaches
 - VE (the one that multiplies messages)
 - BP (the one that divides by old message)
- Clique tree invariant
 - Clique tree potential is always the same
 - We are only reparameterizing clique potentials
- Constructing clique tree for a BN
 - from elimination order
 - from triangulated (chordal) graph
- Running time (only) exponential in size of largest clique
 - Solve **exactly** problems with thousands (or millions, or more) of variables, and cliques with tens of nodes (or less)

Global Structure: Treewidth w

$O(n \exp(w))$

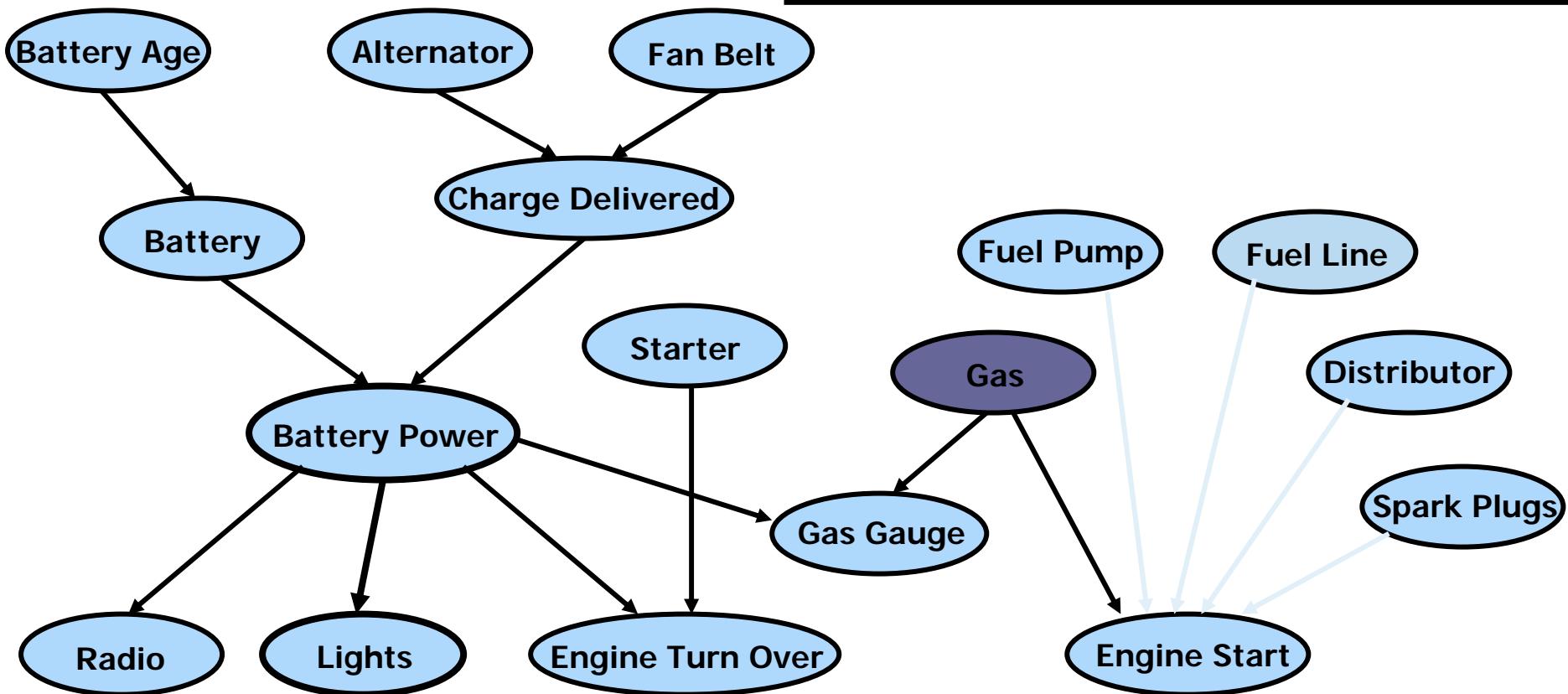


Local Structure 1: Context specific independence



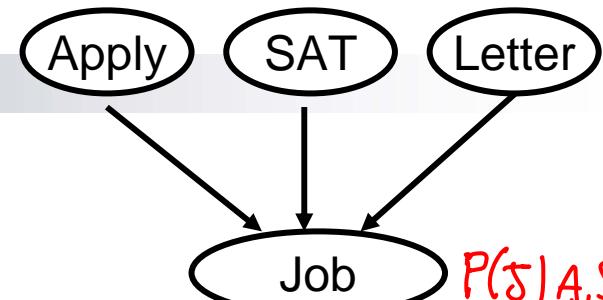
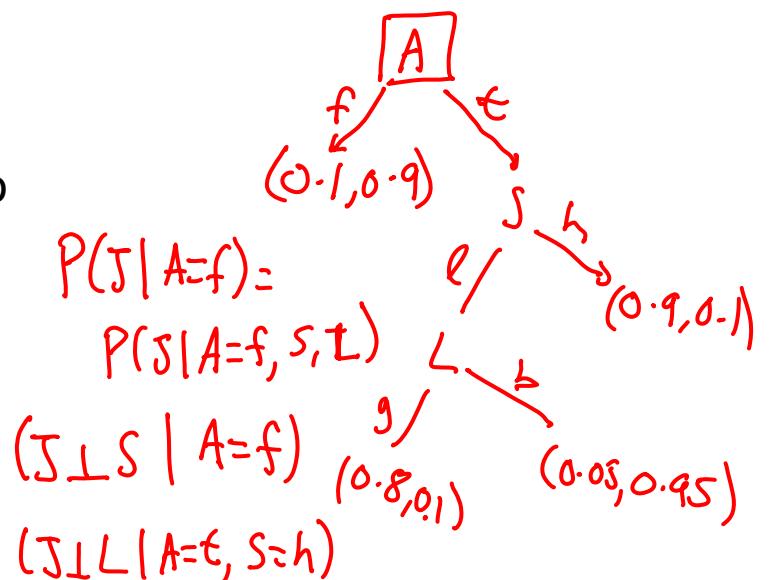
Local Structure 1: Context specific independence

Context Specific Independence (CSI)
After observing a variable, some vars
become independent



CSI example: Tree CPD

- Represent $P(X_i | \text{Pa}_{X_i})$ using a decision tree
 - Path to leaf is an assignment to (a subset of) Pa_{X_i}
 - Leaves are distributions over X_i given assignment of Pa_{X_i} on path to leaf
- Interpretation of leaf:
 - For specific assignment of Pa_{X_i} on path to this leaf – X_i is independent of other parents
- Representation can be exponentially smaller than equivalent table

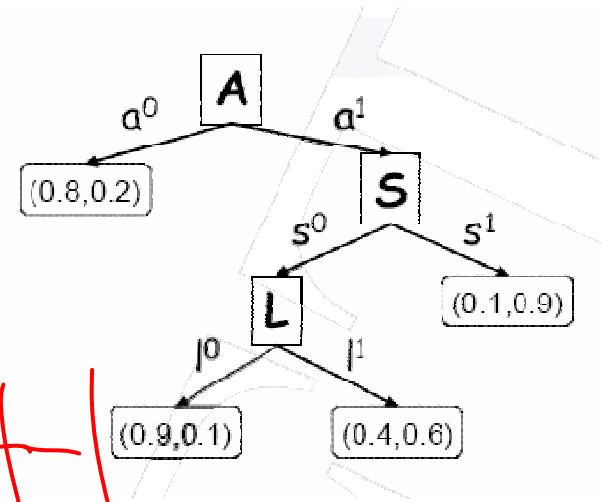


Tabular VE with Tree CPDs

- If we turn a **tree CPD** into **table**
 - “Sparsity” lost!
- Need inference approach that **deals with tree CPD directly!**

$P(J A, S, L)$				
	$\bar{a}, \bar{s}, \bar{l}$	\bar{a}, \bar{s}, l	\bar{a}, s, \bar{l}	\bar{a}, s, l
$J=t$	0.2	0.2	0.2	0.2
$J=f$	0.8	0.8	0.8	0.9

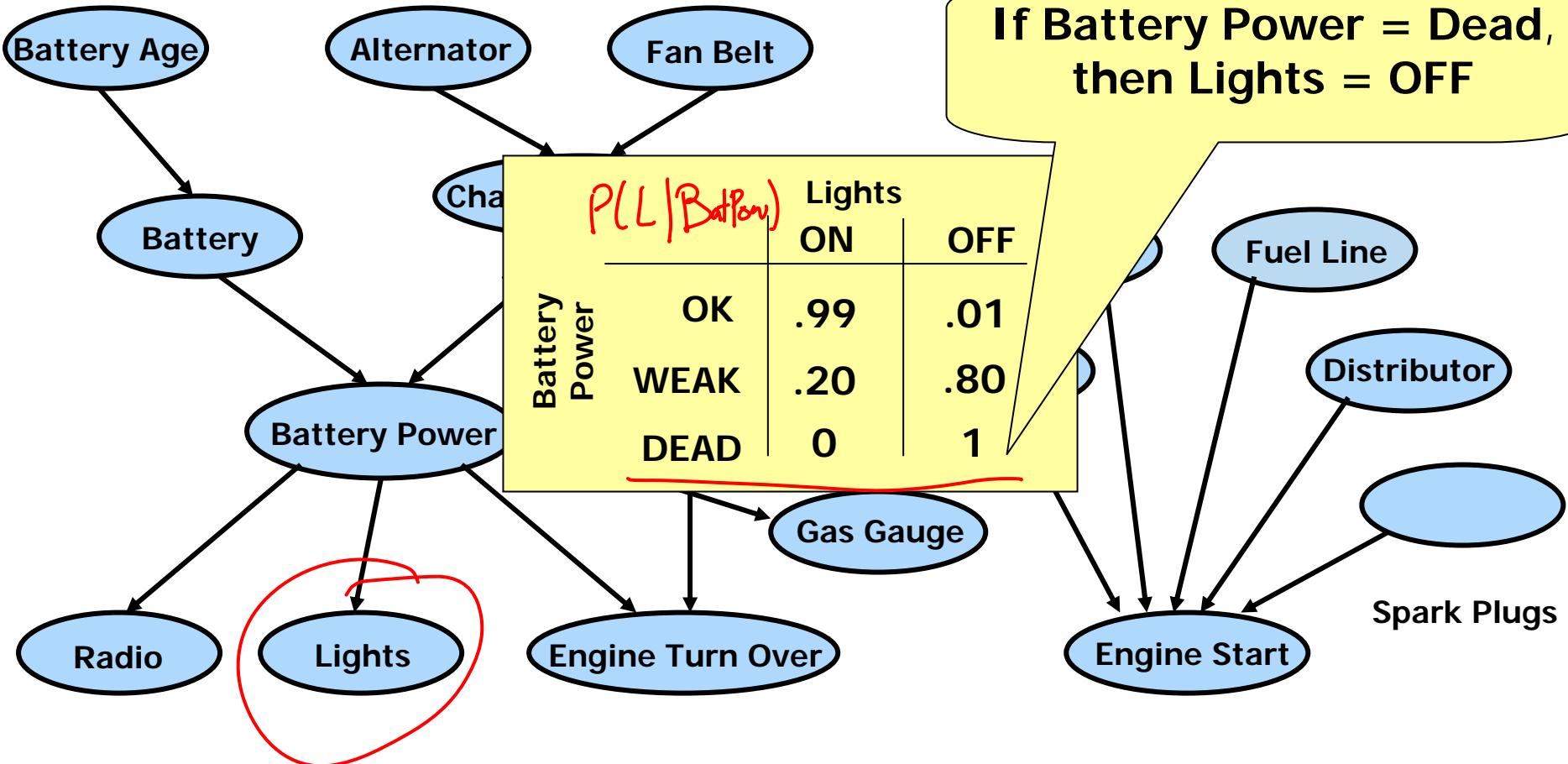
repeated



Local Structure 2: Determinism

Determinism

If Battery Power = Dead,
then Lights = OFF



Determinism and inference

- Determinism gives a little sparsity in table, but much bigger impact on inference
- Multiplying deterministic factor with other factor introduces many new zeros
 - Operations related to theorem proving, e.g., unit resolution

		Lights	
		ON	OFF
Battery Power	OK	.99	.01
	WEAK	.20	.80
	DEAD	0	1

$$g(A, B, C, D) = f(A, B) \cdot f(B, C, D)$$

$$f(A, B=t) = 0$$

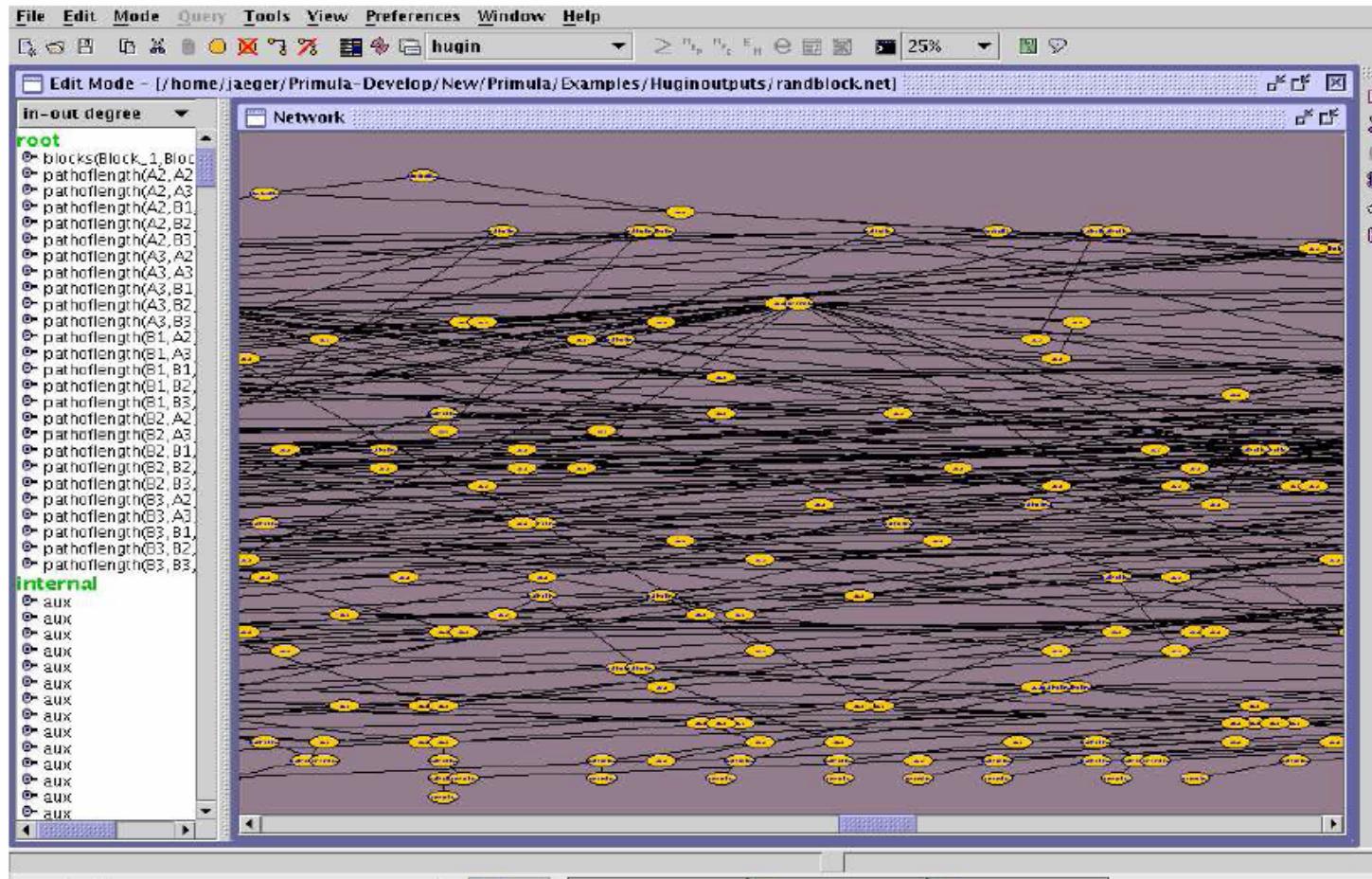
$$\Rightarrow g(A, B=t, C, D) = 0$$

~~A, B, D~~

Today's Models ...

- **Often characterized by:**
 - Richness in local structure (determinism, CSI)
 - Massiveness in size (10,000's variables)
 - High connectivity (treewidth)
- **Enabled by:**
 - High level modeling tools: relational, first order
 - Advances in machine learning
 - New application areas (synthesis):
 - Bioinformatics (e.g. linkage analysis)
 - Sensor networks
- **Exploiting local structure a must!**

Exact inference in large models is possible...

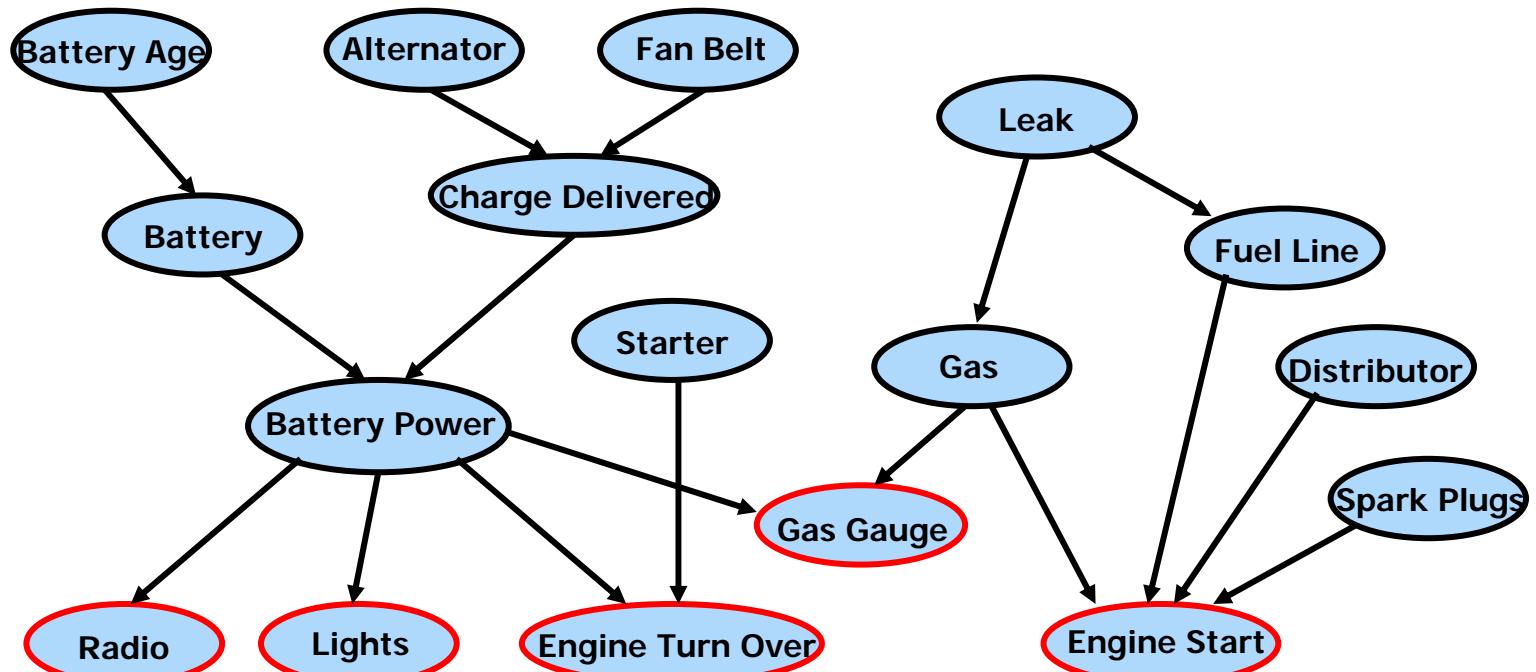


- BN from a relational model

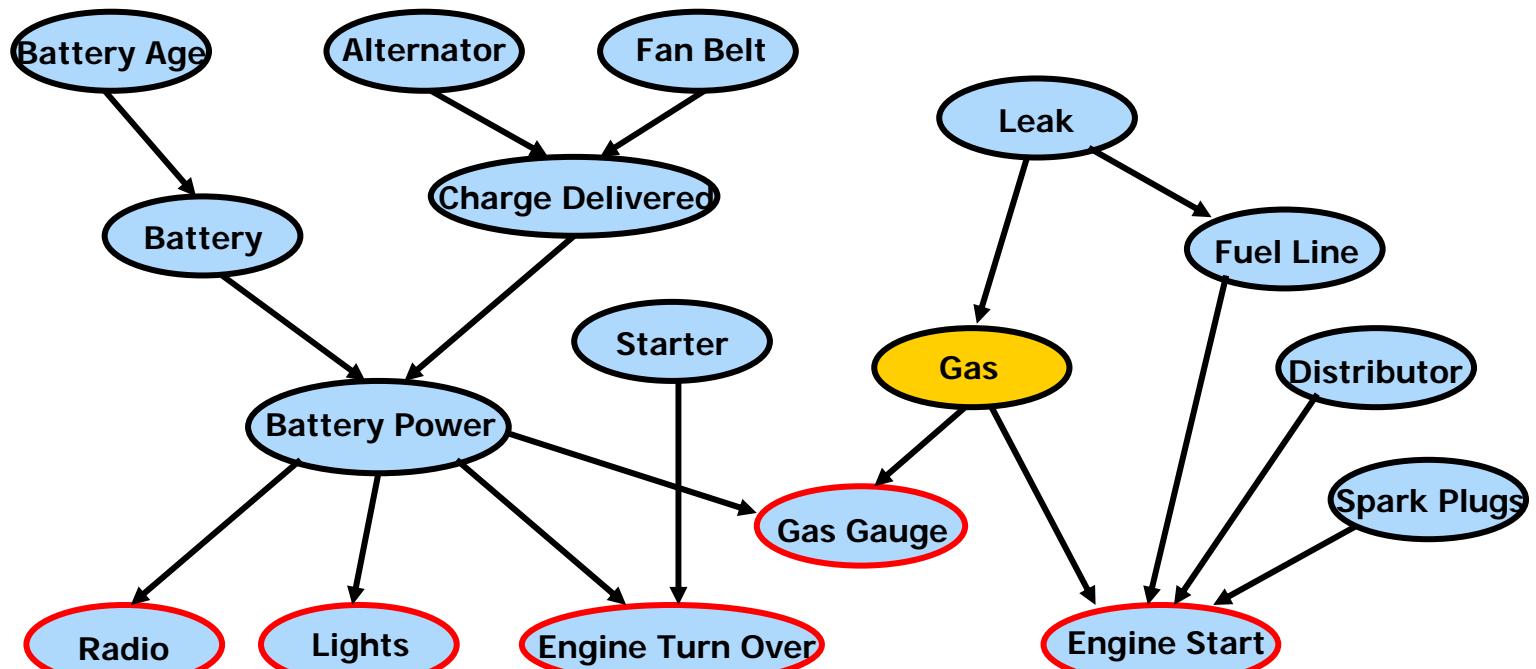
Recursive Conditioning

- Treewidth complexity (worst case)
- Better than treewidth complexity with local structure
- Provides a framework for time-space tradeoffs
- Only quick intuition today, details:
 - Koller&Friedman: 3.1-3.4, 6.4-6.6
 - “Recursive Conditioning”, Adnan Darwiche. In *Artificial Intelligence Journal*, 125:1, pages 5-41

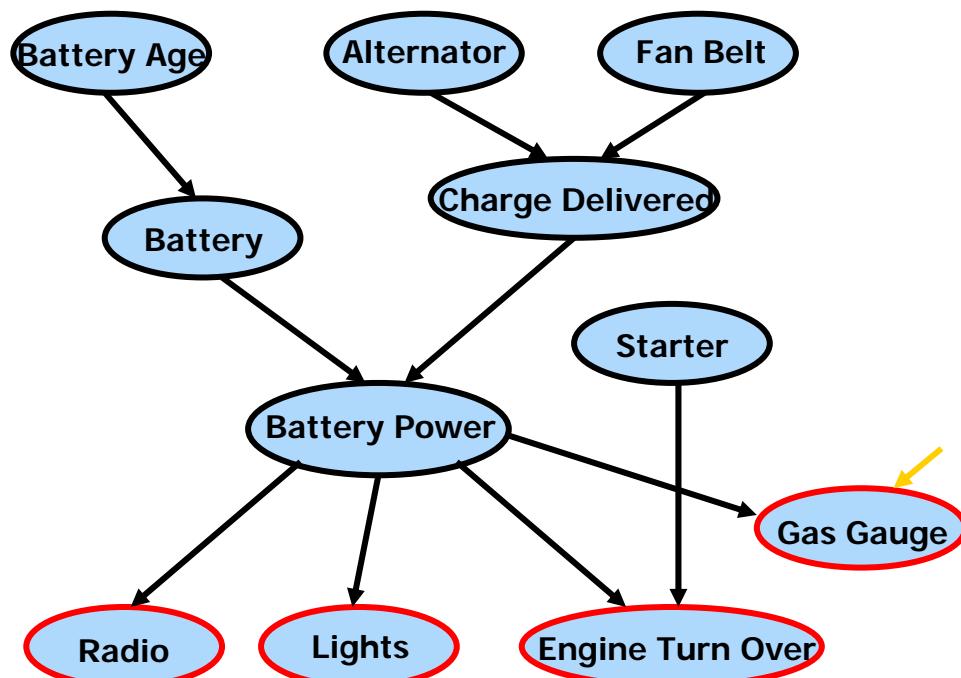
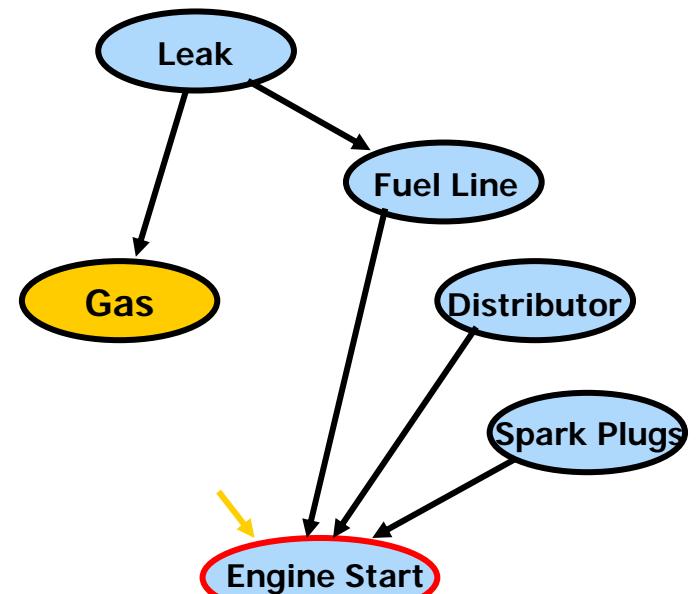
The Computational Power of Assumptions



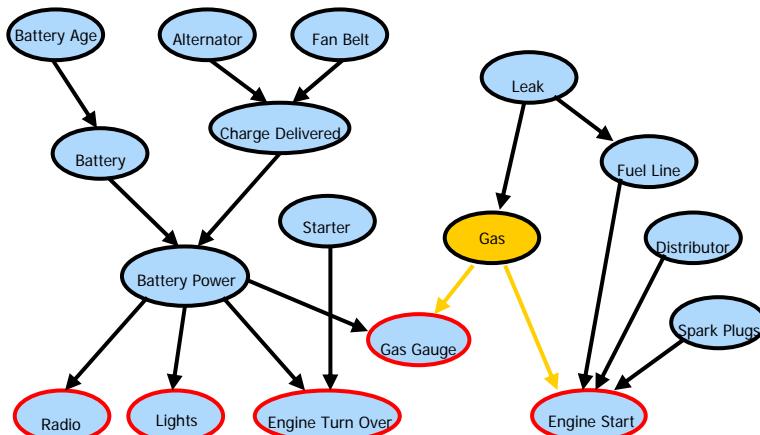
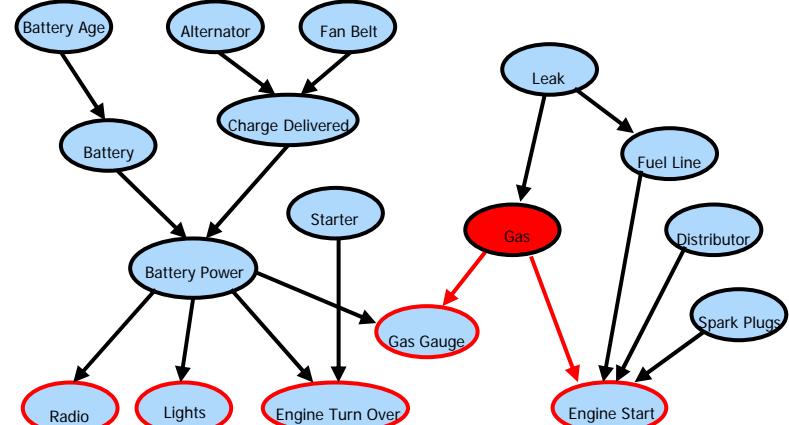
The Computational Power of Assumptions



Decomposition



Case Analysis

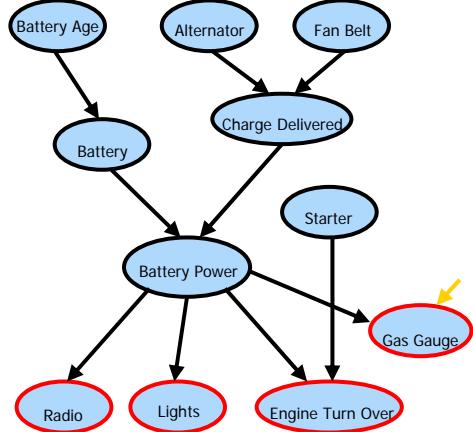
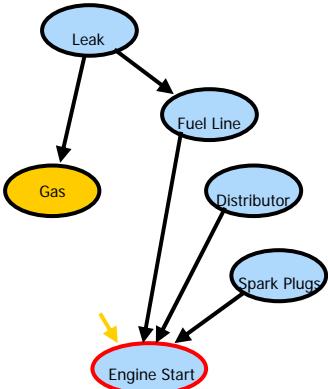
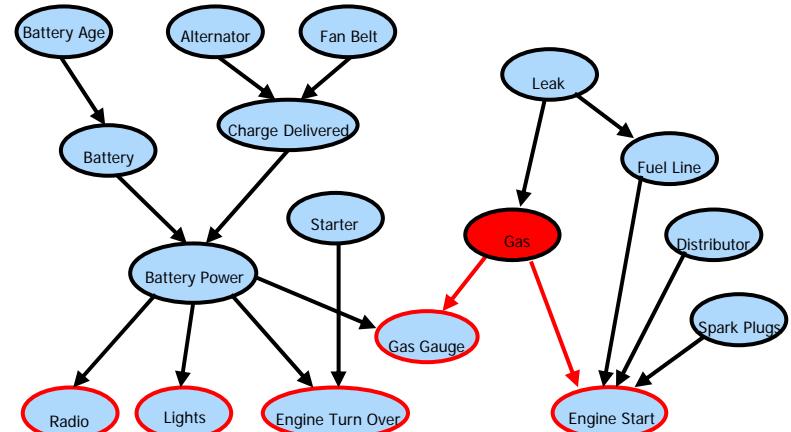


p

+

p

Case Analysis



p_l

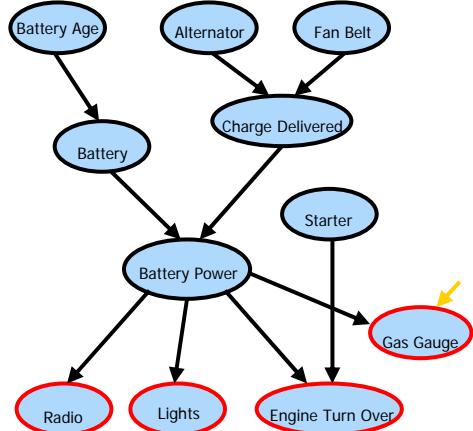
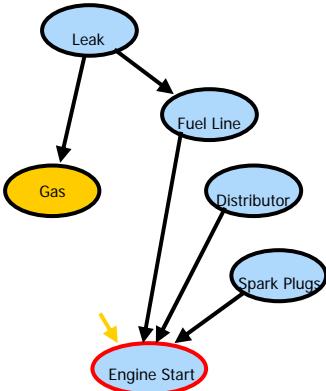
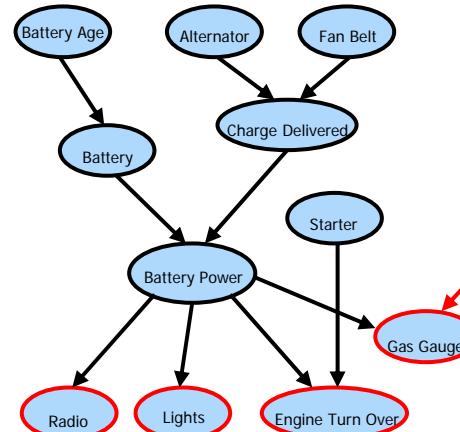
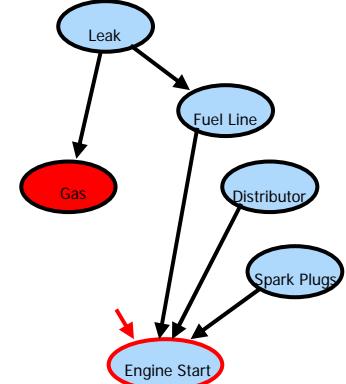
*

p_r

+

p

Case Analysis



p_l

*

p_r

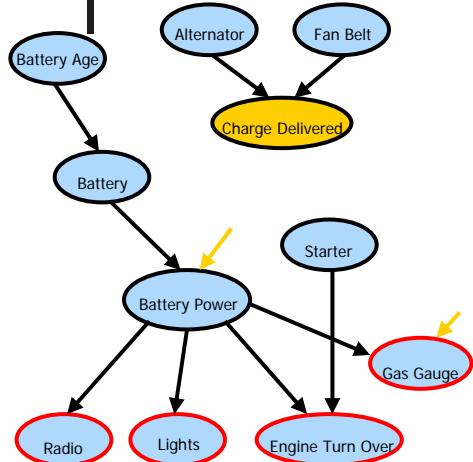
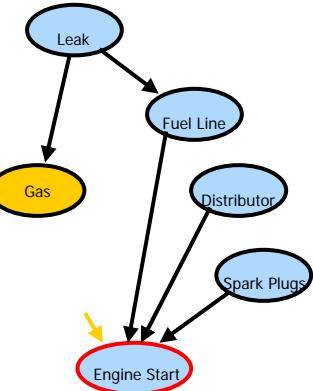
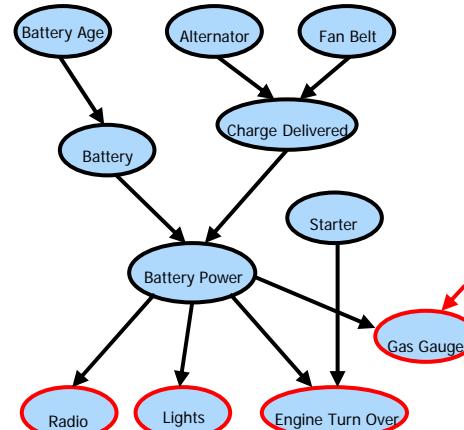
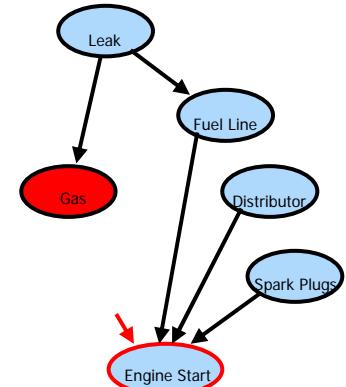
+

p_l

*

p_r

Case Analysis



p_l

*

p_r

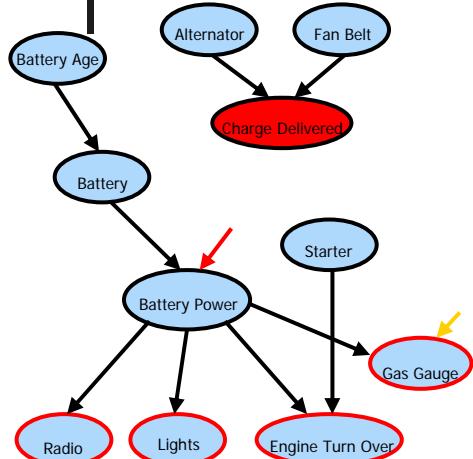
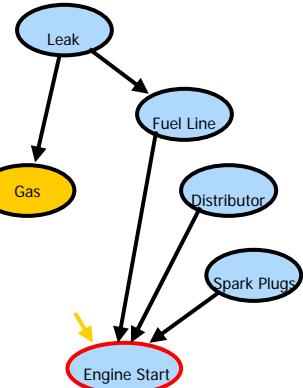
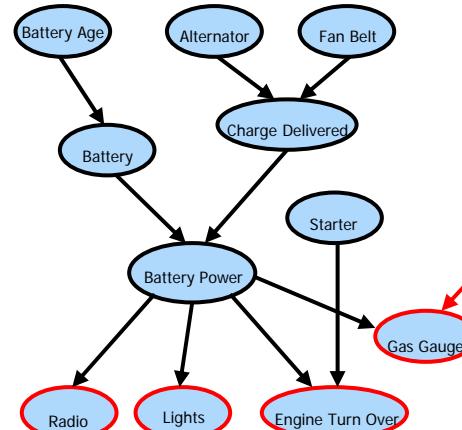
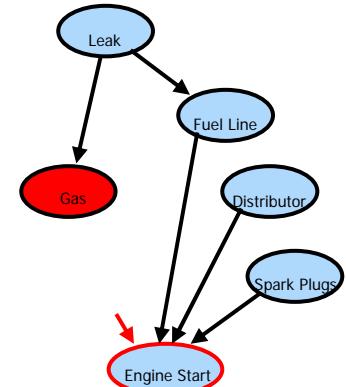
+

p_l

*

p_r

Case Analysis



p_l

*

p_r

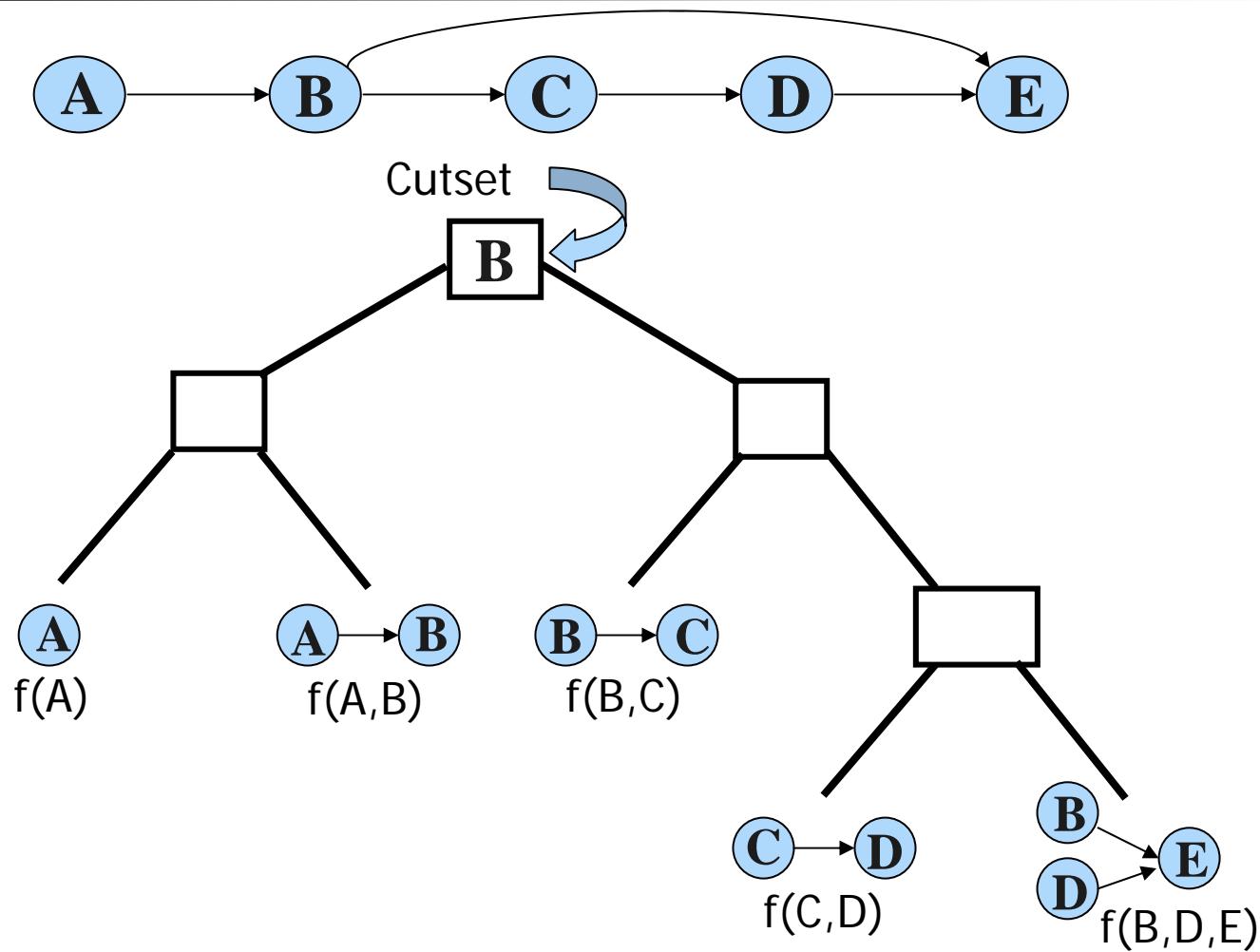
+

p_l

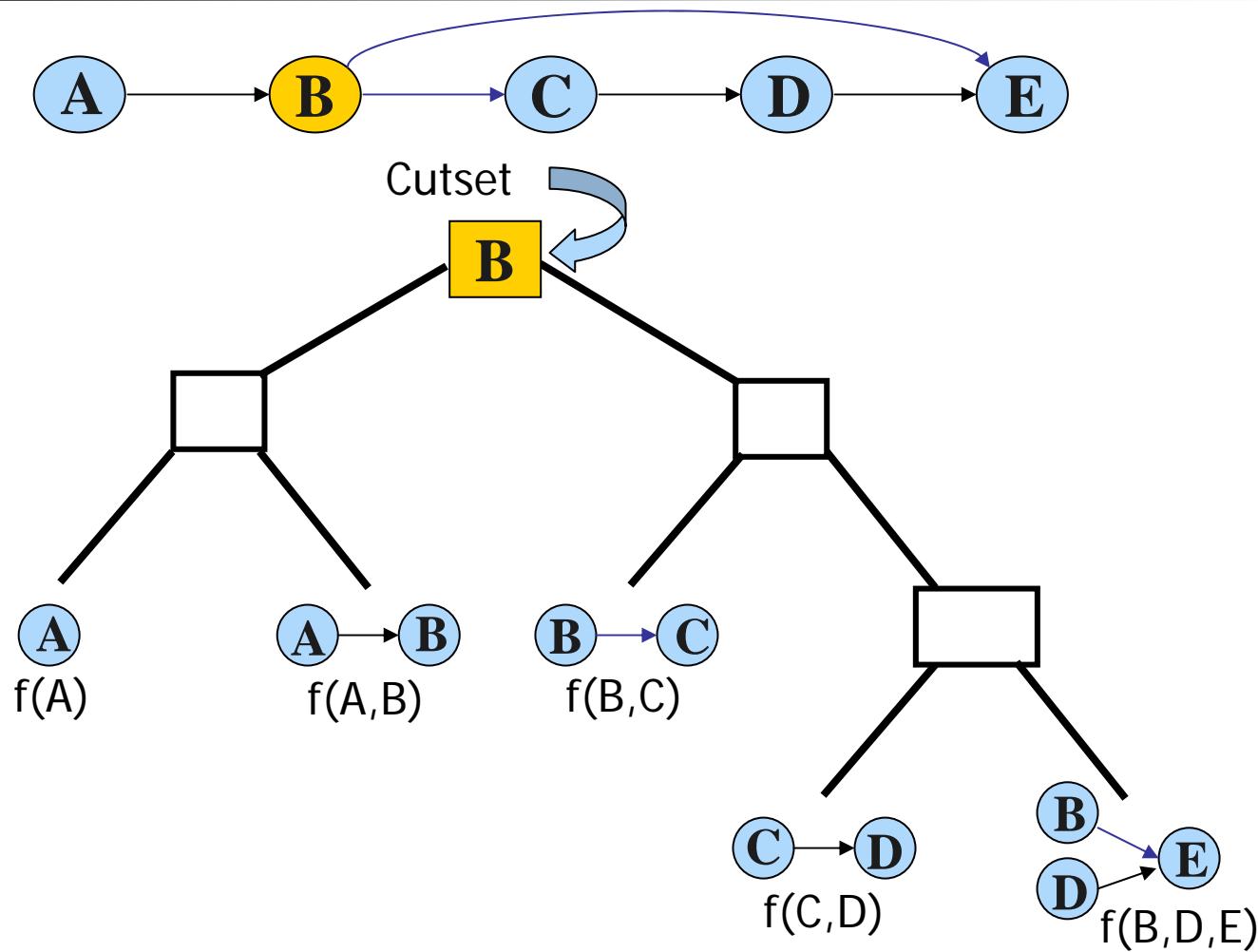
*

p_r

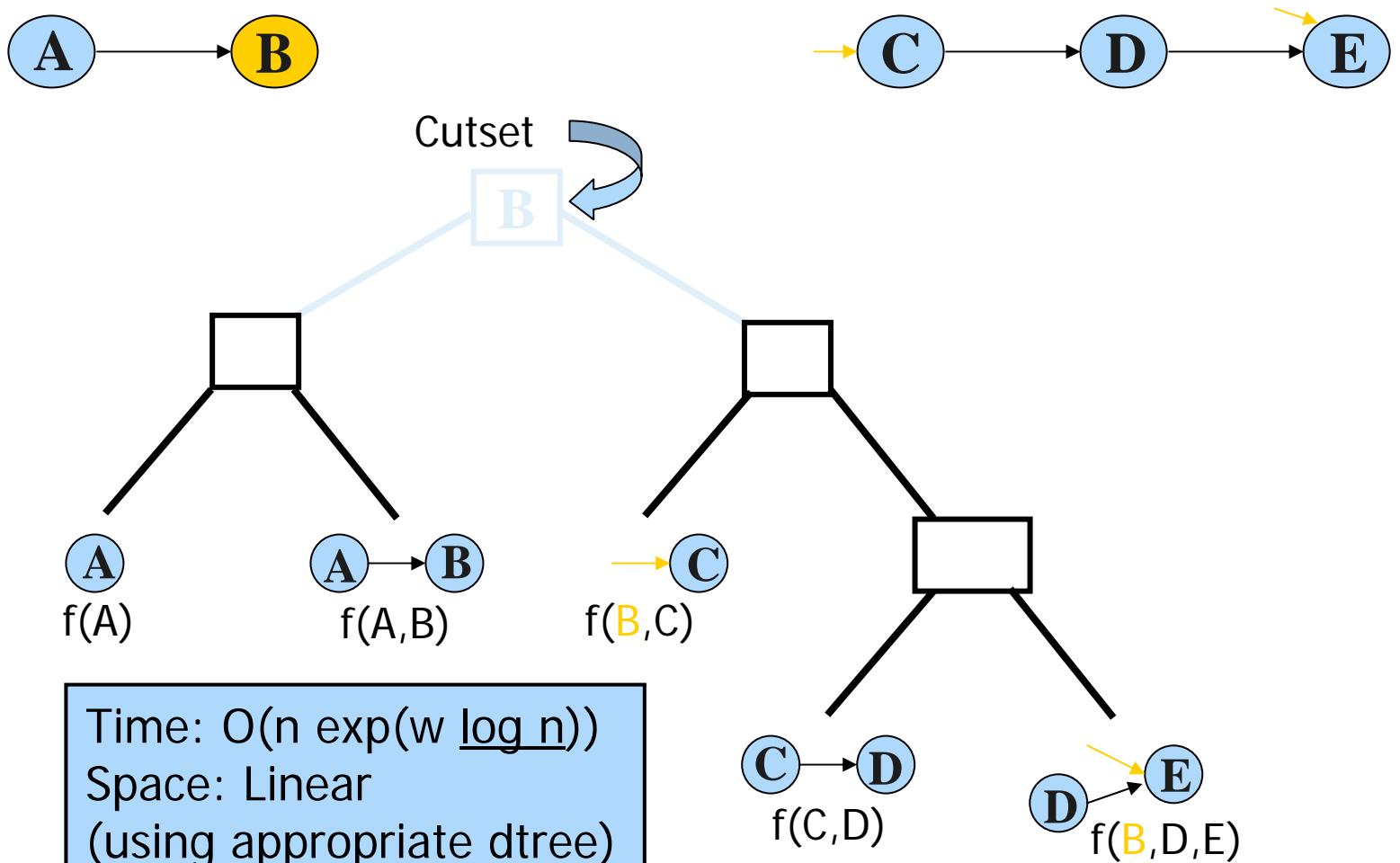
Decomposition Tree



Decomposition Tree



Decomposition Tree



RC1

```
RC1(T,e)
  // compute probability of evidence e on dtree T

  If T is a leaf node
    Return Lookup(T,e)
  Else
    p := 0
    for each instantiation c of cutset(T)-E do
      p := p + RC1(Tl,ec) RC1(Tr,ec)
    return p
```

Lookup(T, e)

$\Theta_{X|U}$: CPT associated with leaf T

If X is instantiated in e , then

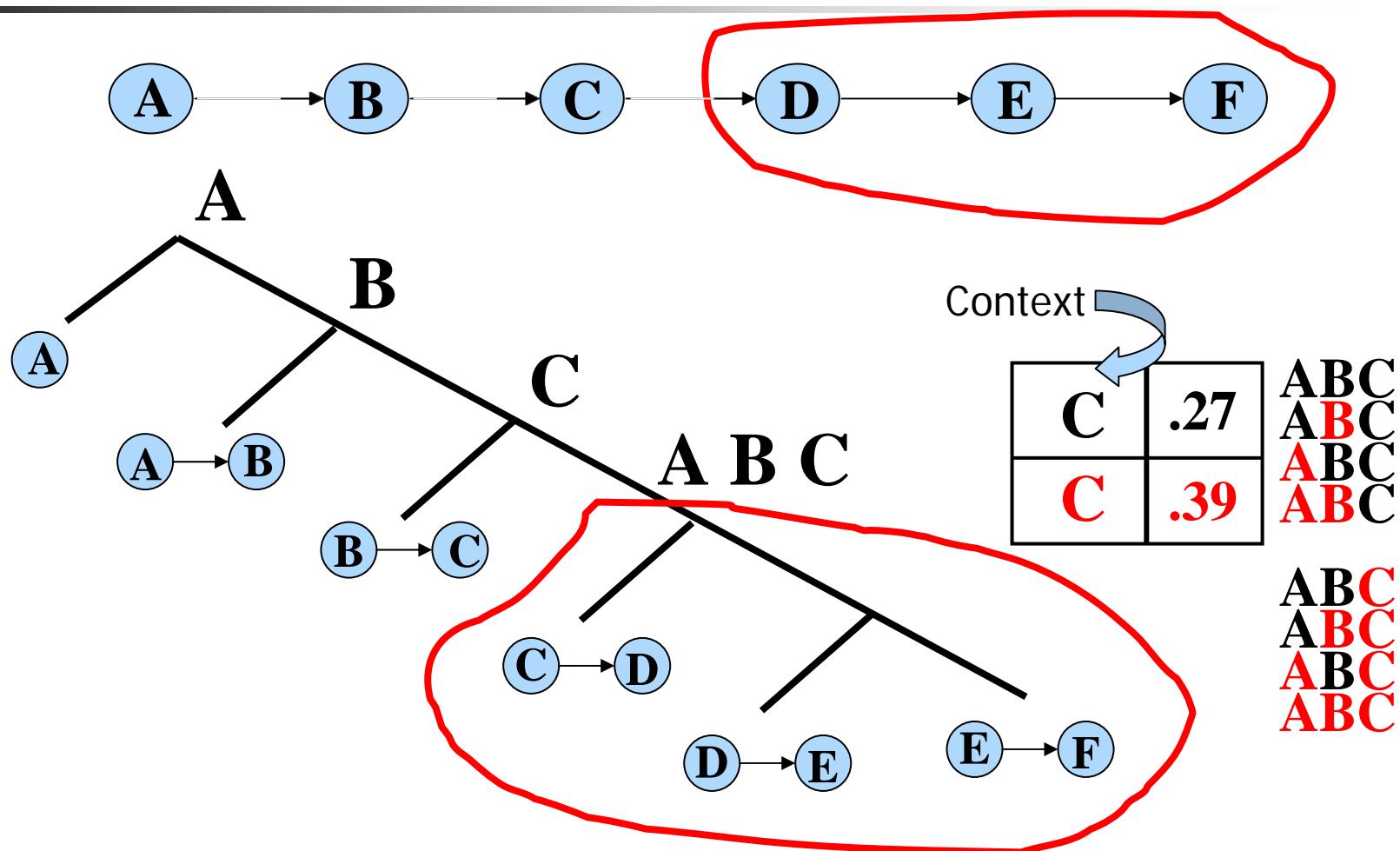
x : value of X in e

u : value of U in e

Return $\theta_{x|u}$

Else return $1 = \sum_x \theta_{x|u}$

Caching



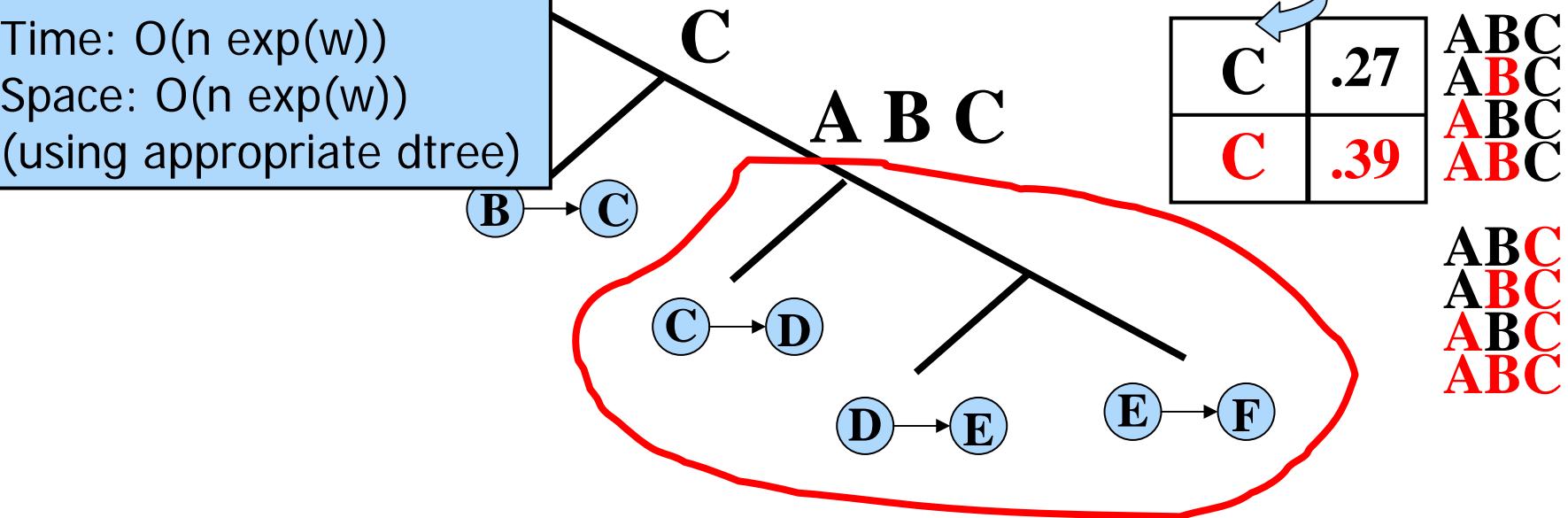
Caching

Recursive Conditioning

An any-space algorithm with treewidth complexity

Darwiche AIJ-01

Time: $O(n \exp(w))$
Space: $O(n \exp(w))$
(using appropriate dtree)



RC2

$RC2(T, e)$

If T is a leaf node, return $Lookup(T, e)$

$y :=$ instantiation of $context(T)$

If $cache_T[y] \neq \text{nil}$, return $cache_T[y]$

$p := 0$

For each instantiation c of $cutset(T) - E$ do

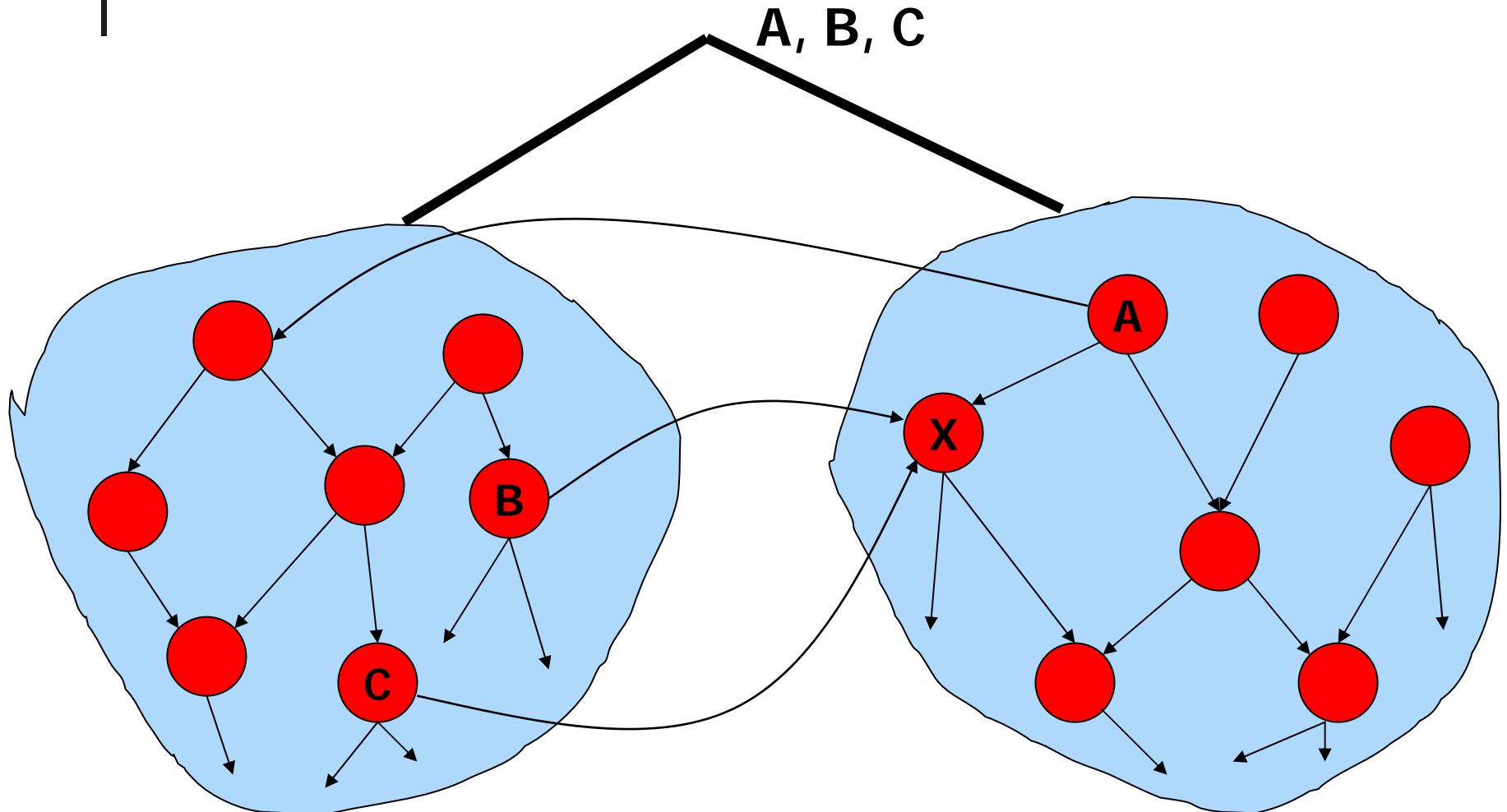
$p := p + RC2(T^l, ec) \cdot RC2(T^r, ec)$

$cache_T[y] := p$

Return p

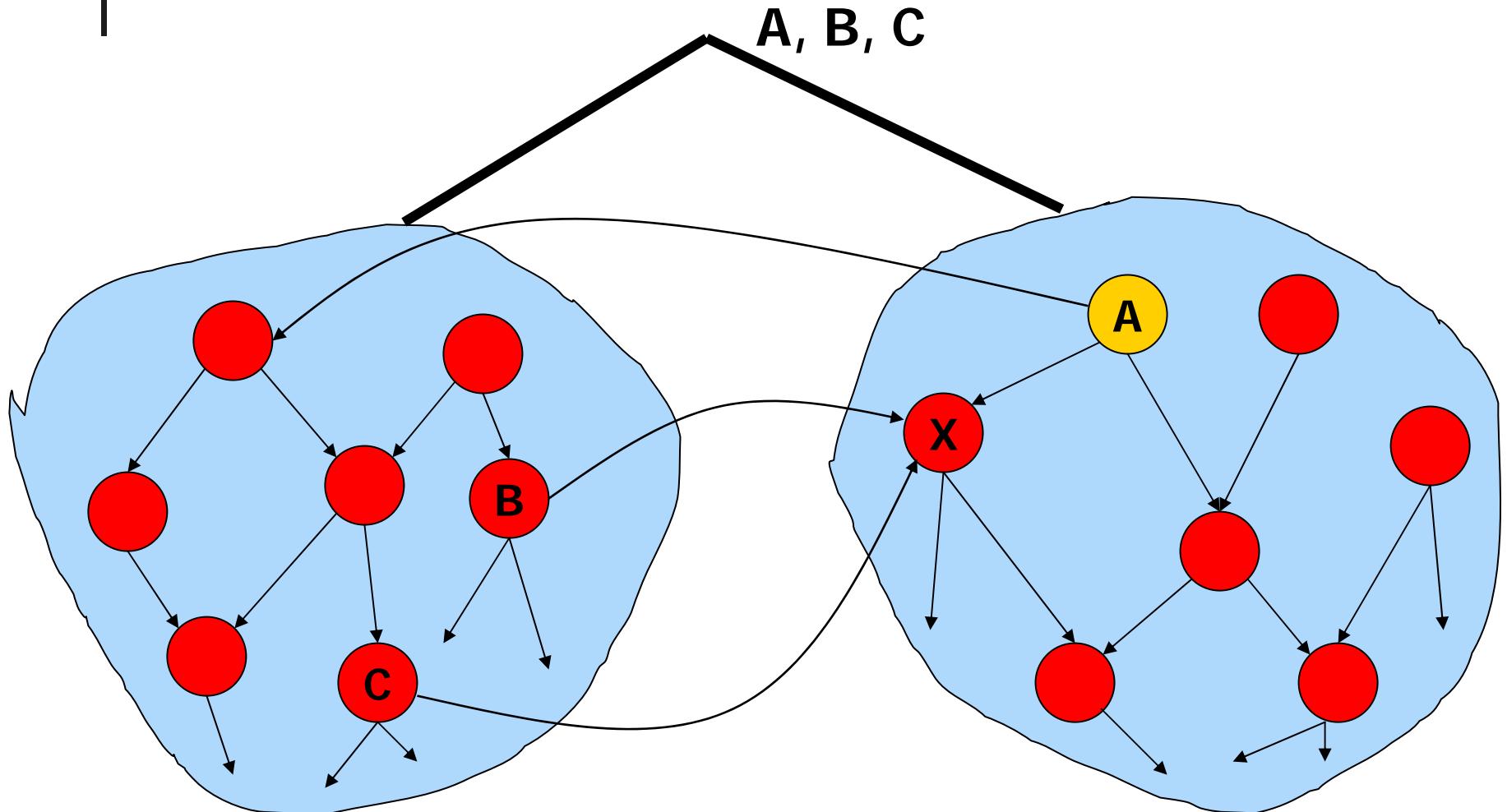
Decomposition with Local Structure

X Independent of B, C given A



Decomposition with Local Structure

X Independent of B, C given A

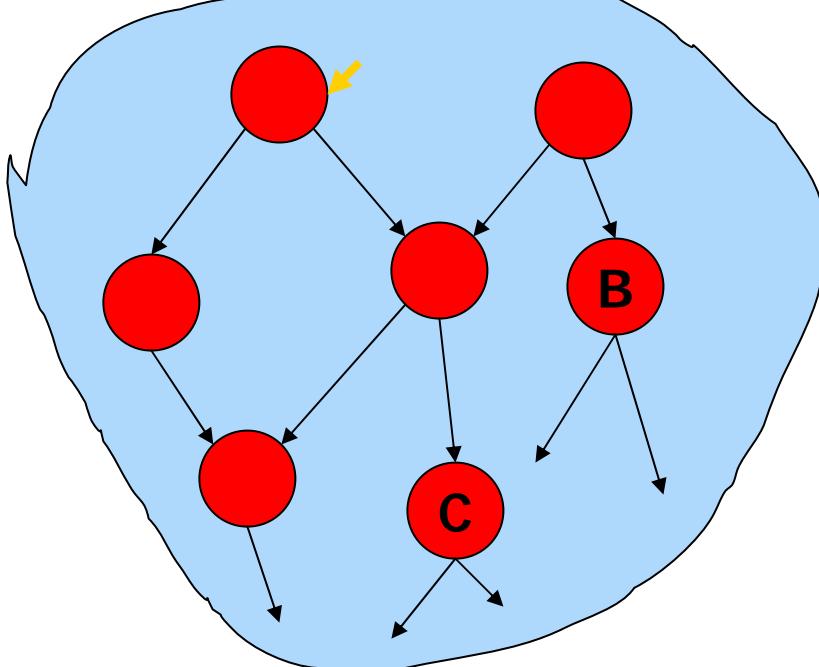
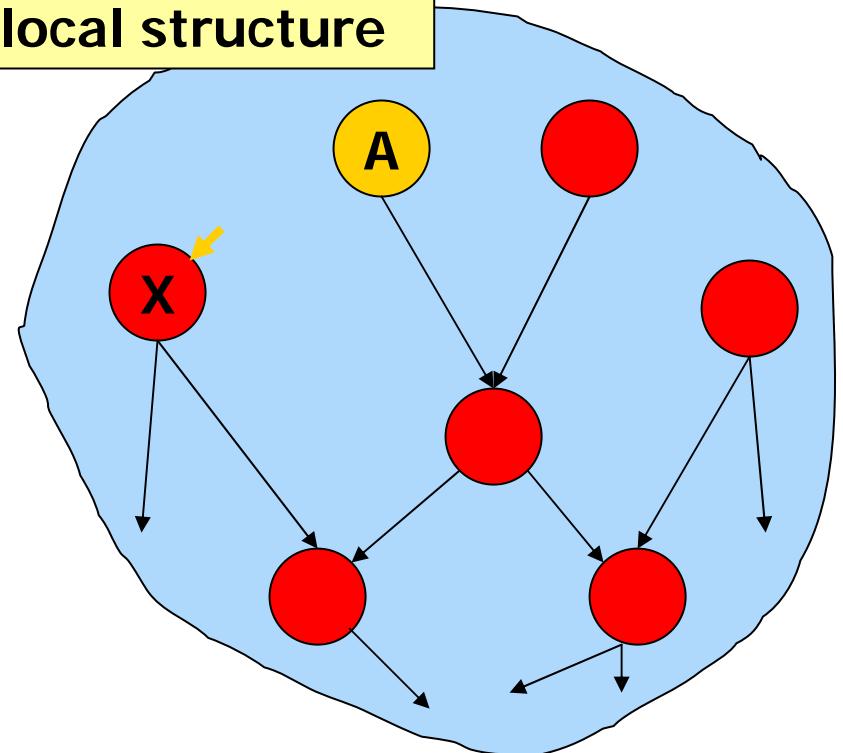


Decomposition with Local Structure

X Independent of B, C given A

A, B, C

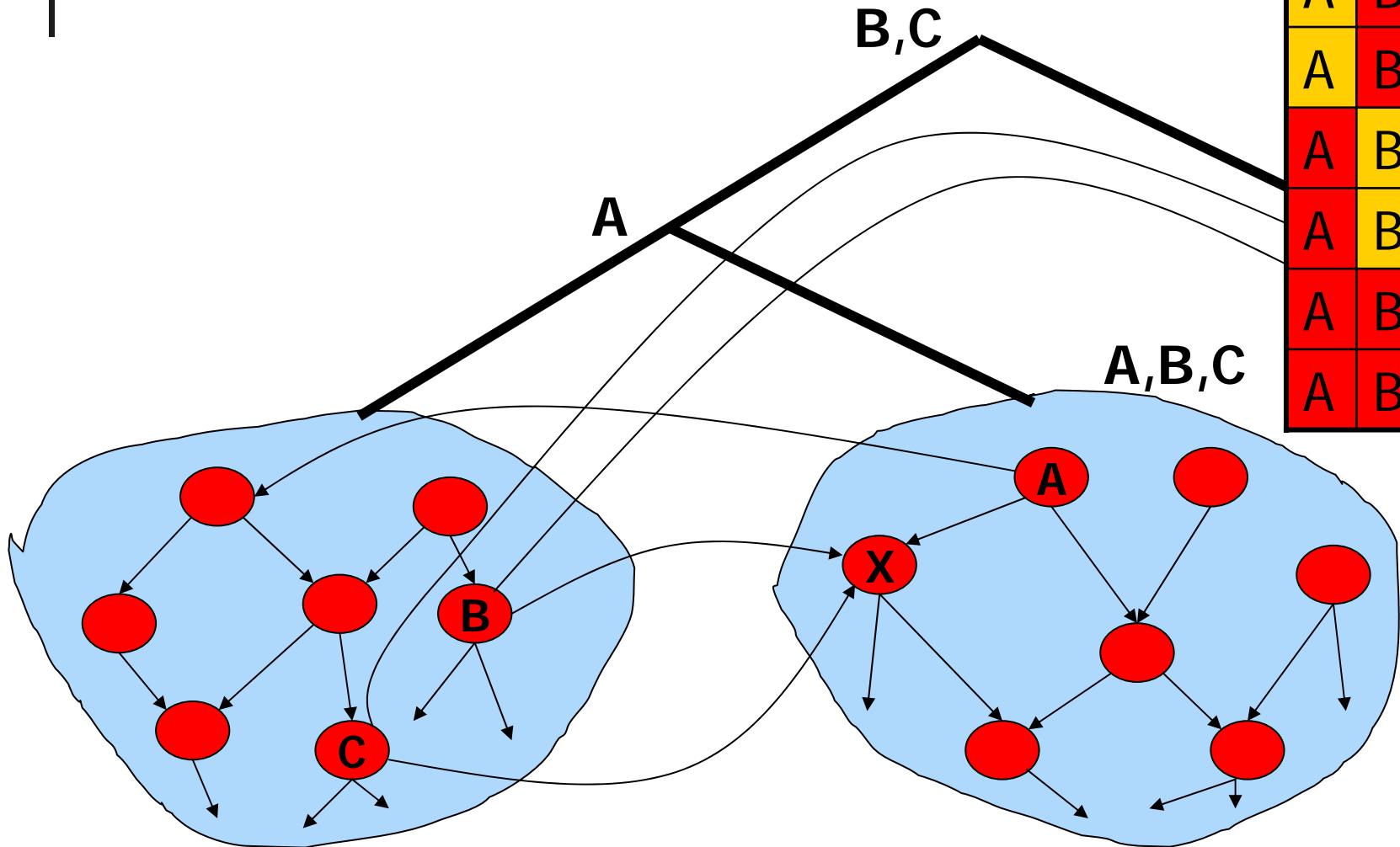
No need to consider an exponential number of cases (in the cutset size) given local structure



Caching with Local Structure

Structural cache

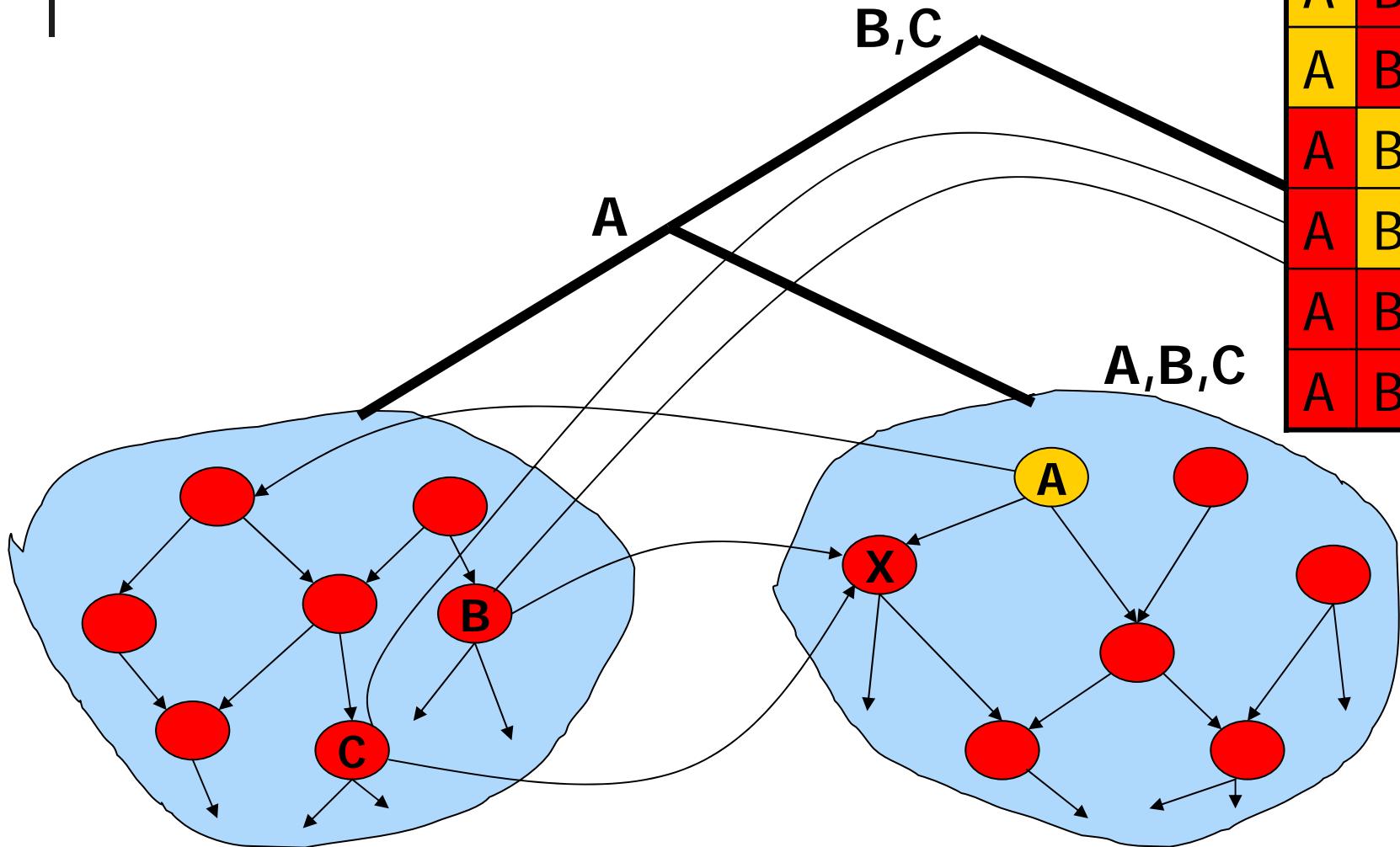
A	B	C
A	B	C
A	B	C
A	B	C
A	B	C
A	B	C
A	B	C
A	B	C



Caching with Local Structure

Structural cache

A	B	C
A	B	C
A	B	C
A	B	C
A	B	C
A	B	C
A	B	C
A	B	C



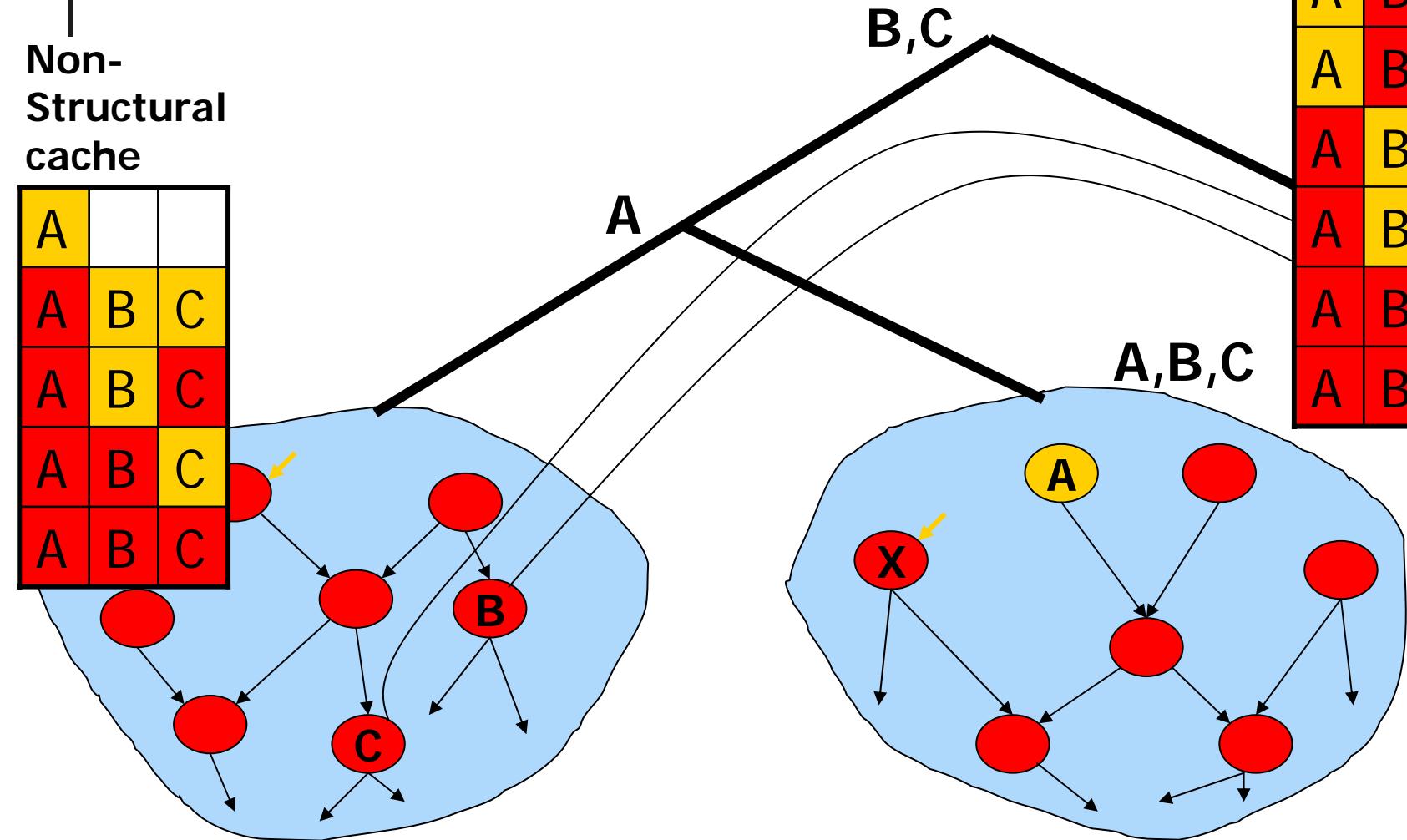
Caching with Local

Structural cache

No need to cache an exponential number of results (in the context size) given local structure

Non- Structural cache

A		
A	B	C
A	B	C
A	B	C
A	B	C



Determinism...

$$\neg A \wedge \neg B \wedge \neg C \Rightarrow \neg X$$

$$A \Rightarrow X$$

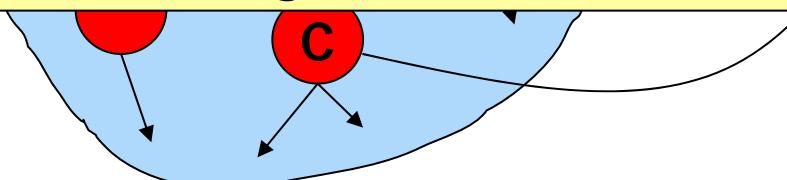
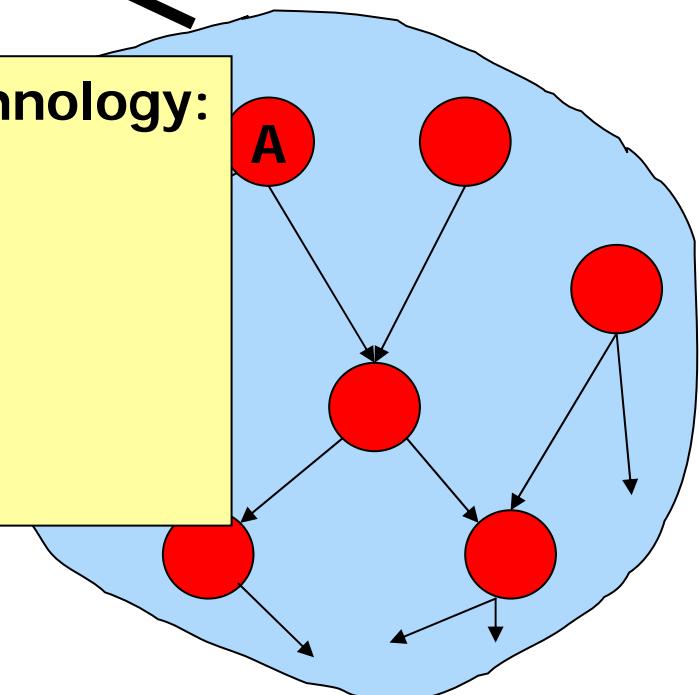
$$B \Rightarrow X$$

$$C \Rightarrow X$$

A, B, C

A natural setup to incorporate SAT technology:

- **Unit resolution to:**
 - Derive values of variables
 - Detect/skip inconsistent cases
- **Dependency directed backtracking**
- **Clause learning**



CSI Summary

- Exploit local structure
 - Context-specific independence
 - Determinism
- Significantly speed-up inference
 - Tackle problems with tree-width in the thousands
- Acknowledgements
 - Recursive conditioning slides courtesy of Adnan Darwiche
 - Implementation available:
 - <http://reasoning.cs.ucla.edu/ace>

Where are we?

- Bayesian networks
 - Represent exponentially-large probability distributions compactly
- Inference in BNs
 - Exact inference very fast for problems with low tree-width
 - Exploit local structure for fast inference
- **Now: Learning BNs**
 - Given structure, estimate parameters

Thumtack – Binomial Distribution

- $P(\text{Heads}) = \theta, P(\text{Tails}) = 1-\theta$

$$\theta = \frac{3}{5}$$



$$P(HHTHT) = \theta \theta (1-\theta) \theta (1-\theta) = \theta^3 (1-\theta)^2$$

- Flips are i.i.d.:
 - Independent events
 - Identically distributed according to Binomial distribution
- Sequence D of α_H Heads and α_T Tails

$$P(D | \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

Maximum Likelihood Estimation

- **Data:** Observed set D of α_H Heads and α_T Tails i.i.d.
- **Hypothesis:** Binomial distribution
- Learning θ is an optimization problem
 - What's the objective function?

$$\hat{\theta} = \arg \max_{\theta} P(HHTHTT|\theta)$$

- MLE: Choose θ that maximizes the probability of observed data:

$$\begin{aligned}\hat{\theta} &= \arg \max_{\theta} P(\mathcal{D} | \theta) \\ &= \arg \max_{\theta} \ln P(\mathcal{D} | \theta)\end{aligned}$$

Your first learning algorithm

$$\begin{aligned}\hat{\theta} &= \arg \max_{\theta} \ln P(\mathcal{D} \mid \theta) \\ &= \arg \max_{\theta} \ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T}\end{aligned}$$

- Set derivative to zero:

$$\frac{d}{d\theta} \ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T} = \frac{d}{d\theta} \alpha_H \ln \theta + \frac{d}{d\theta} \alpha_T \ln(1 - \theta) = 0$$

$$\begin{aligned}\frac{d}{d\theta} \ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T} &= \frac{\alpha_H}{\theta} - \frac{\alpha_T}{1 - \theta} = 0 \Rightarrow \theta = \frac{\alpha_H}{\alpha_H + \alpha_T}\end{aligned}$$

Multinomial dist , $|X| > 2$

MLE for conditional probabilities

- MLE estimate of $P(X=x) = \frac{\text{Count}(x=x)}{\text{Count}(b)}$
- MLE estimate of $P(X=x|Y=y)$

□ Only consider subset of data where $Y=y$

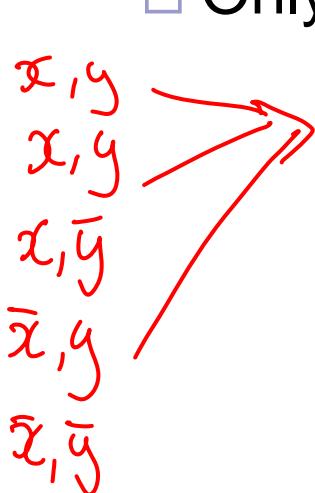
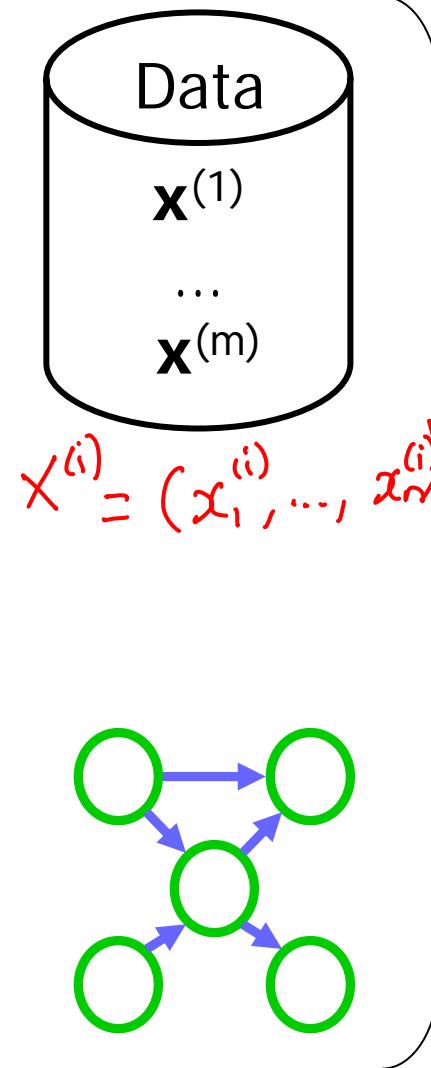

$$\hat{P}(X=x | Y=y) = \frac{\text{Count}(X=x, Y=y)}{\text{Count}(Y=y)}$$

Diagram illustrating the subset of data where $Y=y$. Five data points are shown: (x,y) , (x,y) , (\bar{x},\bar{y}) , (\bar{x},y) , and (\bar{x},\bar{y}) . Red arrows point to the first two points, (x,y) and (x,y) , indicating they are the subset used for the MLE estimate.

Learning the CPTs



MLE: $\hat{P}(X_i = x_i | X_{i-1} = x_{i-1}) = \frac{\text{Count}(X_i = x_i, X_{i-1} = x_{i-1})}{\text{Count}(X_{i-1} = x_{i-1})}$

for this GM: $X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow \dots$

$$\ln P(D|\theta) = \ln \prod_i P(X^{(i)}|\theta) = \ln \prod_{i \in D} \prod_j P(x_j^{(i)} | x_{j-1}^{(i)}, \theta_j)$$

$$= \sum_{i \in D} \sum_j \ln P(x_j^{(i)} | x_{j-1}^{(i)}, \theta_j | \theta_{j-1})$$

$$= \sum_j \sum_{i \in D} \ln P(x_j^{(i)} | x_{j-1}^{(i)}, \theta_j | \theta_{j-1})$$

Decomposing score according to structure of BN

MLE learning CPTs for general BN

- Vars X_1, \dots, X_n and BN structure given $P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i | \mathbf{Pa}_{X_i})$

- Each i.i.d. data point assigns a value all vars *no missing values*
- Likelihood of the data:

$$\ln P(D|\theta) = \sum_i \sum_{j \in D} \ln P(X_i^{(j)} | \mathbf{Pa}_{X_i}^{(j)}, \theta_{i|\mathbf{Pa}_{X_i}})$$

- MLE for CPT $P(X_i | \mathbf{Pa}_{X_i})$: $\hat{P}(X_i = x_i | \mathbf{Pa}_{X_i} = u) = \frac{\text{Count}(X_i = x_i, \mathbf{Pa}_{X_i} = u)}{\text{Count}(\mathbf{Pa}_{X_i} = u)}$