Reading: Chapter 2 of Koller&Friedman

BN Semantics

Graphical Models – 10708

Carlos Guestrin

Carnegie Mellon University

September 14th, 2005

Announcements

- Homework 1:
 - □ Out later today
 - □ Due October 3rd beginning of class!
 - □ It's hard start early, ask questions
- Collaboration policy
 - □ OK to discuss in groups
 - □ Tell us on your paper who you talked with
 - □ Each person must write their own unique paper
 - □ No searching the web, papers, etc. for answers, we trust you want to learn
- We are looking into room changes
- We cannot take official auditors for this class ⊗
 - □ Too many people already

Basic concepts for random variables

- Atomic outcome: assignment $x_1,...,x_n$ to $X_1,...,X_n$
- Conditional probability: P(X,Y)=P(X)P(Y|X)
- Bayes rule: P(X|Y) = P(Y|X) P(X)
- Chain rule:
 - $\square P(X_1,...,X_n) = P(X_1)P(X_2|X_1)\cdots P(X_k|X_1,...,X_{k-1})$

Conditionally independent random variables

- Sets of variables X, Y, Z
- X is independent of Y given Z if
 - $\square P \models (X=x\bot Y=y \mid Z=z), \ \underline{\forall} \ x \in Val(X), \ y \in Val(Y), \ z \in Val(Z)$
- Shorthand:
 - \square Conditional independence: $P \models (X \perp Y \mid Z)$
 - \square For $P \models (\mathbf{X} \perp \mathbf{Y} \mid \emptyset)$, write $P \models (\mathbf{X} \perp \mathbf{Y})$
- **Notation**: *J*(*P*) independence properties entailed by *P*
- Proposition: P statisfies $(X \perp Y \mid Z)$ if and only if P(X,Y|Z) = P(X|Z) P(Y|Z)

Properties of independence

- Symmetry:
 - \square (X \perp Y | Z) \Leftrightarrow (Y \perp X | Z)
- Decomposition:
 - \square (X \perp Y,W \mid Z) \Rightarrow (X \perp Y \mid Z)
- Weak union:
 - \square (X \perp Y,W | Z) \Rightarrow (X \perp Y | Z,W)
- Contraction:
 - \square (X \perp W | Y,Z) & (X \perp Y | Z) \Rightarrow (X \perp Y,W | Z)
- Intersection:
 - \square (X \perp Y | W,Z) & (X \perp W | Y,Z) \Rightarrow (X \perp Y,W | Z)
 - □ Only for positive distributions! ($P(\alpha)>0$, $\forall \alpha$, $\alpha\neq\emptyset$)

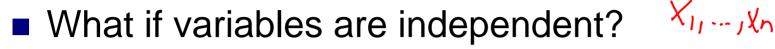
Bayesian networks

- One of the most exciting advancements in statistical AI in the last 10-15 years
- Compact representation for exponentially-large probability distributions
- Fast marginalization too
- Exploit conditional independencies

Let's start on BNs...

- Consider P(X_i)
 - \square Assign probability to each $x_i \in Val(X_i)$
 - □ Independent parameters / Val(Xi) -1
- Consider $P(X_1,...,X_n)$
 - □ How many independent parameters if $|Val(X_i)|=k$?

What if variables are independent?



- \square ($X_i \perp X_j$), $\forall i,j$
- □ Not enough!!! (See homework 1 ☺)
- \square Must assume that $(\mathbf{X} \perp \mathbf{Y}), \forall \mathbf{X}, \mathbf{Y}$ subsets of $\{X_1, \dots, X_n\}$
- Can write

$$\square P(X_1,...,X_n) = \prod_{i=1...n} P(X_i)$$

How many independent parameters now?

Conditional parameterization – two nodes

Grade is determined by Intelligence

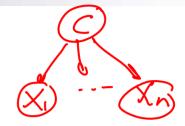
$$P(I,G) = P(I) \cdot P(G|I)$$

Conditional parameterization – three nodes

- Grade and SAT score are determined by Intelligence
- $(G \perp S \mid I)$ $P(I,G,S) = P(I) P(G \mid I) P(S \mid I,G)$ $Q(S \mid I)$

The naïve Bayes model – Your first real Bayes Net

- Class variable: C
- Evidence variables: X₁,...,X_n



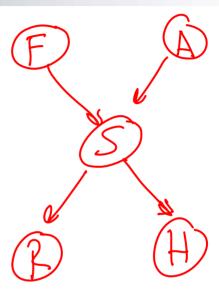
■ assume that $(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{C})$, $\forall \mathbf{X}, \mathbf{Y}$ subsets of $\{X_1, \dots, X_n\}$

$$P(C, X_{1},...,X_{n}) = P(c) P(X_{1}|c) - P(X_{n}|c,X_{1},...,X_{n})$$

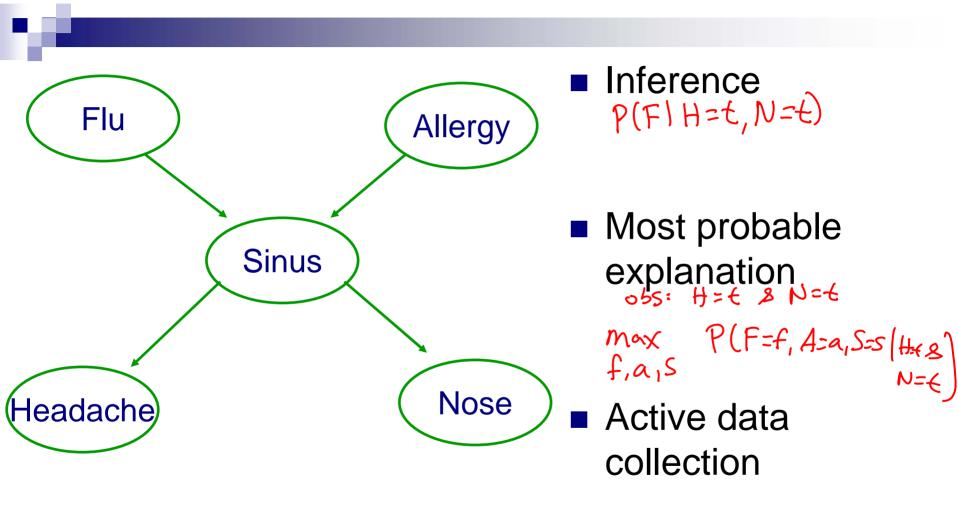
$$= P(c) TT P(X_{1}|c) \qquad P(X_{n}|c)$$

Causal structure

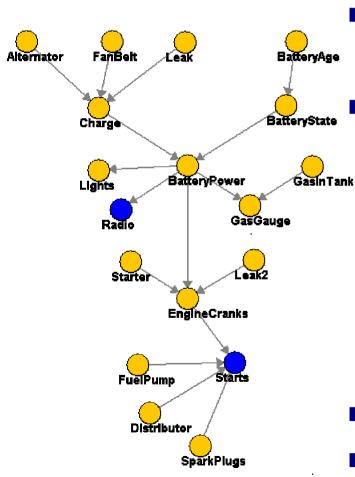
- Suppose we know the following:
 - The flu causes sinus inflammation
 - Allergies cause sinus inflammation
 - Sinus inflammation causes a runny nose
 - □ Sinus inflammation causes headaches
- How are these connected?



Possible queries



Car starts BN



18 binary attributes

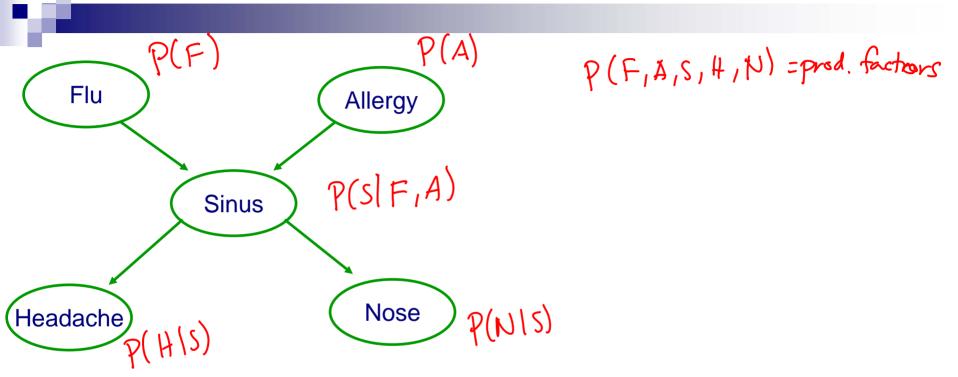
- Inference

$$P(BatteryAge|Starts=f)$$

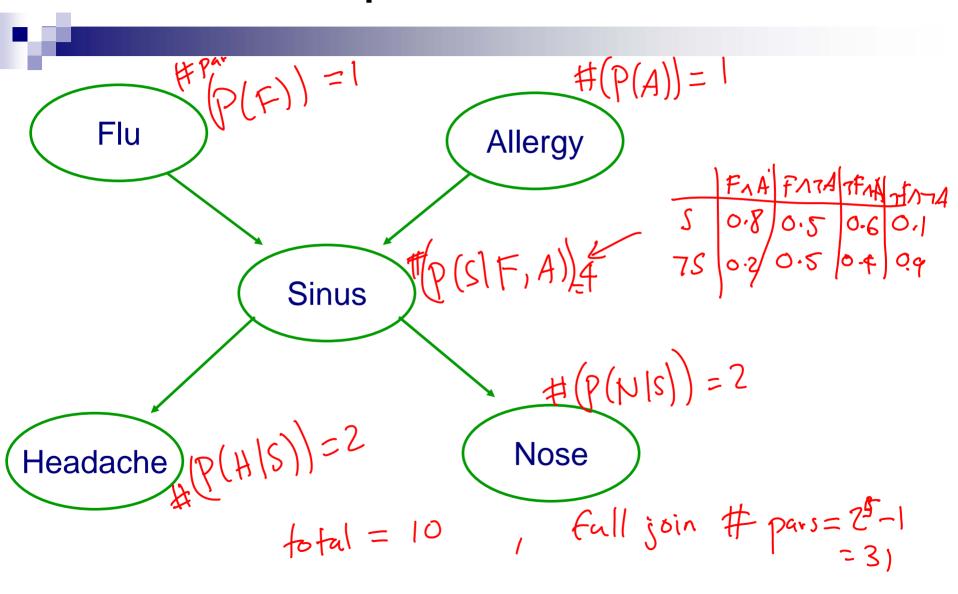
$$P(BA | Starts=f) = \sum_{A,F,...S} P(A,F,S...,BA|S=f)$$

- 2¹⁸ terms, why so fast?
- Not impressed?
 - HailFinder BN more than 3⁵⁴ = 58149737003040059690390169 terms

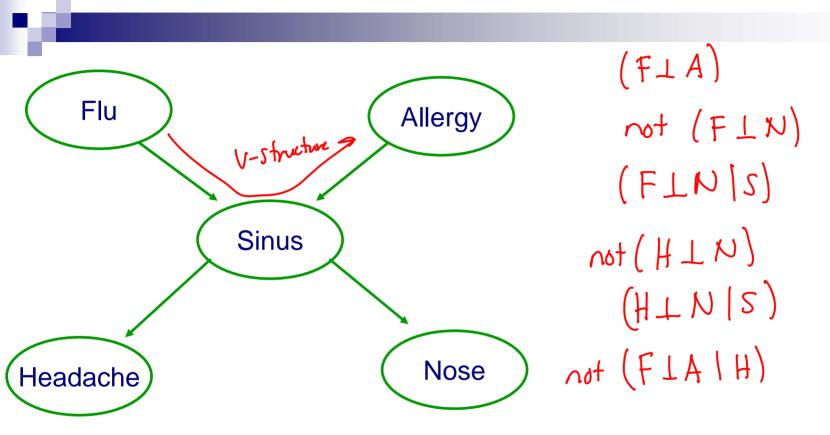
Factored joint distribution - Preview



Number of parameters



Key: Independence assumptions



Knowing sinus separates the variables from each other

(Marginal) Independence

More Generally:

Flu = t	
Flu = f	

Allergy = t	
Allergy = f	

	Flu = t	Flu = f
Allergy = t		
Allergy = f		

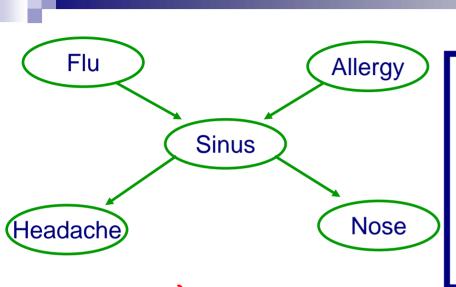
Conditional independence

■ Flu and Headache are not (marginally) independent

Flu and Headache are independent given Sinus infection

More Generally:

The independence assumption



(FLA)

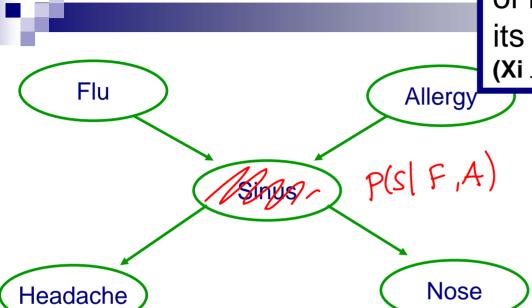
(H_F,A,N31S)

Local Markov Assumption:

A variable X is independent of its non-descendants given its parents

 $(X_i \perp NonDescendants_{Xi} \mid Pa_{Xi})$

Explaining away



Local Markov Assumption:

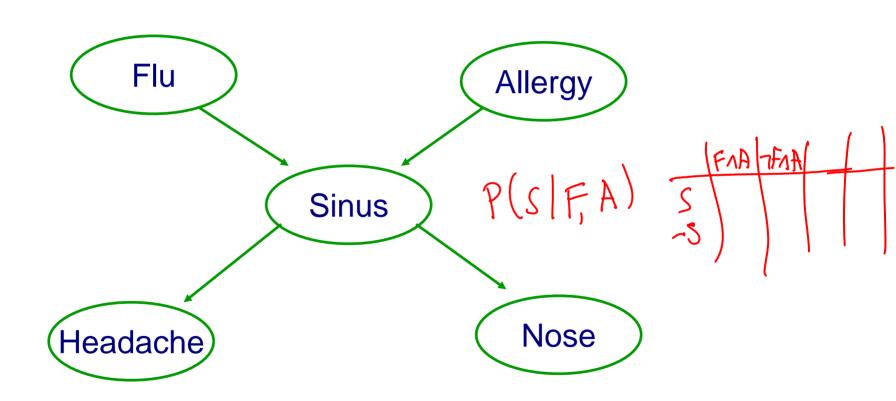
A variable X is independent of its non-descendants given its parents

 $(Xi \perp NonDescendants_{Xi} \mid Pa_{Xi})$

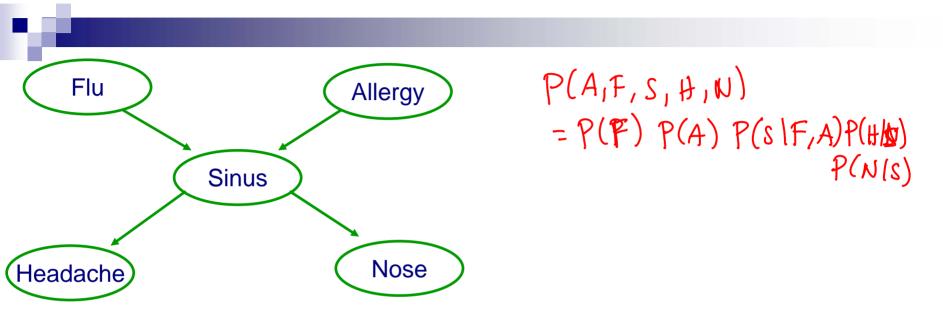
$$P(A|S=t) \ge P(A)$$

 $P(A=t|S=t,F=t)$
 $\le P(A|S=t)$

What about probabilities? Conditional probability tables (CPTs)



Joint distribution



Why can we decompose? Markov Assumption!

A general Bayes net

- Set of random variables
- Directed acyclic graph

CPTs

Joint distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

- Local Markov Assumption:
 - □ A variable X is independent of its non-descendants given its parents (Xi ⊥ NonDescendantsXi | PaXi)

Questions????

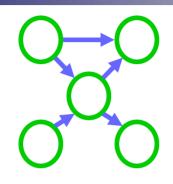
What distributions can be represented by a BN?

What BNs can represent a distribution?

- What are the independence assumptions encoded in a BN?
 - □ in addition to the local Markov assumption

Today: The Representation Theorem – Joint Distribution to BN

BN:



Encodes independence assumptions

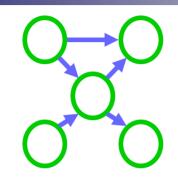
If conditional independencies in BN are subset of conditional independencies in *P*

Joint probability distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

Today: The Representation Theorem – BN to Joint Distribution

BN:



Encodes independence assumptions

If joint probability distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

Then conditional independencies in BN are subset of conditional independencies in *P*

Let's start proving it for naïve Bayes From joint distribution to BN

X1 --- Kn

- Independence assumptions: ?
 - □ X_i independent given C
- Let's assume that *P* satisfies independencies must prove that P factorizes according to BN:
- Use chain rule!

$$P(C,X_1,...,X_n) = P(C) P(X_1|C) \cdot ... P(X_n|C,X_1,...,X_{n-1})$$

$$P(X_n|C)$$

Let's start proving it for naïve Bayes - From BN to joint distribution 1

- Let's assume that P factorizes according to the BN:
 - $P(C,X_1,...,X_n) = P(C) \prod_i P(X_i|C)$
- Prove the independence assumptions: 🍪 🎉
 - □ X_i independent given C
 - \square Actually, (**X** \perp **Y** | **C**), \forall **X**,**Y** subsets of {X₁,...,X_n}

$$P(X_1|C,X_2) = P(X_1|C)$$

$$P(X_{1},X_{2} | C, X_{3},X_{4},X_{5}) = P(X_{1},X_{2} | C)$$

Let's start proving it for naïve Bayes - From BN to joint distribution 2

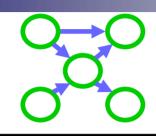
I(618 | I)

- Let's consider a simpler case
 - Grade and SAT score are determined by Intelligence
 - $\square P(I,G,S) = P(I)P(G|I)P(S|I)$
 - \square Prove that P(G,S|I) = P(G|I) P(S|I)

$$P(G,S|I) = P(G,S,I) = P(I) \cdot P(G|I) \cdot P(S|I)$$

$$P(I)$$

Today: The Representation Theorem



Encodes independence assumptions

If conditional independencies in BN are subset of conditional independencies in *P*

Joint probability distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

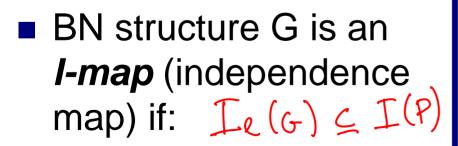
If joint probability distribution:

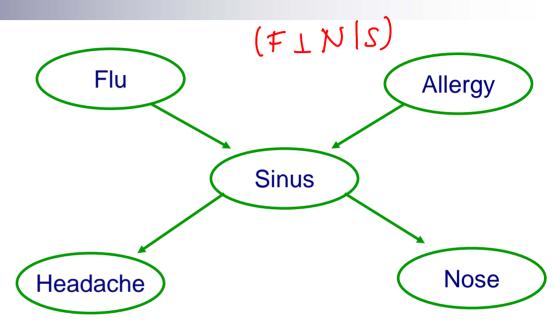
$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

Then conditional independencies in BN are subset of conditional independencies in *P*

Local Markov assumption & I-maps

- Local independence assumptions in BN structure G: I₀(G)
- Independence assertions of P: I(P)





Local Markov Assumption:

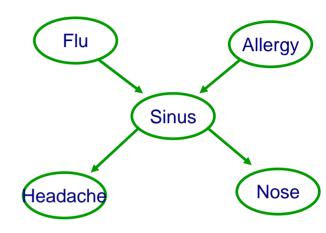
A variable X is independent of its non-descendants given its parents

(Xi \perp NonDescendants_{Xi} | Pa_{Xi})

Factorized distributions

- Given
 - \square Random vars $X_1,...,X_n$
 - □ P distribution over vars
 - ☐ BN structure *G* over same vars
- P factorizes according to G if

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$



BN Representation Theorem – I-map to factorization

If conditional independencies in BN are subset of conditional independencies in *P*

Obtain

Joint probability distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

G is an I-map of P

Ie (G) CIP)

P factorizes according to G

BN Representation Theorem – I-map to factorization: Proof

G is an I-map of P

Obtain

P(F, A, S, H, N) = topologically

P factorizes according to G

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

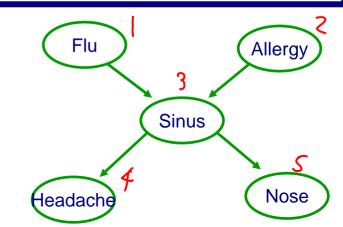
ALL YOU NEED:

P(F) P(A|F) P(S|FA) P(H|FAS) P(N|FASH) Cocal Markov Assumption: P(F) P(A) P(S|FA) P(H|S) P(N|S)

A variable X is independent

of its non-descendants given its parents

 $(Xi \perp NonDescendants_{xi} \mid Pa_{xi})$



Defining a BN

- Given a set of variables and conditional independence assumptions of P
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n
 - □ Add X_i to the network
 - □ Define parents of X_i , Pa_{X_i} , in graph as the minimal subset of $\{X_1, ..., X_{i-1}\}$ such that local Markov assumption holds $-X_i$ independent of rest of $\{X_1, ..., X_{i-1}\}$, given parents Pa_{X_i}
 - □ Define/learn CPT P(X_i| **Pa**_{Xi})

BN Representation Theorem – Factorization to I-map

If joint probability distribution:

Obtain

Then conditional independencies in BN are subset of conditional independencies in *P*

 $P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$

P factorizes according to G

G is an I-map of P

Ie(G) C I(P)

BN Representation Theorem – Factorization to I-map: **Proof**

If joint probability distribution:

Obtain

Then conditional independencies in BN are subset of conditional independencies in *P*

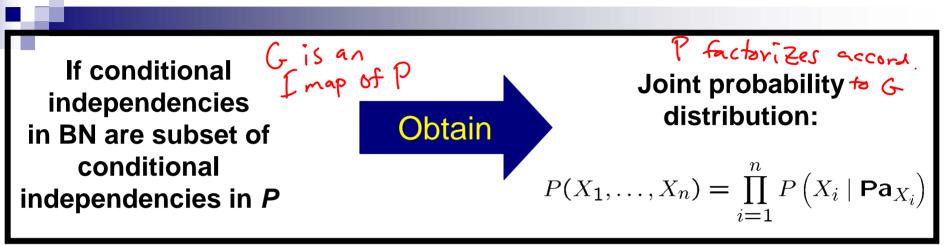
$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

P factorizes according to G

G is an I-map of P

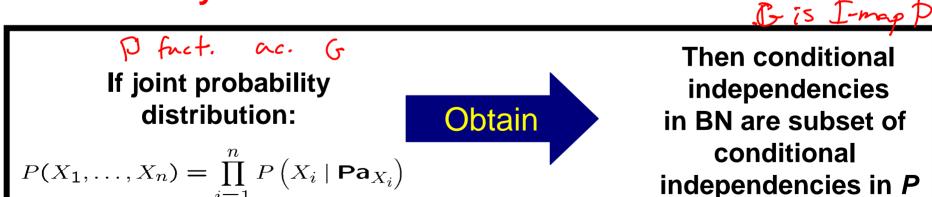
Homework 1!!!! ©

The BN Representation Theorem



Important because:

Every P has at least one BN structure G



Important because:

Read independencies of P from BN structure G

Independencies encoded in BN

- We said: All you need is the local Markov assumption
 - \square (X_i \perp NonDescendants_{Xi} | **Pa**_{Xi})
- But then we talked about other (in)dependencies
 - □ e.g., explaining away

- What are the independencies encoded by a BN?
 - □ Only assumption is local Markov
 - But many others can be derived using the algebra of conditional independencies!!!

Understanding independencies in BNs

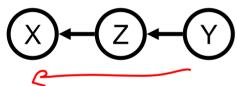
BNs with 3 nodes

Indirect causal effect:

$$X \rightarrow Z \rightarrow Y$$

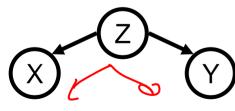
VOT (XTX) (XTX/S)

Indirect evidential effect:



Not $(XT\lambda)$ $(XT\lambda(5)$

Common cause:

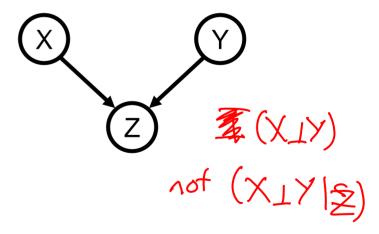


 $vot(XT\lambda)$

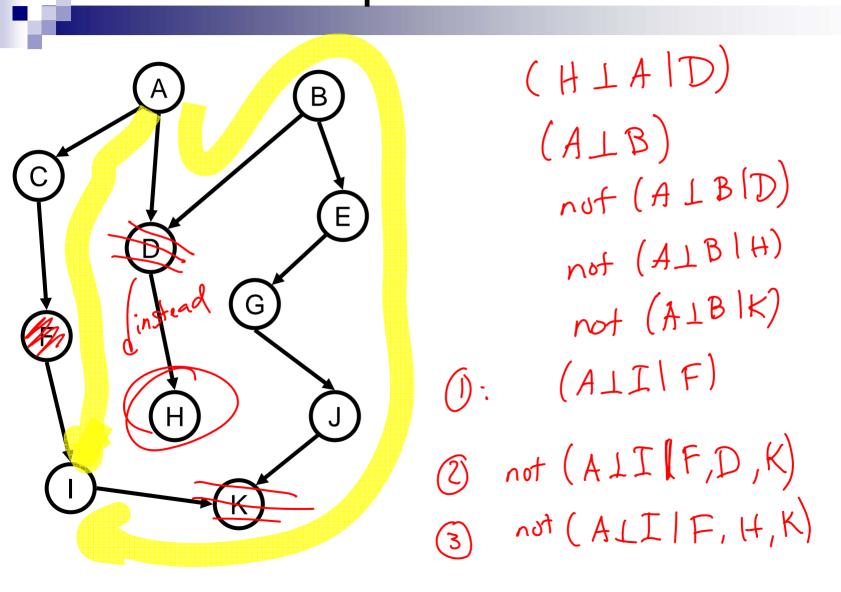
Local Markov Assumption:

A variable X is independent of its non-descendants given its parents

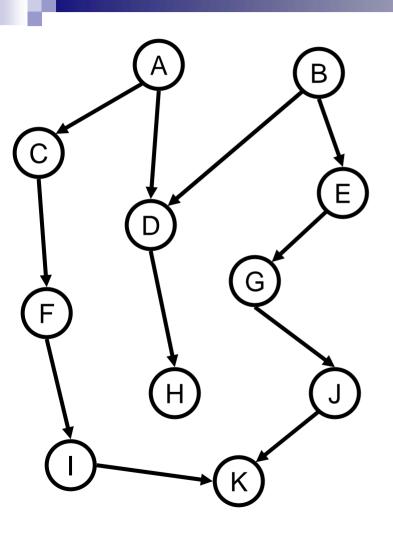
Common effect:



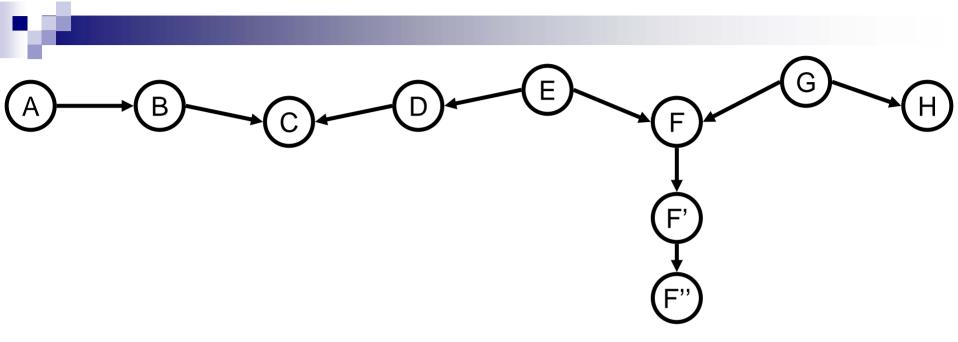
Understanding independencies in BNsSome examples



Understanding independencies in BNs – Some more examples



An active trail – Example



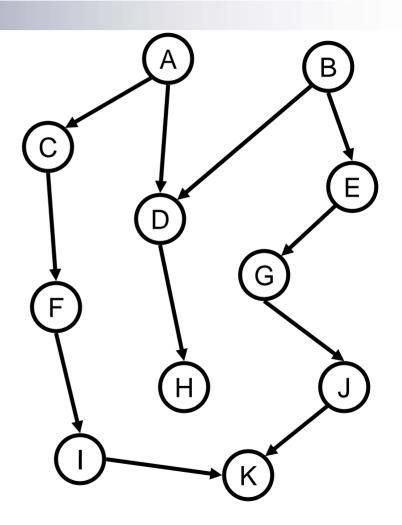
When are A and H independent?

Active trails formalized

- A path $X_1 X_2 \cdots X_k$ is an **active trail** when variables $O \subseteq \{X_1, \dots, X_n\}$ are observed if for each consecutive triplet in the trail:
 - $\square X_{i-1} \rightarrow X_i \rightarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin O)$
 - $\square X_{i-1} \leftarrow X_i \leftarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin O)$
 - $\square X_{i-1} \leftarrow X_i \rightarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin O)$
 - $\square X_{i-1} \rightarrow X_i \leftarrow X_{i+1}$, and X_i is observed $(X_i \in O)$, or one of its descendents

Active trails and independence?

■ Theorem: Variables X_i and X_j are independent given $Z \subseteq \{X_1, ..., X_n\}$ if the is no active trail between X_i and X_j when variables $Z \subseteq \{X_1, ..., X_n\}$ are observed



More generally: Soundness of d-separation

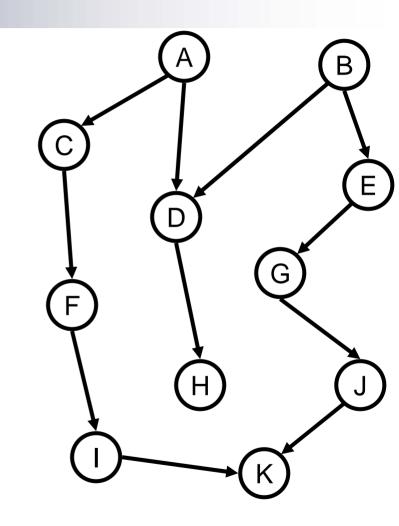
- Given BN structure G
- Set of independence assertions obtained by d-separation:
 - $\square I(G) = \{(\mathbf{X} \perp \mathbf{Y} | \mathbf{Z}) : d\text{-sep}_G(\mathbf{X}; \mathbf{Y} | \mathbf{Z})\}$
- Theorem: Soundness of d-separation
 - \square If P factorizes over G then $I(G)\subseteq I(P)$
- Interpretation: d-separation only captures true independencies
- Proof discussed when we talk about undirected models

Existence of dependency when not dependency wh

Theorem: If X and Y are not d-separated given Z, then X and Y are dependent given Z under some P that factorizes over G

Proof sketch:

- Choose an active trail between X and Y given Z
- Make this trail dependent
- Make all else uniform (independent) to avoid "canceling" out influence



More generally: Completeness of d-separation

- Theorem: Completeness of d-separation
 - \square For "almost all" distributions that P factorize over to G, we have that I(G) = I(P)
 - "almost all" distributions: except for a set of measure zero of parameterizations of the CPTs (assuming no finite set of parameterizations has positive measure)
- Proof sketch:

Interpretation of completeness

- Theorem: Completeness of d-separation
 - \square For "almost all" distributions that P factorize over to G, we have that I(G) = I(P)
- BN graph is usually sufficient to capture all independence properties of the distribution!!!!
- But only for complete independence:
 - $\square P \models (X=x\bot Y=y \mid Z=z), \forall x\in Val(X), y\in Val(Y), z\in Val(Z)$
- Often we have context-specific independence (CSI)
 - $\square \exists x \in Val(X), y \in Val(Y), z \in Val(Z): P \models (X=x \perp Y=y \mid Z=z)$
 - □ Many factors may affect your grade
 - □ But if you are a frequentist, all other factors are irrelevant ☺

What you need to know

- Independence & conditional independence
- Definition of a BN
- The representation theorems
 - Statement
 - Interpretation
- d-separation and independence
 - □ soundness
 - □ existence
 - completeness

Acknowledgements

- JavaBayes applet
 - http://www.pmr.poli.usp.br/ltd/Software/javabayes/Home/index.html