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Bias-Variance Tradeoff

 Choice of hypothesis class introduces learning bias
 More complex class → less bias
 More complex class → more variance
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Training set error

 Given a dataset (Training data)
 Choose a loss function

 e.g., squared error (L2) for regression
 Training set error: For a particular set of

parameters, loss function on training data:
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Training set error as a function of
model complexity
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Prediction error

 Training set error can be poor measure of
“quality” of solution

 Prediction error: We really care about error
over all possible input points, not just training
data:
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Prediction error as a function of
model complexity
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Computing prediction error

 Computing prediction
 hard integral
 May not know t(x) for every x

 Monte Carlo integration (sampling approximation)
 Sample a set of i.i.d. points {x1,…,xM} from p(x)
 Approximate integral with sample average
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Why training set error doesn’t
approximate prediction error?

 Sampling approximation of prediction error:

 Training error :

 Very similar equations!!!
 Why is training set a bad measure of prediction error???
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Why training set error doesn’t
approximate prediction error?

 Sampling approximation of prediction error:

 Training error :

 Very similar equations!!!
 Why is training set a bad measure of prediction error???

Because you cheated!!! 

Training error good estimate for a single w, 
But you optimized w with respect to the training error, 

and found w that is good for this set of samples

Training error is a (optimistically) biased 
estimate of prediction error 
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Test set error

 Given a dataset, randomly split it into two parts:
 Training data – {x1,…, xNtrain}
 Test data – {x1,…, xNtest}

 Use training data to optimize parameters w
 Test set error: For the final solution w*,

evaluate the error using:
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Test set error as a function of
model complexity
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Overfitting

 Overfitting: a learning algorithm overfits the
training data if it outputs a solution w when there
exists another solution w’ such that:
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How many points to I use for
training/testing?

 Very hard question to answer!
 Too few training points, learned w is bad
 Too few test points, you never know if you reached a good solution

 Bounds, such as Hoeffding’s inequality can help:

 More on this later this semester, but still hard to answer
 Typically:

 if you have a reasonable amount of data, pick test set “large enough”
for a “reasonable” estimate of error, and use the rest for learning

 if you have little data, then you need to pull out the big guns…
 e.g., bootstrapping
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Error estimators
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Error as a function of number of training
examples for a fixed model complexity

little data infinite data
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Error estimators

Be careful!!! 

Test set only unbiased if you never never never never
do any any any any learning on the test data

For example, if you use the test set to select
the degree of the polynomial… no longer unbiased!!!
(We will address this problem later in the semester)
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Announcements

 First homework is out:
 Programming part and Analytic part
 Remember collaboration policy: can discuss

questions, but need to write your own solutions and
code

 Remember you are not allowed to look at previous
years’ solutions, search the web for solutions, use
someone else’s solutions, etc.

 Due Oct. 3rd beginning of class
 Start early!

 Recitation this week:
 Bayes optimal classifiers, Naïve Bayes
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What’s (supervised) learning, more
formally

 Given:
 Dataset: Instances {〈x1;t(x1)〉,…, 〈xN;t(xN)〉}

 e.g., 〈xi;t(xi)〉 = 〈(GPA=3.9,IQ=120,MLscore=99);150K〉

 Hypothesis space: H
 e.g., polynomials of degree 8

 Loss function: measures quality of hypothesis h2H
 e.g., squared error for regression

 Obtain:
 Learning algorithm: obtain h2H that minimizes loss function

 e.g., using matrix operations for regression
 Want to minimize prediction error, but can only minimize error in dataset



10

©Carlos Guestrin 2005-2007

Types of (supervised) learning
problems, revisited
 Regression, e.g.,

 dataset: 〈position; temperature〉
 hypothesis space:
 Loss function:

 Density estimation, e.g.,
 dataset: 〈grades〉
 hypothesis space:
 Loss function:

 Classification, e.g.,
 dataset: 〈brain image; {verb v. noun}〉
 hypothesis space:
 Loss function:
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Learning is (simply) function
approximation!

 The general (supervised) learning problem:
 Given some data (including features), hypothesis space, loss

function
 Learning is no magic!
 Simply trying to find a function that fits the data

 Regression

 Density estimation

 Classification

 (Not surprisingly) Seemly different problem, very similar
solutions…
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What is NB really optimizing?

 Naïve Bayes assumption:
 Features are independent given class:

 More generally:

 NB Classifier:
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MLE for the parameters of NB

 Given dataset
 Count(A=a,B=b) Ã number of examples where A=a and B=b

 MLE for NB, simply:
 Prior: P(Y=y) =

 Likelihood: P(Xi=xi|Yi=yi) =
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What is NB really optimizing?
Let’s use an example
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Generative v. Discriminative
classifiers – Intuition

 Want to Learn: h:X a Y
 X – features
 Y – target classes

 Bayes optimal classifier – P(Y|X)
 Generative classifier, e.g., Naïve Bayes:

 Assume some functional form for P(X|Y), P(Y)
 Estimate parameters of P(X|Y), P(Y) directly from training data
 Use Bayes rule to calculate P(Y|X= x)
 This is a ‘generative’ model

 Indirect computation of P(Y|X) through Bayes rule
 But, can generate a sample of the data, P(X) = ∑y P(y) P(X|y)

 Discriminative classifiers, e.g., Logistic Regression:
 Assume some functional form for P(Y|X)
 Estimate parameters of P(Y|X) directly from training data
 This is the ‘discriminative’ model

 Directly learn P(Y|X)
 But cannot obtain a sample of the data, because P(X) is not available
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Logistic Regression
Logistic
function
(or Sigmoid):

 Learn P(Y|X) directly!
 Assume a particular functional form
 Sigmoid applied to a linear function

of the data:

Z

Features can be discrete or continuous!
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Understanding the sigmoid
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Logistic Regression –
a Linear classifier
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Very convenient!

implies

implies

implies

linear
classification

rule!
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Logistic regression v. Naïve Bayes

 Consider learning f: X  Y, where
  X is a vector of real-valued features, < X1 … Xn >
  Y is boolean

 Could use a Gaussian Naïve Bayes classifier
  assume all Xi are conditionally independent given Y
  model P(Xi | Y = yk) as Gaussian N(µik,σi)
  model P(Y) as Bernoulli(θ,1-θ)

  What does that imply about the form of P(Y|X)?

Cool!!!!
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Derive form for P(Y|X) for continuous Xi
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Ratio of class-conditional probabilities

©Carlos Guestrin 2005-2007

Derive form for P(Y|X) for continuous Xi
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Gaussian Naïve Bayes v. Logistic Regression

 Representation equivalence
 But only in a special case!!! (GNB with class-independent variances)

 But what’s the difference???
 LR makes no assumptions about P(X|Y) in learning!!!
 Loss function!!!

 Optimize different functions ! Obtain different solutions

Set of Gaussian 
Naïve Bayes parameters

(feature variance 
independent of class label)

Set of Logistic 
Regression parameters
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Logistic regression for more
than 2 classes

 Logistic regression in more general case, where
Y 2 {Y1 ... YR} : learn R-1 sets of weights
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Logistic regression more generally

 Logistic regression in more general case, where Y 2
{Y1 ... YR} : learn R-1 sets of weights

for k<R

for k=R (normalization, so no weights for this class)

Features can be discrete or continuous!
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Announcements

 Don’t forget recitation tomorrow

 And start the homework early
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Loss functions: Likelihood v.
Conditional Likelihood

 Generative (Naïve Bayes) Loss function:
Data likelihood

 Discriminative models cannot compute P(xj|w)!
 But, discriminative (logistic regression) loss function:

Conditional Data Likelihood

 Doesn’t waste effort learning P(X) – focuses on P(Y|X) all that matters for
classification
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Expressing Conditional Log Likelihood
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Maximizing Conditional Log Likelihood

Good news: l(w) is concave function of w ! no locally optimal
solutions

Bad news: no closed-form solution to maximize l(w)

Good news: concave functions easy to optimize
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Optimizing concave function –
Gradient ascent

 Conditional likelihood for Logistic Regression is concave ! Find
optimum with gradient ascent

 Gradient ascent is simplest of optimization approaches
 e.g., Conjugate gradient ascent much better (see reading)

Gradient:

Learning rate, η>0

Update rule:
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Maximize Conditional Log Likelihood:
Gradient ascent

©Carlos Guestrin 2005-2007

Gradient Descent for LR

Gradient ascent algorithm: iterate until change < ε

For i = 1… n,

repeat
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That’s all M(C)LE.  How about MAP?

 One common approach is to define priors on w
 Normal distribution, zero mean, identity covariance
 “Pushes” parameters towards zero

 Corresponds to Regularization
 Helps avoid very large weights and overfitting
 More on this later in the semester

 MAP estimate
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M(C)AP as Regularization

Penalizes high weights, also applicable in linear regression
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Gradient of M(C)AP
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MLE vs MAP

 Maximum conditional likelihood estimate

 Maximum conditional a posteriori estimate
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Naïve Bayes vs Logistic Regression

Consider Y boolean, Xi continuous, X=<X1 ... Xn>

Number of parameters:
 NB: 4n +1
 LR: n+1

Estimation method:
 NB parameter estimates are uncoupled
 LR parameter estimates are coupled
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G. Naïve Bayes vs. Logistic Regression 1

 Generative and Discriminative classifiers

  Asymptotic comparison (# training examples  infinity)
  when model correct

  GNB, LR produce identical classifiers

  when model incorrect
  LR is less biased – does not assume conditional independence

 therefore LR expected to outperform GNB

[Ng & Jordan, 2002]
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G. Naïve Bayes vs. Logistic Regression 2

 Generative and Discriminative classifiers

 Non-asymptotic analysis
  convergence rate of parameter estimates, n = # of attributes in X

 Size of training data to get close to infinite data solution
 GNB needs O(log n) samples
 LR needs O(n) samples

 GNB converges more quickly to its (perhaps less helpful)
asymptotic estimates

[Ng & Jordan, 2002]
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Some
experiments
from UCI
data sets

Naïve bayes
Logistic Regression
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What you should know about
Logistic Regression (LR)

 Gaussian Naïve Bayes with class-independent variances
representationally equivalent to LR
 Solution differs because of objective (loss) function

 In general, NB and LR make different assumptions
 NB: Features independent given class ! assumption on P(X|Y)
 LR: Functional form of P(Y|X), no assumption on P(X|Y)

 LR is a linear classifier
 decision rule is a hyperplane

 LR optimized by conditional likelihood
 no closed-form solution
 concave ! global optimum with gradient ascent
 Maximum conditional a posteriori corresponds to regularization

 Convergence rates
 GNB (usually) needs less data
 LR (usually) gets to better solutions in the limit


