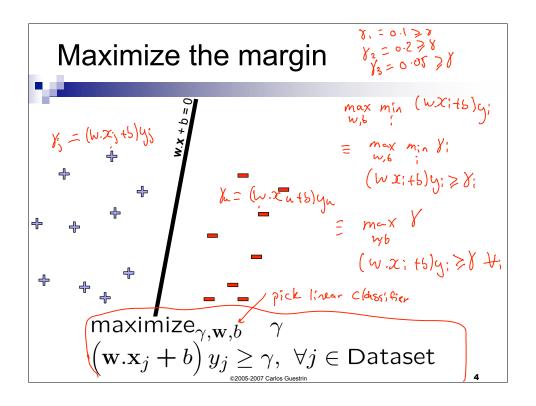


Pick the one with the largest margin!

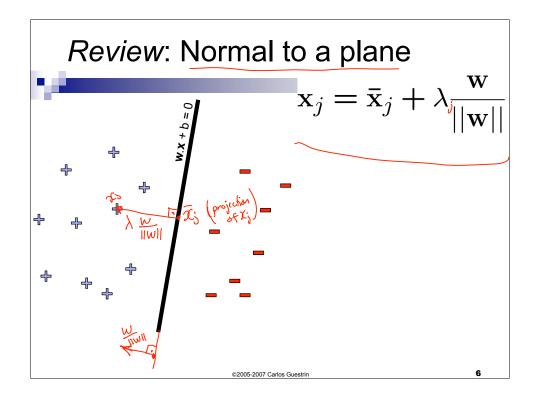
"confidence" =
$$(\mathbf{w}.\mathbf{x}_j + b) y_j$$

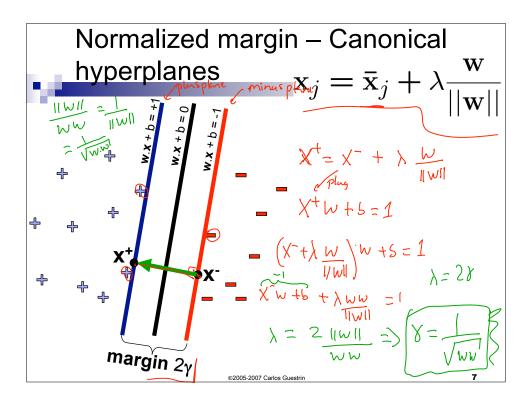
" $\mathbf{w}_i = \mathbf{w}_i = \mathbf{$

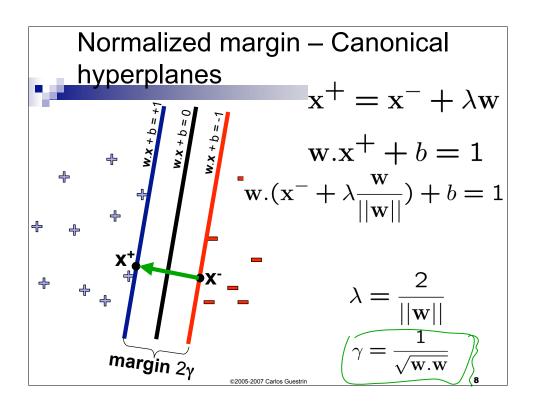


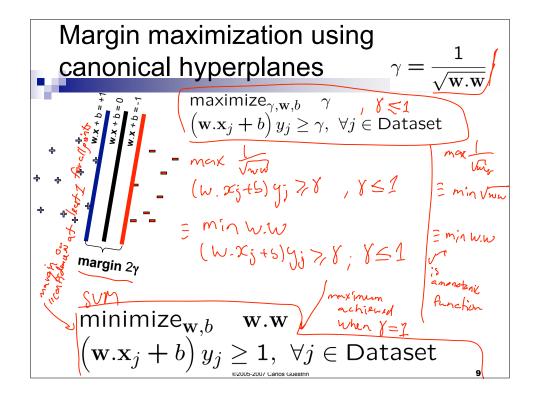
But there are a many planes...

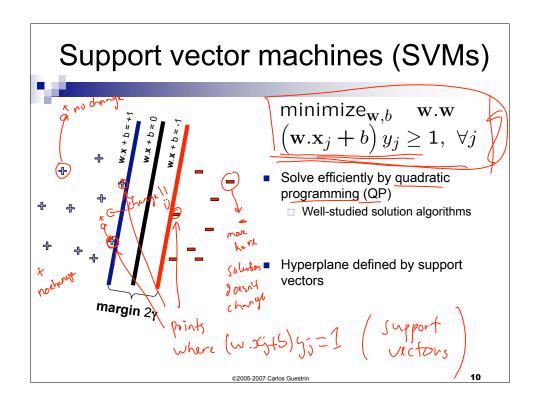
$$what if:$$
 $what if:$
 $what if:$

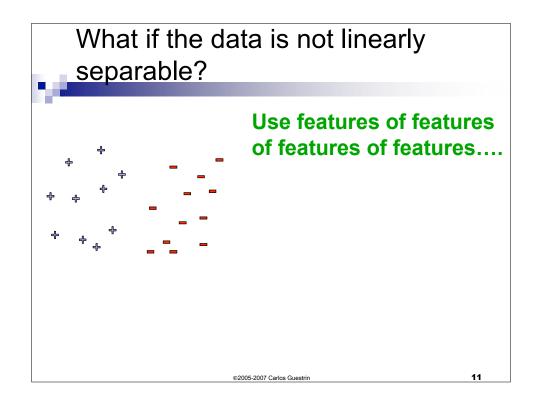


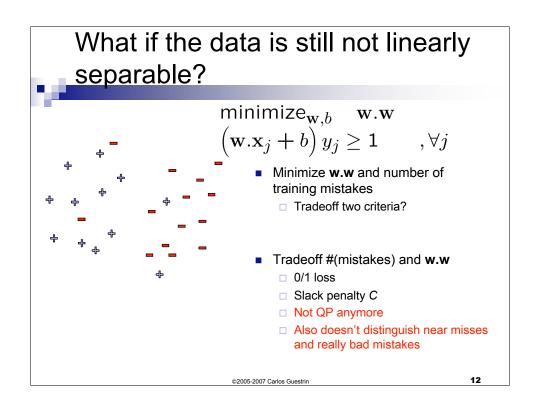




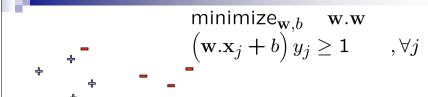








Slack variables – Hinge loss



- If margin ≥ 1, don't care
- If margin < 1, pay linear penalty</p>

©2005-2007 Carlos Guestrin

13

Side note: What's the difference between SVMs and logistic regression?

SVM:

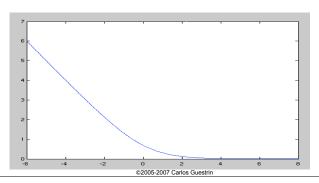
$\begin{aligned} & \text{minimize}_{\mathbf{w},b} & & \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j} \\ & \left(\mathbf{w}.\mathbf{x}_{j} + b \right) y_{j} \geq 1 - \xi_{j}, \ \forall j \\ & \quad \xi_{j} \geq 0, \ \forall j \end{aligned}$

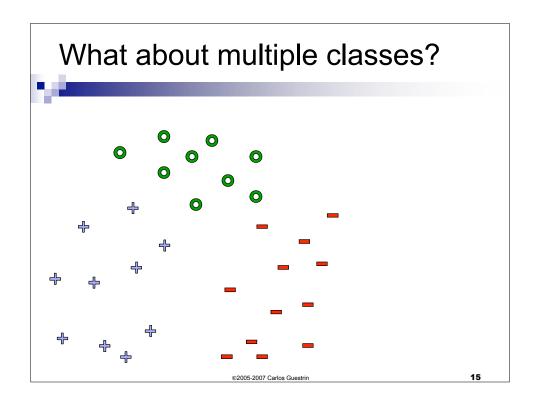
Logistic regression:

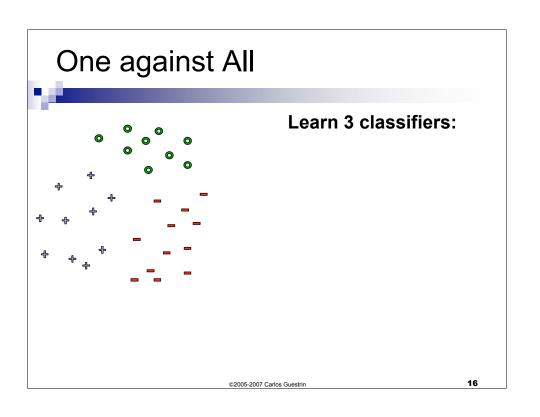
$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \mathbf{x} + b)}}$$

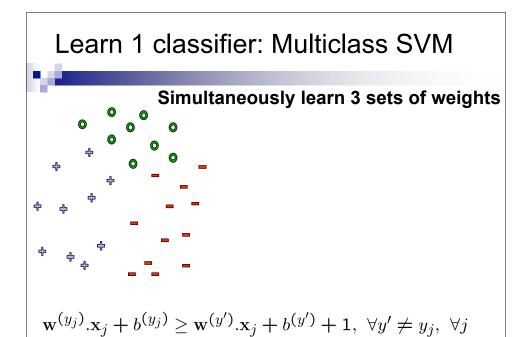
Log loss:

$$-\ln P(Y = 1 \mid x, \mathbf{w}) = \ln (1 + e^{-(\mathbf{w} \cdot \mathbf{x} + b)})$$







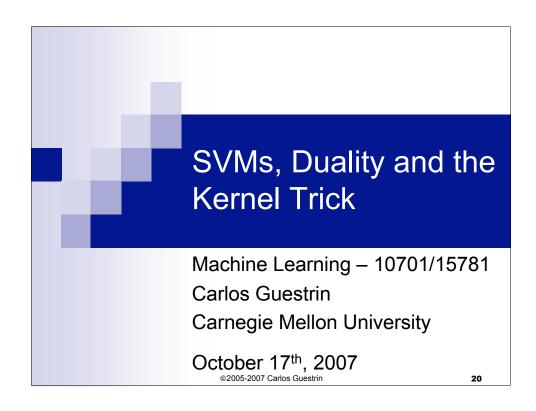


Learn 1 classifier: Multiclass SVM $\sum_{\substack{\mathbf{w}(y_j) \\ \mathbf{w}(y_j) \\ \mathbf{x}_j + b}} \sum_{\substack{y \\ y(y) \\ \mathbf{x}_j + b}} \mathbf{w}^{(y)} \cdot \mathbf{w}^{(y)} + C \sum_{j} \xi_j \\ \mathbf{w}^{(y_j)} \cdot \mathbf{x}_j + b^{(y_j)} \geq \mathbf{w}^{(y')} \cdot \mathbf{x}_j + b^{(y')} + 1 - \xi_j, \ \forall y' \neq y_j, \ \forall j \in \mathbb{Z}, \ \forall j \in \mathbb{Z}$

What you need to know

- Ŋ
- Maximizing margin
- Derivation of SVM formulation
- Slack variables and hinge loss
- Relationship between SVMs and logistic regression
 - □ 0/1 loss
 - ☐ Hinge loss
 - □ Log loss
- Tackling multiple class
 - □ One against All
 - □ Multiclass SVMs

©2005-2007 Carlos Guestrin

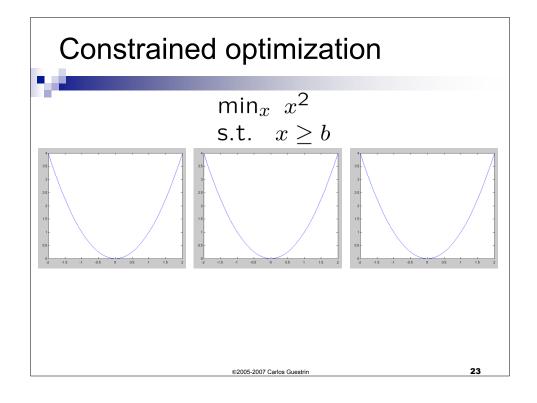


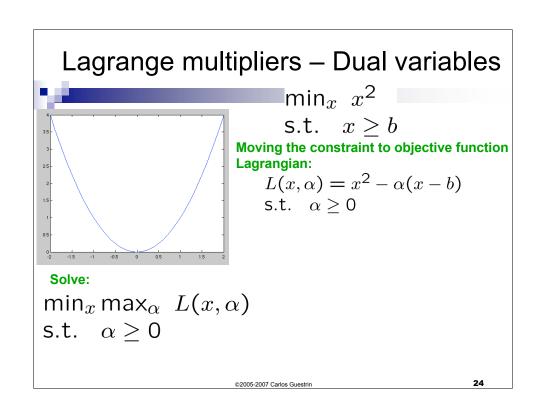
Today's lecture

- Learn one of the most interesting and exciting recent advancements in machine learning
 - ☐ The "kernel trick"
 - ☐ High dimensional feature spaces at no extra cost!
- But first, a detour
 - □ Constrained optimization!

2005-2007 Carlos Guestrin

. .





Lagrange multipliers — Dual variables solving: $\min_x \max_\alpha x^2 - \alpha(x-b)$ s.t. $\alpha \geq 0$

Dual SVM derivation (1) – the linearly separable case

$$\begin{array}{ll} \text{minimize}_{\mathbf{w},b} & \frac{1}{2}\mathbf{w}.\mathbf{w} \\ \left(\mathbf{w}.\mathbf{x}_j + b\right)y_j \geq 1, \ \forall j \end{array}$$

2005-2007 Carlos Guestrin

Dual SVM derivation (2) the linearly separable case

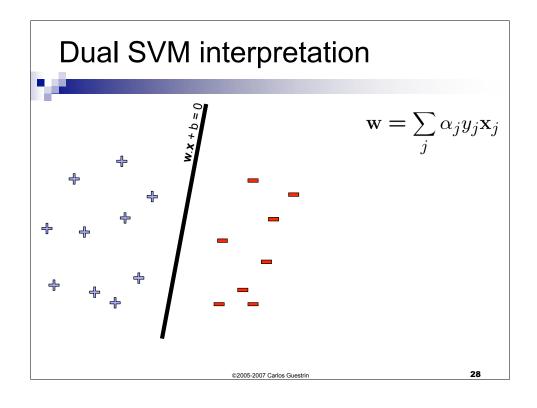
$$L(\mathbf{w}, \alpha) = \frac{1}{2}\mathbf{w}.\mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w}.\mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

 $\alpha_{j} \ge 0, \ \forall j$

$$\mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$

$$\mathbf{w} = \sum_{j} lpha_{j} y_{j} \mathbf{x}_{j}$$
 minimize $_{\mathbf{w}} \quad \frac{1}{2} \mathbf{w}.\mathbf{w}$ $\left(\mathbf{w}.\mathbf{x}_{j} + b\right) y_{j} \geq 1, \ orall j$ $b = y_{k} - \mathbf{w}.\mathbf{x}_{k}$ for any k where $lpha_{k} > 0$

©2005-2007 Carlos Guestr



Dual SVM formulation – the linearly separable case

maximize
$$_{\alpha}$$
 $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j}$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} \geq 0$$
 $\mathbf{w} = 0$

$$\mathbf{w} = \sum_i lpha_i y_i \mathbf{x}_i$$
 $b = y_k - \mathbf{w}.\mathbf{x}_k$ for any k where $lpha_k > 0$

©2005-2007 Carlos Guestrin

29

Dual SVM derivation – the non-separable case

 $\begin{aligned} & \underset{\mathbf{w}, b}{\text{minimize}}_{\mathbf{w}, b} & & \frac{1}{2}\mathbf{w}.\mathbf{w} + C\sum_{j}\xi_{j} \\ & \left(\mathbf{w}.\mathbf{x}_{j} + b\right)y_{j} \geq 1 - \xi_{j}, \ \forall j \\ & \qquad \qquad \xi_{j} \geq 0, \ \forall j \end{aligned}$

©2005-2007 Carlos Guestrin

Dual SVM formulation – the non-separable case

$$\text{maximize}_{\alpha} \quad \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j}$$

$$\begin{array}{l} \sum_i \alpha_i y_i = \mathbf{0} \\ C \geq \alpha_i \geq \mathbf{0} \end{array}$$

$$\mathbf{w} = \sum_{i} \alpha_i y_i \mathbf{x}_i$$

$$b = y_k - \mathbf{w}.\mathbf{x}_k$$

for any k where $C > \alpha_k > 0$

©2005-2007 Carlos Guestrin

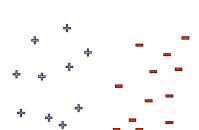
31

Why did we learn about the dual SVM?

- There are some quadratic programming algorithms that can solve the dual faster than the primal
- But, more importantly, the "kernel trick"!!!
 - □ Another little detour...

©2005-2007 Carlos Guestrin

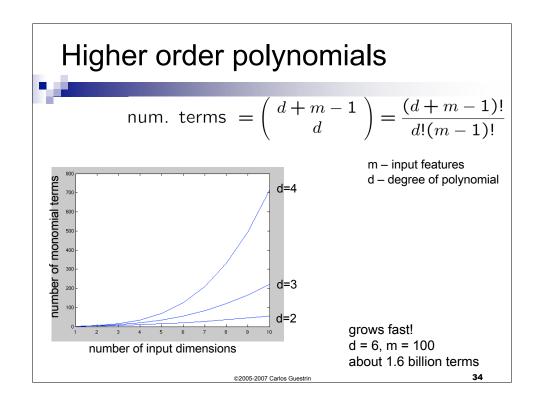
Reminder from last time: What if the data is not linearly separable?



Use features of features of features of features....

$$\Phi(\mathbf{x}): R^m \mapsto F$$

Feature space can get really large really quickly,



Dual formulation only depends on dot-products, not on w!

$$\begin{aligned} \text{maximize}_{\alpha} \quad & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j} \\ & \sum_{i} \alpha_{i} y_{i} = \mathbf{0} \\ & C \geq \alpha_{i} \geq \mathbf{0} \end{aligned}$$

$$\begin{aligned} \text{maximize}_{\alpha} \quad & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j}) \\ & K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j}) \\ & \sum_{i} \alpha_{i} y_{i} = 0 \\ & C \geq \alpha_{i} \geq 0 \\ & C \geq \alpha_{i} \geq 0 \end{aligned}$$

Dot-product of polynomials

$$\Phi(u) \cdot \Phi(v) = \text{polynomials of degree d}$$

©2005-2007 Carlos Guestrin

Finally: the "kernel trick"!

maximize_{$$\alpha$$} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$

$$K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j})$$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$C \ge \alpha_{i} \ge 0$$

- Never represent features explicitly
 Compute dot products in closed form
- Constant-time high-dimensional dotproducts for many classes of features
- Very interesting theory Reproducing Kernel Hilbert Spaces
 - □ Not covered in detail in 10701/15781, more in 10702

 $\mathbf{w} = \sum_i lpha_i y_i \Phi(\mathbf{x}_i)$ $b = y_k - \mathbf{w}. \Phi(\mathbf{x}_k)$ for any k where $C > lpha_k > 0$

©2005-2007 Carlos Guestrin

37

Polynomial kernels

■ All monomials of degree d in O(d) operations:

 $\Phi(\mathbf{u})\cdot\Phi(\mathbf{v})=(\mathbf{u}\cdot\mathbf{v})^d=$ polynomials of degree d

- How about all monomials of degree up to d?
 - □ Solution 0:
 - □ Better solution:

©2005-2007 Carlos Guestrin

Common kernels

Polynomials of degree d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$$

- Polynomials of degree up to d
- $\blacksquare \operatorname{Gau}K(\mathbf{u},\mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + \mathbf{1})^d$
- Sign $pid_{\mathbf{u}, \mathbf{v}} = \exp\left(-\frac{||\mathbf{u} \mathbf{v}||}{2\sigma^2}\right)$

$$K(\mathbf{u}, \mathbf{v}) = \tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)$$

2005-2007 Carlos Guestrin

39

Overfitting?

- Huge feature space with kernels, what about overfitting???
 - □ Maximizing margin leads to sparse set of support vectors
 - ☐ Some interesting theory says that SVMs search for simple hypothesis with large margin
 - □ Often robust to overfitting

©2005-2007 Carlos Guestrin

What about at classification time

- For a new input \mathbf{x} , if we need to represent $\Phi(\mathbf{x})$, we are in trouble!
- Recall classifier: sign(w.Ф(x)+b)
- Using kernels we are cool!

$$K(\mathbf{u}, \mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$$

Using kernels we are cool!
$$K(\mathbf{u},\mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$$

$$w = \sum_i \alpha_i y_i \Phi(\mathbf{x}_i)$$

$$b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$$
 for any k where $C > \alpha_k > 0$

SVMs with kernels

- Choose a set of features and kernel function
- Solve dual problem to obtain support vectors α_i
- At classification time, compute:

$$\mathbf{w} \cdot \Phi(\mathbf{x}) = \sum_i \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i)$$

$$b = y_k - \sum_i \alpha_i y_i K(\mathbf{x}_k, \mathbf{x}_i)$$
 for any k where $C > \alpha_k > 0$

What's the difference between SVMs and Logistic Regression?

	SVMs	Logistic Regression
Loss function		
High dimensional features with kernels		

©2005-2007 Carlos Guestrin

43

Kernels in logistic regression

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \Phi(\mathbf{x}) + b)}}$$

Define weights in terms of support vectors:

$$\mathbf{w} = \sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i})$$

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}) + b)}}$$

$$= \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} K(\mathbf{x}, \mathbf{x}_{i}) + b)}}$$

 \blacksquare Derive simple gradient descent rule on α_{i}

©2005-2007 Carlos Guestrin

What's the difference between SVMs and Logistic Regression? (Revisited)

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!

What you need to know

- Dual SVM formulation
 - ☐ How it's derived
- The kernel trick
- Derive polynomial kernel
- Common kernels
- Kernelized logistic regression
- Differences between SVMs and logistic regression

2005-2007 Carlos Guestrin