

Lower dimensional projections

v

 Rather than picking a subset of the features, we can new features that are combinations of existing features

low. dim. proj. X=0.15(+0.752 -0.35 x, ...

Let's see this in the unsupervised setting

©2005-2007 Carlos Guestrin

PCA finds projection that minimizes reconstruction error

- Given m data points: $\mathbf{x}^i = (x_1^i, ..., x_n^i)$, i=1...m
- Will represent each point as a projection:

$$\qquad \qquad \square \quad \hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z^i_j \mathbf{u}_j \quad \text{where: } \ \bar{\mathbf{x}} = \frac{1}{m} \sum_{i=1}^m \mathbf{x}^i \quad \text{and} \quad z^i_j = (\mathbf{x}^i - \bar{\mathbf{x}}) \cdot \mathbf{u}_j$$

- PCA:
 - □ Given k·n, find $(\mathbf{u}_1,...,\mathbf{u}_k)$ minimizing reconstruction error:

$$error_k = \sum_{i=1}^m (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2$$

Understanding the reconstruction error

Note that **x**ⁱ can be represented exactly by n-dimensional projection:

$$\mathbf{x}^i = \bar{\mathbf{x}} + \sum_{j=1}^n z_j^i \mathbf{u}_j$$

 $\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j$

$$z^i_j = (\mathbf{x}^i - \mathbf{\bar{x}}) \cdot \mathbf{u}_j$$

□Given k·n, find $(\mathbf{u}_1,...,\mathbf{u}_k)$ minimizing reconstruction error:

$$error_k = \sum_{i=1}^m (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2$$

Rewriting error:

©2005-2007 Carlos Guestrin

Reconstruction error and covariance matrix

$$error_k = \sum_{i=1}^m \sum_{j=k+1}^n [\mathbf{u}_j \cdot (\mathbf{x}^i - \bar{\mathbf{x}})]^2$$

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}^{i} - \bar{\mathbf{x}}) (\mathbf{x}^{i} - \bar{\mathbf{x}})^{T}$$

©2005-2007 Carlos Guestri

7

Minimizing reconstruction error and eigen vectors

Minimizing reconstruction error equivalent to picking orthonormal basis_n (u₁,...,u_n) minimizing:

$$error_k = \sum_{j=1}^{n} \mathbf{u}_j^T \mathbf{\Sigma} \mathbf{u}_j$$

- Eigen vector:
- Minimizing reconstruction error equivalent to picking (u_{k+1},...,u_n) to be eigen vectors with smallest eigen values

©2005-2007 Carlos Guestrin

.

Basic PCA algoritm

- Start from m by n data matrix X
- Recenter: subtract mean from each row of X
 - $\square X_c \leftarrow X \overline{X}$
- Compute covariance matrix:
 - $\square \Sigma \leftarrow 1/m X_c^T X_c$
- Find eigen vectors and values of Σ
- Principal components: k eigen vectors with highest eigen values

©2005-2007 Carlos Guestrin

PCA example

$$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}$$

Eigenfaces reconstruction

Each image corresponds to adding 8 principal components:

©2005-2007 Carlos Guestri

42

Scaling up

- Covariance matrix can be really big!
 - $\ \ \ \ \ \Sigma$ is n by n
 - \square 10000 features ! $|\Sigma|$
 - □ finding eigenvectors is very slow...
- Use singular value decomposition (SVD)
 - $\hfill \square$ finds to k eigenvectors
 - $\hfill\Box$ great implementations available, e.g., Matlab svd

©2005-2007 Carlos Guestrin

4.4

SVD

- Write X = W S V^T
 - □ **X** ← data matrix, one row per datapoint
 - \square **W** \leftarrow weight matrix, one row per datapoint coordinate of \mathbf{x}^i in eigenspace
 - □ **S** ← singular value matrix, diagonal matrix
 - in our setting each entry is eigenvalue λ_i
 - □ V^T ← singular vector matrix
 - in our setting each row is eigenvector v_i

©2005-2007 Carlos Guestria

15

PCA using SVD algoritm

- Start from m by n data matrix X
- Recenter: subtract mean from each row of X
 - $\square X_c \leftarrow X \overline{X}$
- Call SVD algorithm on X_c ask for k singular vectors
- **Principal components:** k singular vectors with highest singular values (rows of **V**^T)
 - □ Coefficients become:

What you need to know

- Dimensionality reduction
 - □ why and when it's important
- Simple feature selection
- Principal component analysis
 - □ minimizing reconstruction error
 - □ relationship to covariance matrix and eigenvectors
 - □ using SVD

©2005-2007 Carlos Guestri

17

Announcements

- University Course Assessments
 - □ Please, please...
- Last lecture:
 - □ Thursday, 11/29, 4:40-6:30pm, Wean 7500

©2005-2007 Carlos Guestrin

Machine Learning – 10701/15781

Carlos Guestrin

Carnegie Mellon University

November 28th, 2007

19

Thus far this semester

- Regression:
- Classification:
- Density estimation:

©2005-2007 Carlos Guestrin

Learning to play backgammon

[Tesauro '95]

- Combines reinforcement learning with neural networks
- Played 300,000 games against itself
- Achieved grandmaster level!

©2005-2007 Carlos Guestrin

Roadmap to learning about reinforcement learning

- When we learned about Bayes nets:
 - ☐ First talked about formal framework:
 - representation
 - inference
 - □ Then learning for BNs
- For reinforcement learning:
 - □ Formal framework
 - Markov decision processes
 - □ Then learning

©2005-2007 Carlos Guestrin

States and actions

- State space:
 - □ Joint state **x** of entire system
- Action space:
 - □ Joint action $\mathbf{a} = \{a_1, ..., a_n\}$ for all agents

©2005-2007 Carlos Guestri

25

States change over time

- Next state depends on current state and action selected
 - e.g., action="build castle" likely to lead to a state where you have a castle
- Transition model:
 - \Box Dynamics of the entire system $P(\mathbf{x}'|\mathbf{x},\mathbf{a})$

©2005-2007 Carlos Guestrin

Some states and actions are better than others

- Each state x is associated with a reward
 - □ positive reward for successful attack
 - negative for loss

□ Total reward R(x)

©2005-2007 Carlos Guestri

27

Markov Decision Process (MDP) Representation

- State space:
 - □ Joint state **x** of entire system
- Action space:
 - □ Joint action $\mathbf{a} = \{a_1, ..., a_n\}$ for all agents
- Reward function:
 - □ Total reward R(x,a)
 - sometimes reward can depend on action
- Transition model:
 - \Box Dynamics of the entire system $P(\mathbf{x}'|\mathbf{x},\mathbf{a})$

©2005-2007 Carlos Guestrin

Discounted Rewards

An assistant professor gets paid, say, 20K per year.

How much, in total, will the A.P. earn in their life?

$$20 + 20 + 20 + 20 + 20 + \dots = Infinity$$

What's wrong with this argument?

©2005-2007 Carlos Guestrin

29

Discounted Rewards

"A reward (payment) in the future is not worth quite as much as a reward now."

- □ Because of chance of obliteration
- □ Because of inflation

Example:

Being promised \$10,000 next year is worth only 90% as much as receiving \$10,000 right now.

Assuming payment n years in future is worth only $(0.9)^n$ of payment now, what is the AP's Future Discounted Sum of Rewards?

©2005-2007 Carlos Guestrin

Discount Factors

People in economics and probabilistic decision-making do this all the time.

The "Discounted sum of future rewards" using discount factor γ " is

(reward now) +

 γ (reward in 1 time step) +

γ² (reward in 2 time steps) +

 γ ³ (reward in 3 time steps) +

:

: (infinite sum)

©2005-2007 Carlos Guestrii

31

The Academic Life

V_A = Expected discounted future rewards starting in state A

 $V_{\rm B}$ = Expected discounted future rewards starting in state B

$$V_S =$$
 " " " " S $V_D =$ " " " " D

How do we compute V_A , V_B , V_T , V_S , V_D ?

©2005-2007 Carlos Guestrin

Computing the value of a policy

$$V_{\pi}(\mathbf{x_0}) = \mathbf{E_{\pi}}[R(\mathbf{x_0}) + \gamma R(\mathbf{x_1}) + \gamma^2 R(\mathbf{x_2}) + \gamma^3 R(\mathbf{x_3}) + \gamma^4 R(\mathbf{x_4}) + L]$$

- Discounted value of a state:
 - $\ \square$ value of starting from x_0 and continuing with policy π from then on

$$V_{\pi}(x_0) = E_{\pi}[R(x_0) + \gamma R(x_1) + \gamma^2 R(x_2) + \gamma^3 R(x_3) + \cdots]$$

= $E_{\pi}[\sum_{t=0}^{\infty} \gamma^t R(x_t)]$

A recursion!

Simple approach for computing the value of a policy: Iteratively $V_{\pi}(x) = R(x) + \gamma \sum_{x'} P(x' \mid x, a = \pi(x)) V_{\pi}(x')$

$$V_{\pi}(x) = R(x) + \gamma \sum_{x'} P(x' \mid x, a = \pi(x)) V_{\pi}(x')$$

- Can solve using a simple convergent iterative approach: (a.k.a. dynamic programming)
 - □ Start with some guess V₀
 - □ Iteratively say:
 - $V_{t+1} = R + \gamma P_{\pi} V_{t}$
 - □ Stop when $||V_{t+1}-V_t||_{\infty} \le \varepsilon$
 - means that $||V_{\pi}-V_{t+1}||_{\infty} \leq \varepsilon/(1-\gamma)$

©2005-2007 Carlos Guestrin

37

But we want to learn a **Policy**

- So far, told you how good a policy is...
- But how can we choose the best policy???
- Suppose there was only one time step:
 - □ world is about to end!!!
 - □ select action that maximizes reward!

At state x, action Policy: $\pi(\mathbf{x}) = \mathbf{a}$

 $\pi(\mathbf{x}_1)$ = one peasant builds barrack, other gets gold

> $\pi(\mathbf{x}_2)$ = peasants get gold, footmen attack

©2005-2007 Carlos Guestrin

Unrolling the recursion

- Choose actions that lead to best value in the long run
 - □ Optimal value policy achieves optimal value V*

$$V^*(x_0) = \max_{a_0} R(x_0, a_0) + \gamma E_{a_0} [\max_{a_1} R(x_1) + \gamma^2 E_{a_1} [\max_{a_2} R(x_2) + \cdots]]$$

©2005-2007 Carlos Guestri

20

Bellman equation

Evaluating policy π:

$$V_{\pi}(x) = R(x) + \gamma \sum_{x'} P(x' \mid x, a = \pi(x)) V_{\pi}(x')$$

■ Computing the optimal value V* - Bellman equation

$$V^*(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

©2005-2007 Carlos Guestrin

Optimal Long-term Plan

Optimal value function V*(x)

Optimal Policy: $\pi^*(\mathbf{x})$

Optimal policy:

$$\pi^*(\mathbf{x}) = \underset{a}{\operatorname{arg\,max}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

©2005-2007 Carlos Guestri

41

Interesting fact – Unique value

$$V^*(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

- Slightly surprising fact: There is only one V* that solves Bellman equation!
 - □ there may be many optimal policies that achieve V*
- Surprising fact: optimal policies are good everywhere!!!

$$V_{\pi^*}(x) \ge V_{\pi}(x), \ \forall x, \ \forall \pi$$

©2005-2007 Carlos Guestrin

Solve Bellman equation

Optimal policy π*(**x**)

$$V^*(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

Bellman equation is non-linear!!!

Many algorithms solve the Bellman equations:

- Policy iteration [Howard '60, Bellman '57]
- Value iteration [Bellman '57]
- Linear programming [Manne '60]

©2005-2007 Carlos Guestrin

43

Value iteration (a.k.a. dynamic programming) – the simplest of all

$$V^*(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

- Start with some guess V₀
- Iteratively say:

$$V_{t+1}(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V_t(\mathbf{x}')$$

- Stop when $||V_{t+1}-V_t||_{\infty} \le \epsilon$
 - $\hfill\Box$ means that $||V^*\text{-}V_{t+1}||_\infty \leq \epsilon/(1\text{-}\gamma)$

©2005-2007 Carlos Guestrin

Let's compute $V_t(x)$ for our example

t	V _t (PU)	$V_t(PF)$	V _t (RU)	V _t (RF)
1	0	0	10	10
2	0	4.5	14.5	19
3	2.03	6.53	25.08	18.55
4	3.852	12.20	29.63	19.26
5	7.22	15.07	32.00	20.40
6	10.03	17.65	33.58	22.43

$$V_{t+1}(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V_t(\mathbf{x}')$$

47

What you need to know

- What's a Markov decision process
 - □ state, actions, transitions, rewards
 - □ a policy
 - □ value function for a policy
 - computing V_π
- Optimal value function and optimal policy
 - □ Bellman equation
- Solving Bellman equation
 - □ with value iteration, policy iteration and linear programming

©2005-2007 Carlos Guestrin

Acknowledgment

This lecture contains some material from Andrew Moore's excellent collection of ML tutorials:

□ http://www.cs.cmu.edu/~awm/tutorials

©2005-2007 Carlos Guestrin