



Pick the one with the largest margin!

"confidence" = 
$$(\mathbf{w}.\mathbf{x}_j + b) y_j$$

" $\mathbf{w}_i = \mathbf{w}_i = \mathbf{$ 



But there are a many planes...

$$what if:$$
 $what if:$ 
 $what if:$ 















# Slack variables – Hinge loss



- If margin ≥ 1, don't care
- If margin < 1, pay linear penalty</p>

©2005-2007 Carlos Guestrin

13

# Side note: What's the difference between SVMs and logistic regression?

### SVM:

# $\begin{aligned} & \text{minimize}_{\mathbf{w},b} & & \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j} \\ & \left( \mathbf{w}.\mathbf{x}_{j} + b \right) y_{j} \geq 1 - \xi_{j}, \ \forall j \\ & \quad \xi_{j} \geq 0, \ \forall j \end{aligned}$

### Logistic regression:

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \mathbf{x} + b)}}$$

### Log loss:

$$-\ln P(Y = 1 \mid x, \mathbf{w}) = \ln (1 + e^{-(\mathbf{w} \cdot \mathbf{x} + b)})$$









Learn 1 classifier: Multiclass SVM  $\sum_{\substack{\mathbf{w}(y_j) \\ \mathbf{w}(y_j) \\ \mathbf{x}_j + b}} \sum_{\substack{y \\ y(y) \\ \mathbf{x}_j + b}} \mathbf{w}^{(y)} \cdot \mathbf{w}^{(y)} + C \sum_{j} \xi_j \\ \mathbf{w}^{(y_j)} \cdot \mathbf{x}_j + b^{(y_j)} \geq \mathbf{w}^{(y')} \cdot \mathbf{x}_j + b^{(y')} + 1 - \xi_j, \ \forall y' \neq y_j, \ \forall j \in \mathbb{Z}, \ \forall j \in \mathbb{Z}$ 

### What you need to know

- Ŋ
- Maximizing margin
- Derivation of SVM formulation
- Slack variables and hinge loss
- Relationship between SVMs and logistic regression
  - □ 0/1 loss
  - ☐ Hinge loss
  - □ Log loss
- Tackling multiple class
  - □ One against All
  - □ Multiclass SVMs

©2005-2007 Carlos Guestrin



# 

# Today's lecture

- Learn one of the most interesting and exciting recent advancements in machine learning
  - ☐ The "kernel trick"
  - ☐ High dimensional feature spaces at no extra cost!
- But first, a detour
  - □ Constrained optimization!

2005-2007 Carlos Guestrin

. .





# Lagrange multipliers — Dual variables solving: $\min_x \max_\alpha x^2 - \alpha(x-b)$ s.t. $\alpha \geq 0$

# Dual SVM derivation (1) – the linearly separable case

$$\begin{array}{ll} \text{minimize}_{\mathbf{w},b} & \frac{1}{2}\mathbf{w}.\mathbf{w} \\ \left(\mathbf{w}.\mathbf{x}_j + b\right)y_j \geq 1, \ \forall j \end{array}$$

2005-2007 Carlos Guestrin

## Dual SVM derivation (2) the linearly separable case

$$L(\mathbf{w}, \alpha) = \frac{1}{2}\mathbf{w}.\mathbf{w} - \sum_{j} \alpha_{j} \left[ \left( \mathbf{w}.\mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$
  
  $\alpha_{j} \ge 0, \ \forall j$ 

$$\mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$

$$\mathbf{w} = \sum_{j} lpha_{j} y_{j} \mathbf{x}_{j}$$
 minimize $_{\mathbf{w}} \quad \frac{1}{2} \mathbf{w}.\mathbf{w}$   $\left(\mathbf{w}.\mathbf{x}_{j} + b\right) y_{j} \geq 1, \ orall j$   $b = y_{k} - \mathbf{w}.\mathbf{x}_{k}$  for any  $k$  where  $lpha_{k} > 0$ 

©2005-2007 Carlos Guestr



# Dual SVM formulation – the linearly separable case

maximize
$$_{\alpha}$$
  $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j}$ 

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} \geq 0$$
 $\mathbf{w} = 0$ 

$$\mathbf{w} = \sum_i lpha_i y_i \mathbf{x}_i$$
  $b = y_k - \mathbf{w}.\mathbf{x}_k$  for any  $k$  where  $lpha_k > 0$ 

©2005-2007 Carlos Guestrin

29

# Dual SVM derivation – the non-separable case

 $\begin{aligned} & \underset{\mathbf{w}, b}{\text{minimize}}_{\mathbf{w}, b} & & \frac{1}{2}\mathbf{w}.\mathbf{w} + C\sum_{j}\xi_{j} \\ & \left(\mathbf{w}.\mathbf{x}_{j} + b\right)y_{j} \geq 1 - \xi_{j}, \ \forall j \\ & \qquad \qquad \xi_{j} \geq 0, \ \forall j \end{aligned}$ 

©2005-2007 Carlos Guestrin

# Dual SVM formulation – the non-separable case

$$\text{maximize}_{\alpha} \quad \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j}$$

$$\begin{array}{l} \sum_i \alpha_i y_i = \mathbf{0} \\ C \geq \alpha_i \geq \mathbf{0} \end{array}$$

$$\mathbf{w} = \sum_{i} \alpha_i y_i \mathbf{x}_i$$

$$b = y_k - \mathbf{w}.\mathbf{x}_k$$

for any k where  $C > \alpha_k > 0$ 

©2005-2007 Carlos Guestrin

31

# Why did we learn about the dual SVM?



- There are some quadratic programming algorithms that can solve the dual faster than the primal
- But, more importantly, the "kernel trick"!!!
  - □ Another little detour...

©2005-2007 Carlos Guestrin

# Reminder from last time: What if the data is not linearly separable?



# Use features of features of features of features....

$$\Phi(\mathbf{x}): R^m \mapsto F$$

Feature space can get really large really quickly,



# Dual formulation only depends on dot-products, not on w!

$$\begin{aligned} \text{maximize}_{\alpha} \quad & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j} \\ & \sum_{i} \alpha_{i} y_{i} = \mathbf{0} \\ & C \geq \alpha_{i} \geq \mathbf{0} \end{aligned}$$

$$\begin{aligned} \text{maximize}_{\alpha} \quad & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j}) \\ & K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j}) \\ & \sum_{i} \alpha_{i} y_{i} = 0 \\ & C \geq \alpha_{i} \geq 0 \\ & C \geq \alpha_{i} \geq 0 \end{aligned}$$

# Dot-product of polynomials

$$\Phi(u) \cdot \Phi(v) = \text{polynomials of degree d}$$

©2005-2007 Carlos Guestrin

### Finally: the "kernel trick"!



maximize<sub>$$\alpha$$</sub>  $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$ 

$$K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j})$$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$C \ge \alpha_{i} \ge 0$$

- Never represent features explicitly
   Compute dot products in closed form
- Constant-time high-dimensional dotproducts for many classes of features
- Very interesting theory Reproducing Kernel Hilbert Spaces
  - □ Not covered in detail in 10701/15781, more in 10702

 $\mathbf{w} = \sum_i lpha_i y_i \Phi(\mathbf{x}_i)$   $b = y_k - \mathbf{w}. \Phi(\mathbf{x}_k)$  for any k where  $C > lpha_k > 0$ 

©2005-2007 Carlos Guestrin

37

### Polynomial kernels



■ All monomials of degree d in O(d) operations:

 $\Phi(\mathbf{u})\cdot\Phi(\mathbf{v})=(\mathbf{u}\cdot\mathbf{v})^d=$  polynomials of degree d

- How about all monomials of degree up to d?
  - □ Solution 0:
  - □ Better solution:

©2005-2007 Carlos Guestrin

### Common kernels



Polynomials of degree d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$$

- Polynomials of degree up to d
- $\blacksquare \operatorname{Gau}K(\mathbf{u},\mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + \mathbf{1})^d$
- Sign  $pid_{\mathbf{u}, \mathbf{v}} = \exp\left(-\frac{||\mathbf{u} \mathbf{v}||}{2\sigma^2}\right)$

$$K(\mathbf{u}, \mathbf{v}) = \tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)$$

2005-2007 Carlos Guestrin

39

### Overfitting?



- Huge feature space with kernels, what about overfitting???
  - □ Maximizing margin leads to sparse set of support vectors
  - ☐ Some interesting theory says that SVMs search for simple hypothesis with large margin
  - □ Often robust to overfitting

©2005-2007 Carlos Guestrin

### What about at classification time



- For a new input  $\mathbf{x}$ , if we need to represent  $\Phi(\mathbf{x})$ , we are in trouble!
- Recall classifier: sign(w.Ф(x)+b)
- Using kernels we are cool!

$$K(\mathbf{u}, \mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$$

Using kernels we are cool! 
$$K(\mathbf{u},\mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$$
 
$$w = \sum_i \alpha_i y_i \Phi(\mathbf{x}_i)$$
 
$$b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$$
 for any  $k$  where  $C > \alpha_k > 0$ 

### SVMs with kernels



- Choose a set of features and kernel function
- Solve dual problem to obtain support vectors α<sub>i</sub>
- At classification time, compute:

$$\mathbf{w} \cdot \Phi(\mathbf{x}) = \sum_i \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i)$$
 
$$b = y_k - \sum_i \alpha_i y_i K(\mathbf{x}_k, \mathbf{x}_i)$$
 for any  $k$  where  $C > \alpha_k > 0$ 

# What's the difference between SVMs and Logistic Regression?

|                                        | SVMs | Logistic<br>Regression |
|----------------------------------------|------|------------------------|
| Loss function                          |      |                        |
| High dimensional features with kernels |      |                        |

©2005-2007 Carlos Guestrin

43

### Kernels in logistic regression

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \Phi(\mathbf{x}) + b)}}$$

Define weights in terms of support vectors:

$$\mathbf{w} = \sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i})$$

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}) + b)}}$$

$$= \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} K(\mathbf{x}, \mathbf{x}_{i}) + b)}}$$

 $\blacksquare$  Derive simple gradient descent rule on  $\alpha_{\text{i}}$ 

©2005-2007 Carlos Guestrin

# What's the difference between SVMs and Logistic Regression? (Revisited)

|                                        | SVMs       | Logistic<br>Regression |
|----------------------------------------|------------|------------------------|
| Loss function                          | Hinge loss | Log-loss               |
| High dimensional features with kernels | Yes!       | Yes!                   |
|                                        |            |                        |
|                                        |            |                        |

## What you need to know



- Dual SVM formulation
  - ☐ How it's derived
- The kernel trick
- Derive polynomial kernel
- Common kernels
- Kernelized logistic regression
- Differences between SVMs and logistic regression

2005-2007 Carlos Guestrin