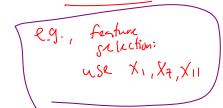
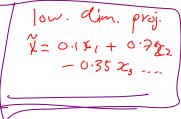


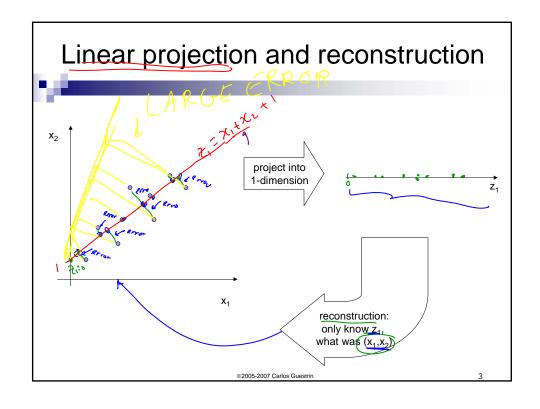
Lower dimensional projections

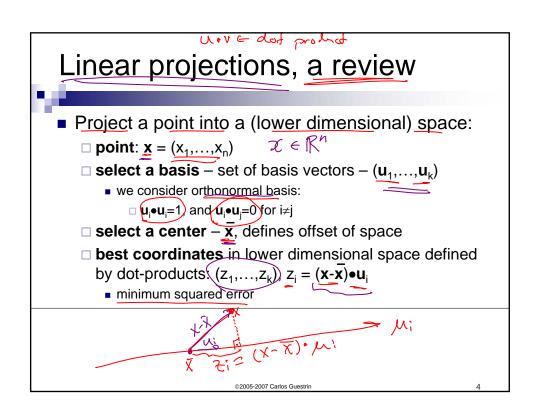
 Rather than picking a subset of the features, we can new features that are combinations of existing features





■ Let's see this in the unsupervised setting



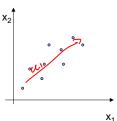


PCA finds projection that minimizes reconstruction error KC num of basis vector.

- Given m data points: $\mathbf{x}^i = (x_1^i, ..., x_n^i)$, i=1...m
- Will represent each point as a projection:

- PCA:
 - \square Given ken, find $(\mathbf{u}_1,...,\mathbf{u}_k)$ minimizing reconstruction error:

$$\frac{error_k = \sum_{i=1}^{m} (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2}{\text{Squared error}}$$



Understanding the reconstruction

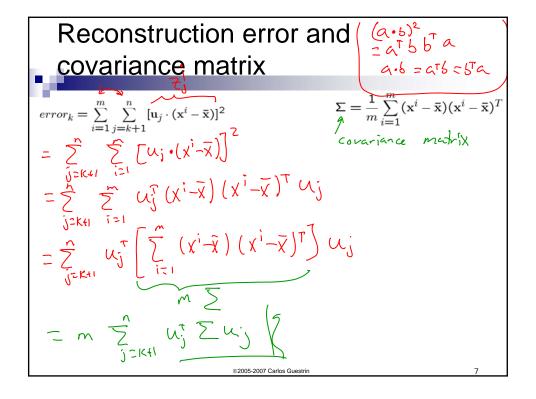
- <u>error</u>
- n Sasis orthonormal
- $z_i^i = (\mathbf{x}^i \bar{\mathbf{x}}) \cdot \mathbf{u}_i$
- Note that xⁱ can be/represented exactly by n-dimensional projection:
- \Box Given k·n, find $(\mathbf{u}_1,...,\mathbf{u}_k)$ minimizing reconstruction error:

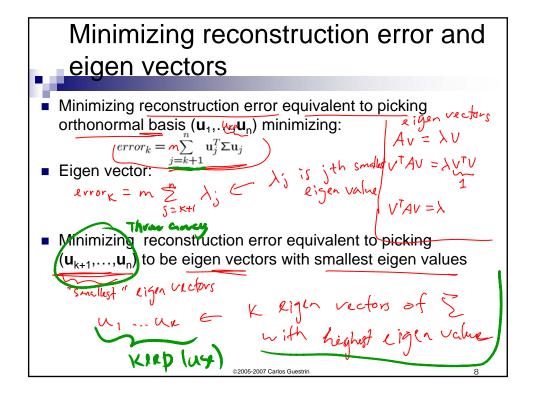
$$error_k = \sum_{i=1}^{m} (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2$$

$$(\mathbf{x}^i - \hat{\mathbf{x}}^i)^{\dagger} (\mathbf{x}^j - \hat{\mathbf{x}}^i)^{\dagger}$$

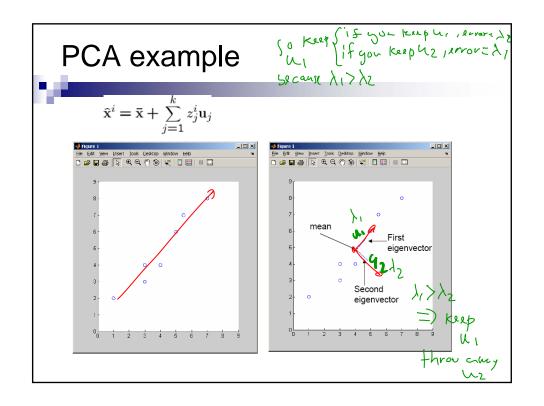
Rewriting error: $e_{x} = \sum_{i=1}^{\infty} (x^{i} - \hat{x}^{i})^{2}$ $(rror_{x} = \sum_{i=1}^{\infty} (x + \sum_{j=1}^{\infty} 2^{j}_{j} u_{j}) - (x + \sum_{j=1}^{\infty} 2^{j}_{j} u_{j})$

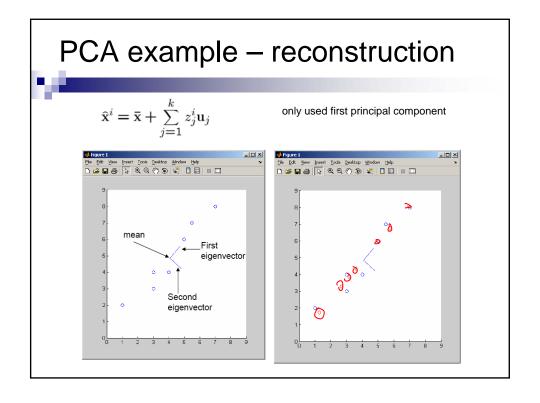
$$(\operatorname{rror}_{K} = \frac{2}{5}) \left(\begin{array}{c} 1 + \frac{2}{5} & \frac{2}{5} & \frac{1}{5} \\ 1 - \frac{2}{5} & \frac{1}{5} & \frac{1}{5} \\ 1 - \frac{2}{5} & \frac{1}{5} &$$

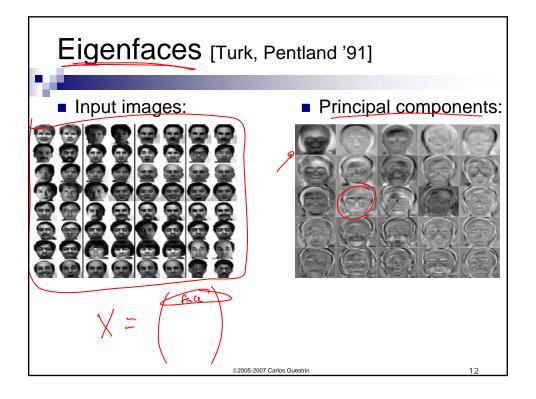




Basic PCA algoritm Start from m by n data matrix X Recenter: subtract mean from each row of X X_c ← X - X Compute covariance matrix: ΛΩ ← 1/m X_c^T X_c Find eigen vectors and values of Σ Principal components: k eigen vectors with highest eigen values







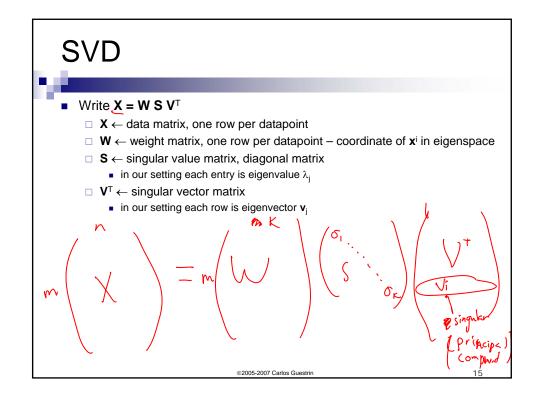
Eigenfaces reconstruction

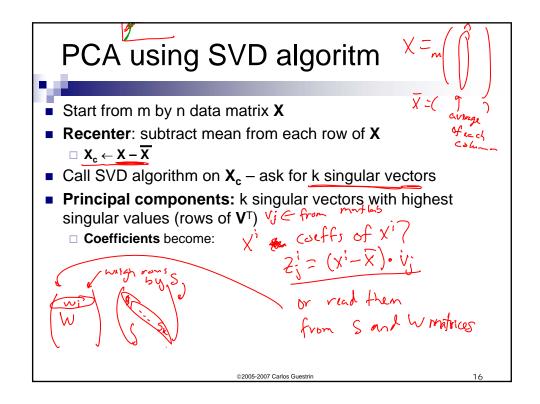
Each image corresponds to adding 8 principal components:

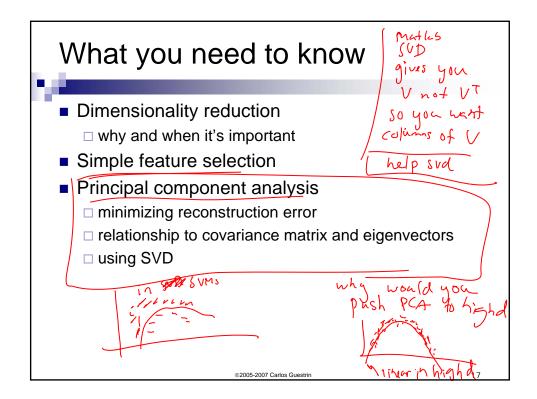
©2005-2007 Carlos Guestrin

Scaling up

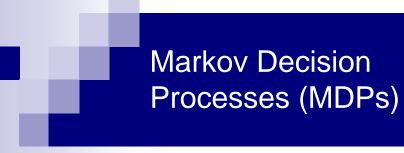
- Covariance matrix can be really big!
 - \square Σ is n by n
 - 10000 × 10000 = 100 million entry □ 10000 features 4 |Σ|
 - □ finding eigenvectors is very slow... D Stability
- Use singular value decomposition (SVD)
 - ☐ finds to k eigenvectors
 - □ great implementations available, e.g., Matlab svd







Announcements University Course Assessments Please, ple



Machine Learning – 10701/15781 Carlos Guestrin Carnegie Mellon University

November 28th, 2007

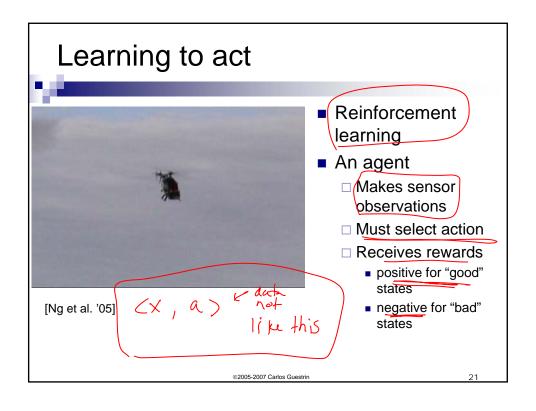
Thus far this semester

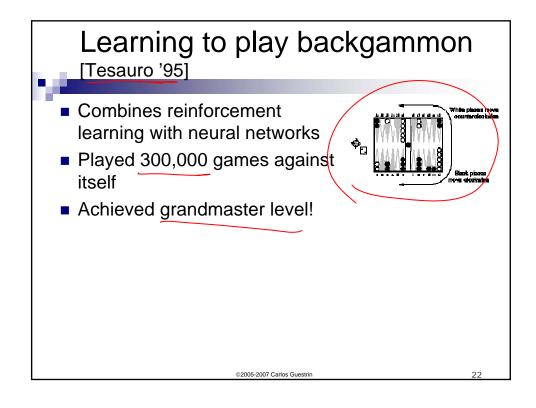
Regression: $f: \mathcal{J} \longrightarrow \mathcal{R}$ (x, t(x))

• Classification: $f: \chi \longrightarrow \{ \zeta \in \mathcal{K} \}$

■ Density estimation:
$$f: \int - \int (0,1)$$

$$\int f(x) dx = 1$$

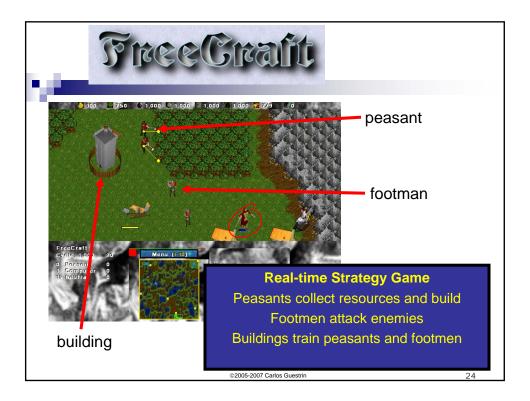


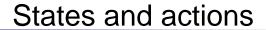


Roadmap to learning about reinforcement learning

- When we learned about <u>Bayes nets</u>:
 - ☐ First talked about formal framework:
 - representation
 - inference
 - ☐ Then learning for BNs
- For reinforcement learning:
 - □ Formal framework
 - Markov decision processes
 - □ Then learning

©2005-2007 Carlos Guestrin





- State space:
 - □ Joint state x of entire system
- Action space:
 - □ Joint action $a = \{a_1, ..., a_n\}$ for all agents

©2005-2007 Carlos Guestrin

25

States change over time

- Like an HMM, state changes over time
- Next state depends on current state and action selected
 - □ e.g., action="build castle" likely to lead to a state where you have a castle

■ Transition model:

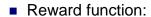
P (XE11|XE, G.*)

 \square Dynamics of the entire system P(x'|x,a)

©2005-2007 Carlos Guestrin

Some states and actions are better than others

- •
- Each state x is associated with a reward
 - □ positive reward for successful attack
 - negative for loss



□ Total reward R(**x**)

can also be a function of action $K(X, a) \rightarrow \mathbb{R}$

©2005-2007 Carlos Guestrin

2

Markov Decision Process (MDP) Representation

- State space:
 - □ Joint state **x** of entire system
- Action space:
 - □ Joint action $\mathbf{a} = \{a_1, ..., a_n\}$ for all agents
- Reward function:
 - □ Total reward R(x,a)
 - sometimes reward can depend on action
- Transition model:
 - \Box Dynamics of the entire system $P(\mathbf{x}'|\mathbf{x},\mathbf{a})$

©2005-2007 Carlos Guestrin

Discounted Rewards

An assistant professor gets paid, say, 20K per year.

How much, in total, will the A.P. earn in their life?

$$20 + 20 + 20 + 20 + 20 + \dots =$$
Infinity

nflation

What's wrong with this argument?

©2005-2007 Carlos Guestrin

29

Discounted Rewards

"A reward (payment) in the future is not worth quite as much as a reward now."

- ☐ Because of chance of obliteration
- □ Because of inflation

Example:

Being promised \$10,000 next year is worth only 90% as much as receiving \$10,000 right now.

Assuming payment <u>n</u> years in future is worth only $(0.9)^n$ of payment now, what is the AP's Future Discounted Sum of Rewards?

$$20 + 10 + 1$$

$$= 20$$

©2005-2007 Carlos Guestrin

Discount Factors

People in economics and probabilistic decision-making do this all the time.

The "Discounted sum of future rewards" using discount factor $\hat{\gamma}$ " is

(reward now) +

 γ (reward in 1 time step) +

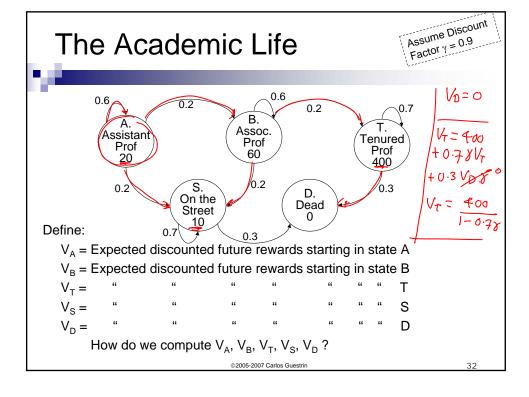
 γ^2 (reward in 2 time steps) +

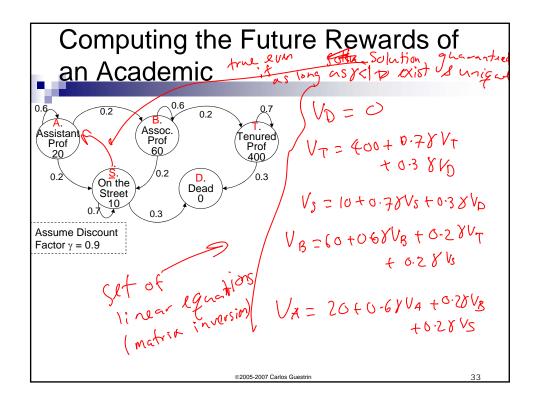
 γ ³ (reward in 3 time steps) +

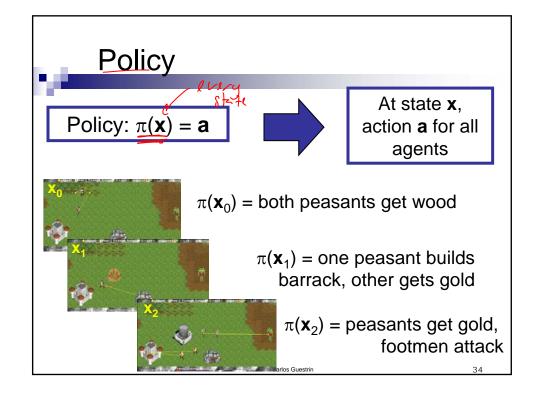
:

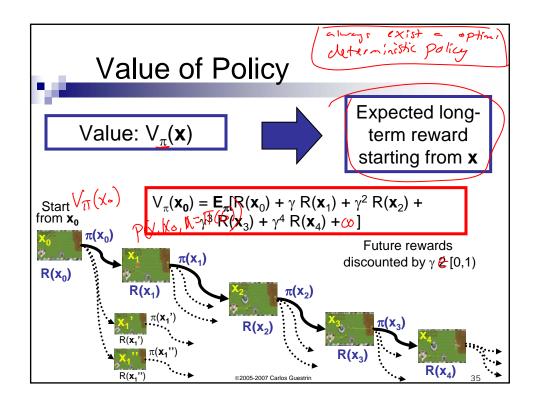
: (infinite sum)

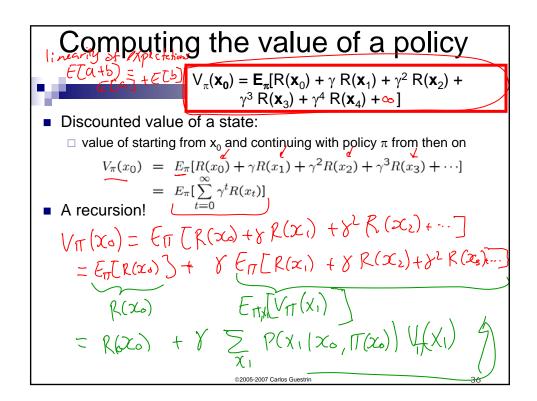
©2005-2007 Carlos Guestrin











Simple approach for computing the value of a policy: Iteratively

$$V_{\pi}(x) = R(x) + \gamma \sum_{x'} P(x' \mid x, a = \pi(x)) V_{\pi}(x')$$

- Can solve using a simple convergent iterative approach: (a.k.a. dynamic programming)

 Start with some guess V_0 any guess V_0 but a good guess V_0 V_0

 - Iteratively say:
 - □ Stop when $\|V_{t+1} V_t\|_{\infty} \le \varepsilon$
 - means that $||V_{\pi}-V_{t+1}||_{\infty} \leq \varepsilon/(1-\gamma)$

©2005-2007 Carlos Guestrin

But we want to learn a **Policy**

Policy: $\pi(\mathbf{x}) = \mathbf{a}$

- So far, told you how good a policy is... $V_{\pi}(\chi)$
- But how can we choose the best policy???
- Suppose there was only one time step:
 - □ world is about to end!!!
 - □ select action that maximizes

 $\pi(\mathbf{x}_1)$ = one peasant builds barrack, other gets gold

 $\pi(\mathbf{x}_2)$ = peasants get gold,

At state x. action

a for all agents

reward! for state x $a^* = \underset{a}{\operatorname{arg max}} R(x) + \underset{x'}{\sum} P(x'|x,a) R(x')$