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Lower dimensional projections

Rather than picking a subset of the features, we 
can new features that are combinations of 
existing features

Let’s see this in the unsupervised setting 
just X, but no Y
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Linear projection and reconstruction

x1

x2

project into
1-dimension z1

reconstruction:
only know z1, 

what was (x1,x2)
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Linear projections, a review

Project a point into a (lower dimensional) space:
point: x = (x1,…,xn) 
select a basis – set of basis vectors – (u1,…,uk)

we consider orthonormal basis: 
ui•ui=1, and ui•uj=0 for i≠j

select a center – x, defines offset of space 
best coordinates in lower dimensional space defined 
by dot-products: (z1,…,zk), zi = (x-x)•ui

minimum squared error



5©2005-2007 Carlos Guestrin

PCA finds projection that minimizes 
reconstruction error

Given m data points: xi = (x1
i,…,xn

i), i=1…m
Will represent each point as a projection:

where:                           and 

PCA:
Given k·n, find (u1,…,uk) 
minimizing reconstruction error:

x1

x2
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Understanding the reconstruction 
error

Note that xi can be represented 
exactly by n-dimensional projection:

Rewriting error:

Given k·n, find (u1,…,uk) 
minimizing reconstruction error:
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Reconstruction error and 
covariance matrix
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Minimizing reconstruction error and 
eigen vectors

Minimizing reconstruction error equivalent to picking 
orthonormal basis (u1,…,un) minimizing:

Eigen vector:

Minimizing  reconstruction error equivalent to picking 
(uk+1,…,un) to be eigen vectors with smallest eigen values
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Basic PCA algoritm

Start from m by n data matrix X
Recenter: subtract mean from each row of X

Xc ← X – X
Compute covariance matrix:

Σ ← 1/m Xc
T Xc

Find eigen vectors and values of Σ
Principal components: k eigen vectors with 
highest eigen values
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PCA example



11©2005-2007 Carlos Guestrin

PCA example – reconstruction 

only used first principal component
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Eigenfaces [Turk, Pentland ’91]

Input images: Principal components:
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Eigenfaces reconstruction

Each image corresponds to adding 8 principal 
components:
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Scaling up

Covariance matrix can be really big!
Σ is n by n

10000 features ! |Σ|
finding eigenvectors is very slow…

Use singular value decomposition (SVD)
finds to k eigenvectors
great implementations available, e.g., Matlab svd
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SVD
Write X = W S VT

X ← data matrix, one row per datapoint
W ← weight matrix, one row per datapoint – coordinate of xi in eigenspace
S ← singular value matrix, diagonal matrix

in our setting each entry is eigenvalue λj

VT ← singular vector matrix
in our setting each row is eigenvector vj
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PCA using SVD algoritm

Start from m by n data matrix X
Recenter: subtract mean from each row of X

Xc ← X – X
Call SVD algorithm on Xc – ask for k singular vectors
Principal components: k singular vectors with highest 
singular values (rows of VT)

Coefficients become:
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What you need to know

Dimensionality reduction
why and when it’s important

Simple feature selection
Principal component analysis

minimizing reconstruction error
relationship to covariance matrix and eigenvectors
using SVD
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Announcements

University Course Assessments
Please, please, please, please, please, please, please, 
please, please, please, please, please, please, please, 
please, please…

Last lecture:
Thursday, 11/29, 4:40-6:30pm, Wean 7500
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Thus far this semester

Regression:

Classification:

Density estimation:
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Learning to act

Reinforcement 
learning
An agent 

Makes sensor 
observations
Must select action
Receives rewards 

positive for “good”
states
negative for “bad”
states

[Ng et al. ’05] 
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Learning to play backgammon 
[Tesauro ’95]

Combines reinforcement 
learning with neural networks
Played 300,000 games against 
itself
Achieved grandmaster level!
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Roadmap to learning about 
reinforcement learning
When we learned about Bayes nets:

First talked about formal framework:
representation 
inference

Then learning for BNs

For reinforcement learning:
Formal framework

Markov decision processes

Then learning
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peasant

footman

building

Real-time Strategy Game
Peasants collect resources and build

Footmen attack enemies
Buildings train peasants and footmen
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States and actions

State space: 
Joint state x of entire system

Action space: 
Joint action a= {a1,…, an} for all agents
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States change over time
Like an HMM, state changes over 
time

Next state depends on current state 
and action selected

e.g., action=“build castle” likely to lead 
to a state where you have a castle

Transition model: 
Dynamics of the entire system P(x’|x,a) 
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Some states and actions are 
better than others

Each state x is associated with a 
reward

positive reward for successful attack

negative for loss

Reward function: 
Total reward R(x)
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Markov Decision Process (MDP) 
Representation

State space: 
Joint state x of entire system

Action space: 
Joint action a= {a1,…, an} for all agents

Reward function: 
Total reward R(x,a)

sometimes reward can depend on action

Transition model: 
Dynamics of the entire system P(x’|x,a) 
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Discounted Rewards
An assistant professor gets paid, say, 20K per year.

How much, in total, will the A.P. earn in their life?

20 + 20 + 20 + 20 + 20 + … = Infinity

What’s wrong with this argument?

$ $
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Discounted Rewards

“A reward (payment) in the future is not worth quite as 
much as a reward now.”

Because of chance of obliteration
Because of inflation

Example:
Being promised $10,000 next year is worth only 90% as much as 
receiving $10,000 right now.

Assuming payment n years in future is worth only (0.9)n of 
payment now, what is the AP’s Future Discounted Sum of 
Rewards ?
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Discount Factors

People in economics and probabilistic decision-making do 
this all the time.
The “Discounted sum of future rewards” using discount 
factor γ” is

(reward now) +
γ (reward in 1 time step) +
γ 2 (reward in 2 time steps) +
γ 3 (reward in 3 time steps) +

:
:       (infinite sum)
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The Academic Life

Define:
VA = Expected discounted future rewards starting in state A
VB = Expected discounted future rewards starting in state B
VT =       “ “ “ “ “ “ “ T
VS =       “ “ “ “ “ “ “ S
VD =       “ “ “ “ “ “ “ D

How do we compute VA, VB, VT, VS, VD ?

A.
Assistant

Prof
20

B.
Assoc.

Prof
60

S.
On the
Street

10

D.
Dead

0

T.
Tenured

Prof
400

Assume Discount 

Factor γ = 0.9

0.7

0.7

0.6

0.3

0.2 0.2

0.2

0.3

0.6
0.2
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Computing the Future Rewards of 
an Academic

Assume Discount 
Factor γ = 0.9

0.7
A.

Assistant
Prof
20

B.
Assoc.

Prof
60

S.
On the
Street

10

D.
Dead

0

T.
Tenured

Prof
400

0.7

0.6

0.3

0.2 0.2

0.2

0.3

0.6
0.2
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Policy

Policy: π(x) = a
At state x, 

action a for all 
agents

π(x0) = both peasants get wood
x0

π(x1) = one peasant builds 
barrack, other gets gold 

x1

π(x2) = peasants get gold, 
footmen attack

x2
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Value of Policy

Value: Vπ(x)
Expected long-

term reward 
starting from x

Start 
from x0

x0

R(x0)

π(x0)

Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) + 
γ3 R(x3) + γ4 R(x4) + �]

Future rewards 
discounted by γ 2 [0,1)x1

R(x1)

x1’’

x1’
R(x1’)

R(x1’’)

π(x1)

x2

R(x2)

π(x2)

x3

R(x3)

π(x3) x4

R(x4)

π(x1’)

π(x1’’)
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Computing the value of a policy
Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) + 

γ3 R(x3) + γ4 R(x4) + �]
Discounted value of a state:

value of starting from x0 and continuing with policy π from then on

A recursion!
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Simple approach for computing the 
value of a policy: Iteratively

Can solve using a simple convergent iterative approach: 
(a.k.a. dynamic programming)

Start with some guess V0

Iteratively say:
Vt+1 = R + γ Pπ Vt

Stop when ||Vt+1-Vt||1 · ε
means that ||Vπ-Vt+1||1 · ε/(1-γ)
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But we want to learn a Policy
Policy: π(x) = a

At state x, action 
a for all agents

π(x0) = both peasants get wood
x0

π(x1) = one peasant builds 
barrack, other gets gold 

x1

π(x2) = peasants get gold, 
footmen attack

x2

So far, told you how good a 
policy is…
But how can we choose the 
best policy???

Suppose there was only one 
time step:

world is about to end!!!
select action that maximizes 
reward!


