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Lower dimensional projections
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m Rather than picking a subset of the features, we
can new features that are combinations of
existing features —
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m Let's see this in the unsupervised setting
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Li rojection and reconstruction
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1-dimension

reconstruction:
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Linear projections, a review
" JEE

m Project a point into a (lower dimensional) space:
. n
point: X = (Xq,..-,X;) Z K
select a basis — set of basis vectors — (Uj,...,u,)
= we consider orthonormal basis: _
and or i#j

select a center —X, defines offset of space

best coordinates-in lower dimensional space defined

by dot—products z, = (X-x)oU,

- ==

= minimum squared error
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PCA finds projection that minimizes

. feconstruction error  « = - < b uech,

m Given m data points: x' = (x;},...,X,), i=1...m
m Will rearesem_each point as a projection:
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m PCA: X
Given ke, find (ug,...,u,) . B
minimizing rfagﬂig[%non error: /
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= (x' —X)-u;
Given k-n, find (uy,...,u,)

minimizing reconstruction error:
m

errory, = Y (x' — x%)2
i=1 “~N——s
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Reconstruction error and | @&+,

_ covariancs matrix acb =ath e
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Minimizing reconstruction error and
_ eigen vectors

m Minimizing reconstruction error equivalent to picking ve g
orthonormal basis (u,,.U,) minimizing: < ‘9’"&
- = m —
errory =my_ u:{Zuj Av = AV
i j=k+1
m Eigen vector: e s
X.VV‘DI"K = m i )\0 (__/‘ 25
5:K+(
Theow cm.% _ _ _
§ reconstruction error equivalent to
to be eigen vectors with smallest eigen values

_—
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Basic PCA algoritm x: ~
"

m Start from m by n data matrix X
m Recenter: subtract mean from each row of X

X, X=X
fzij S ({VVJ}/QS)

Compute covariance matrix:
e 1mX.T X, /
Find eigen vectors and values of £

Principal components: k eigen vectors with
highest eigen values
R A e
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PCA example — reconstruction
* N

k
~i = i only used first principal component
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Eigenfaces reconstruction

“ JE
m Each image corresponds to adding 8 principal

components:
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Scaling up
" JEE
m Covariance matrix can be really big!
Zisnbyn
10000 featuresd || &
finding eigenvectors is very slow...

D Sk \l"b
m Use singular value decomposition (SVD)

finds to k eigenvectors
great implementations available, e.d., Matlab svd
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SVD

* JE
m Write X=WSVT
X « data matrix, one row per datapoint
W <« weight matrix, one row per datapoint — coordinate of xi in eigenspace
S « singular value matrix, diagonal matrix
= in our setting each entry is eigenvalue A
VT « singular vector matrix
= in our setting each row is eigenvector v,

n K
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PCA using SVD algoritm "™~
" JEE

m Start from m by n data matrix X X< &I,,%W
m Recenter: subtract mean from each row of X °f:7:4

X, X=X
Call SVD algorithm on X, — ask for k singular vectors

Principal components: k singular vectorg}wnh hlghest
singular values (rows of VT) % & from ™

Coefficients become: % e Cauppj O'JC %'7
2= (R

o ed P
&Vh*"\ S ’\f\}\ L\/W’fﬁ@:s‘
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What you need to know | {®

1 ’jlws lJou\
o V ned UT
m Dimensionality reduction 50 Yoo Leart
why and when it's important colrrns of (/
m Simple feature selection help svd.

m| Principal component analysis
minimizing reconstruction error

relationship to covariance matrix and eigenvectors
using SVD
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Announcements

University Course Assessments

Please, please, please, please, please, please, please,

please, please, please, please, please, please, please,
please, please...

m Last lecture:

Thursday, 11/29, 4:40-6:30pm, Wean 7500
AICA

Tomovivw
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Markov Decision
Processes (MDPs)

Machine Learning — 10701/15781
Carlos Guestrin
Carnegie Mellon University

November 28th, 2007

19

Thus far this semester

" N &
m Regression: ,]f‘, K > K X, €60 >
m Classification: 7ﬁ }( —> {1,

m Density estimation: 1{ ;\5\ A o]

%ﬁ(x)ﬂ(x:i
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Learning to act
*

X ay ek
If ko dhis

[Ng et al. '05]
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m| Reinforcement

m An agent
(Makes sensor
observations

1 Must select action

—_—

1 Receives rewards

= positive for “good”
states ———

n negative for “bad”
states

21

Learning to play backgammon

: |Tesauro ’95|

m Combines reinforcement
learning with neural networks

m Played 300,000 games against
itself

m Achieved grandmaster level!
’\/
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Roadmap to learning about
reinforcement learning

m When we learned about Bayes nets:
1 First talked about formal framework:

= representation
= inference

1 Then learning for BNs
AL L ALt

m For reinforcement learning:

1 Formal framework
= Markov decision processes

1 Then learning
/_/_\
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peasant

footman

Real-time Strategy Game
Peasants collect resources and build
Footmen attack enemies
building Buildings train peasants and footmen
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States and actions
'_
m State space:

0 Joint stat@f entire system

m Action space:
0 Joint actiorl a}_ {a,,..., &} for all agents
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____States change over time

m Like an HMM, state changes over
—_—
time
m Next state depends on current state
and action selected

[,

[ e.g., action="build castle” likely to lead
to a state where you have a castle

m Transition model: ?(,(H,A/é,a@

1 Dynamics of the entire system P(x’|x,a)
C%\ @\ A
@@
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Some states and actions are
better than others

m Each state x is associated with a
reward

—_

[ positive reward for successful attack
[ negative for loss

m Reward function:

[ Total reward R(x)
_— =

Can aleo Lo C\,ﬁwohn G)E ‘NC7'7‘O’)
NCENEN S

o —

©2005-2007 Carlos Guestrin 27

Markov Decision Process (MDP)

. Reﬁresentation

m  State space:
1 Joint state x of entire system

m  Action space:

[ Joint action a= {a,,..., a,} for all agents

m  Reward function:

1 Total reward R(x,a)
= sometimes reward can depend on action

m  Transition model:
1 Dynamics of the entire system P(x’|x,a)
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Discounted Rewards

An assistant professor gets paid, say, 20K per year.
How much, in total, will the A.P. earn in their life?
20 + 20 + 20 + 20 + 20 + ... = Infinity f I

/ -.\ A edl,

et

What's wrong with this argument?
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Discounted Rewards
0

“A reward (payment) in the future is not worth quite as
much as a reward now.” -
Because of chance of obliteration
Because of inflation

s
Example:
Being promised $10,000 next year is worth only 90% as much as
receiving $10,000 right now. Y=

Assuming payment n years in future is worth only (0.9)" of
payment now, what is the AP’s Future Discounted Sum of

Rewards ? 204 X?,O & )/7’20 + }{320+..,

2.0
Y
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Discount Factors

"
C’eople in economics and probabilistic decision-m@
this all the time.
The “Discounted sum of future rewards” using discount
factor y” is
(reward now) +
v (reward in 1 time step) +

v 2 (reward in 2 time steps) +
v 3 (reward in 3 time steps) +

(infinite sum)

©2005-2007 Carlos Guestrin 31

Define:
V, = Expected discounted future rewards starting in state A
Vg = Expected discounted future rewards starting in state B

VT - “ “ “ “ “ “ “ T
VS - “ “ “ “ “ “ “ S
VD - “ “ “ “ “ “ “ D

How do we compute V,, Vg, V1, Vg, Vp ?
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Computing the Future Rewards of

Ly i Sc)lu\.‘hdh b wmfue]
_ an Academic i s tsydn wit bua ]

V= doo+ 0FY Vr
SRR

Vy = lo%0-25Vs £ 03XV

Vg =(o c06fVg £ 02 ¥y
£ 625

Assume Discount
Factor y = 0.9

Ux= 26t0-61Va t5UY%
+62¥ Vs
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Polic

" LA At state X,
Policy: n(x) = a action a for all
agents

n(X,) = both peasants get wood

n(X,) = one peasant builds
barrack, other gets gold

N 7(X,) = peasants get gold,
footmen attack
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Cﬂffjt (3;_);’_8-)—)9:/ @ PHnes
. 27— acSHC Po {(\7
Value of Policy
"

~ Expected long-
Value: V_(x) » term reward

starting from x

Start \/TY (3(J V.(Xg) = EJIR(Xg) + v R(Xy) + 72 R(X,) +
from Xo 7 ) iro, PRI, + 74 R(x,) +d]

7(Xo)

Future rewards

discounted by y 2[0,1)
R(Xo)

.
“es

e,
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l;QQﬂ;}%MQ the value of a polic
CTOAE) = =
cLo )2t TV (k) = E,R(x) + v R(K) + 72 R(x,) +
73 R(X3) + v* R(X,) +4d]
m Discounted value of a state:
1 value of starting from xoland conti?uing with p‘){olicy T fron\z then on
Va(z0) = Ex[R(z0) +vR(z1) + v’R(22) + v>R(x3) + -]

— oo
= Ex[Y 7'R(x)]
= A recursion! t=0

Vi o) = € [RG +y £050 ey R e -]

- el Nt ¥ EqlRe) + ¥ R (25
~—

00) EndVr()

SETe AN ’ZX CHENIcA) \JUCO ?




Simple approach for computing the
value of a policy: Iteratively

Va(z) = R(z)+~)> P |z,a=n(x))Va(z')
{E/

m Can solve using a simple convergent iterative approach:
(a.k.a. dynamic programming) o oo A Tiuss
Start with some guess V,  ““™) %wdj l 5ﬂ:}; s V%(D:) :%CQ)

wovks
lteratively say: Voo (1) = RE+ ) 5 pox (XM )
xl

= Vi, =R+yPV,
Stop when [|V,-V |l ¢
= means that ||V, -V,,,|[,% &/(1-y)
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But we want to learn a Policy

* JE
]

m So far, told you how good a
n(Xo) = both peasants get wood

At state x, action
a for all agents

policy is... Uy (x)
m But how can we choose the
best policy???

n(x,) = one peasant builds
barrack, other gets gold

m Suppose there was only one
time step:
world is about to end!!!
select action that maximizes

reward! o shde I ' o
i oy ot 06 * ? ooy, e) K

n(x,) = peasants get gold,
footmen attack
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