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Bias-Variance Tradeoff
" J
m Choice of hypothesis class introduces learning bias

More complex class — less bias
More complex class — more variance .
Sim, ‘L p f“)O COM/’)LX) L\r (l}’\
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Training set error . - ey (i) yunc)

|
m Given % dataseS(Training data)
m Choose\a loss function
e.g., squared error (L,) for regression , ¢3.2 , ’,,/‘J;’\M

m Training set error: For a particular set of

parameters, loss function on training data: e g
1 Nirain (/ N 2 CMH
ETrTOT1rain(W) = N ; (t(xj) - ;wihi(xj))

Training set error as a function of

. gnodel complexity
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Prediction error
rediction error ,

m Training set error can be poor measure of L
“quality” of solution

m Prediction error: We really care about error
over all possible input points, not just training

data:

erroryue(w) = Fx (t(X)szhz(X))l

—

- /(t(X)—Zwihi(X)) p(x)dx
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Prediction error as a function of

. .model comglexity
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Computing prediction error
* J

m Computing prediction

hard integral
May not know t(x) for every x

—

erToriue(W) = (t(x)—Zw,;h,,;(x)) p(x)dx
N

m Monte Carlo integration (sampling approximation)

Sample a set of i.i.d. points {X4,...,X,,} from p(x) (W
Approximate integral with sample average ) L7 %Y
7/

crrormew) Y (“XJ’ - Z“’i’“("f’)
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Why training set error doesn’t

. aggroximate prediction error?

m Sampling approximation of prediction error:

M 2
1
ETTOT e (W) =2 i 2; (t(xj) — Zwihi(xj))
j= 2
m Training error :

Ntrain 2
1
ErTOTyrin(W) = N E (t(xj)—g w,—hi(xj)>
Lrawn Ji

m Very similar equations!!!
Why is training set a bad measure of prediction error???
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Why training set error doesn’t

_ aggroximate Prediction error?

Because you cheated!!!

Training error good estimate for a single w,
But you optimized w with respect to the training error,
and found w that is good for this set of samples

) Training error is a (qptimistically) biased
estimate of prediction error

m Very similar equations!!!
Why is training set a bad measure of prediction error???
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Test set error v
" A
m Given a dataset, randomly split it into two parts:
Training data — {Xy,..., Xntrain}

Test data — {X4,..., Xntest!
m Use training data to optimize parameters w

m Test set error: For the final solution w*,
evaluate the error using:

arg min Z (f(X;/) - Z wi&i(xzi))

1 Ntast

erroriest(w) = N Z (t(xj)—Zwihi(xj))

EE—— =1
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Test set error as a function of

_ .model comglexity
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Overfitting
" JEE
m Overfitting: a learning algorithm overfits the

training data if it outputs a solution w when there
exists another solution w’ such that:

lerrorirqin(W) < erroriqin (WF)] Alerrorirye (W;) < errortrue(w)]

c N Wl rDLf‘)LU/ (N ’]LV‘A;r\ '}'l\qn nw’
/
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W' Worst (9 fvain / bt Leffer A foor Fhen w ]
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How many points to | use for

training/testing?

Very hard question to answer!
Too few training points, learned w is bad
Too few test points, you never know if you reached a good solution

Bounds, such as Hoeffding’s inequality can help:
~ 2
P(|6—60"|>¢) < 2e2N¢

More on this later this semester, but still hard to answer
Typically:

if you have a reasonable amount of data, pick test set “large enough”
for a “reasonable” estimate of error, and use t st for learning

if you hav then you need to pull out the big guns...
m e.g., bootstrapping
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Error estimators
" S
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Error as a function of number of training
examples for a fixed model complexity
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Error estimators
"
Be careful!!!

err W\
Test set only unbiased if you neverAever aevernever
o —

do any any any any learning on the test data

err

For example, if you use the test set to select
the degree of the polynomial... no longer unbiased!!!
(We will address this problem later in the semester)

N 2
erroriest(w) = NLl ” Z (t(x] th (x;) )

j=1
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Announcements
"
m First homework-is-out:
Programming part and Analytic part

Remember collaboration policy: can discuss
questions, but need to write your own solutions and
code

Remember you are not allowed to look at previous
years’ solutions, search the web for solutions, use
someone else’s solutions, etc.

Due Oct. 3 beginning of class
Start early!

m Recitation this week:
Bayes optimal classifiers, Naive Bayes
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What's (supervised) learning, more
formall

. (g
m Given: [ leebels

Dataset: Instances {(X;t(X{)),..., Xnit(X 0}
= e.g., X;t(x) = ((GPA=3.9,1Q=120,MLscore=99);150K)

o KO P&[l\*ﬁj

Hypothesis space: H
= e.g., polynomials of degree 8

Loss function: measures quality of hypothesis heH

m error for regression . (1feelnos A G- coinFlips
;e % NBy
m Obtain:

Learning algorithm: obtain heH that minimizes loss function

= e.g., using matrix operations for regression
P i A
= Want to minimize prediction error, but can onl inimize error in dataset
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Types of (supervised) learning

_ problemsI revisited
: SenSor Aedn "’5’\0/(1-[11«
[ Regdressmn e.g., £24; ,2.5, c)
ataset: (position; temperature)
hypothesis space: ]7&:] ﬂ”“ H o chosse K

Loss function: Sy cuad o5 heX +— R
= Dw,e-g-, Carvt Bor 575 X3 o,

dataset: {(grades) | , 15, 87, M, .- s T h6os

hypothesis space: f\wma\ d15+ —/L'—
Loss function: o
O{wf' (7 e Crhgpd L\X;) {1/2—,—-'11"5

m Classification, e.g., Sper, veedig Uour miql
dataset: (brain image; {verbv noun}) Aot
hypothesis space: Nm‘\ Aot ( C«.thjoftc N

Loss function: 0( b (s V([,Lwc&
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Learning is (simply) function

. aggroximation!

m The general (supervised) learning problem:

Given some data (including features), hypothesis space, loss
function

Learning is no magic!
Simply trying to find a function that fits the data ;.«., oij‘I'V\."}«r /us_s
SN

Regression

Density estimation

Classification

(Not surprisingly) Seemly different problem, very similar
solutions... S
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What is NB really optimizing?
“ JEE
m Naive Bayes assumption:
Features are independent given class:

P(X1,X5|Y) = P(X1|X%53,Y)P(X5|Y)
More generally:
/)

- n

= NB Classifier: 9(V,y, 4.\ = 7¢/) Tf?&: ly\/g

Ahe- b%r

MLE for the parameters of NB
= 0
m Given dataset Xie iny
Count(A=a,B=b) « number of examples where A=a and B=b  ~ <t/
fotal  defn i om datn pont
m MLE for NB, simply:
Prior: P(Y=y) = Court (\/:UB

m
Likelihood: PX=xY;my) = Conrt (5296, Y =9)
(owf{’( 7 = c9>

5,3\, A ?ifd 1S on
8'\\’('\ wiad &~
Jirb
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Generative v. Discriminative
_ _classifiers — Intuition Z
T

PY = Spun
s WanttoLearn:hXsY < 02,3, -k
X — features +Lj
X AE

G Ceempla
Lusr. '
Y — target classes 4 P( | i
m Bayes optimal classifier — P(Y|X) ,zr;j_/,\,g; Xily- Speoy
m Generative classifier, e.g., Naive Bayes QO“WCYJ

\,_,af‘) Assume some functional form for FKL(DO@X)
'\M lJ:) Estimate parameters of P(X|Y), P(Y) directly from traninijg data
Use Bayes rule to calculate P(Y|X=x) = ( O{,%'
This is a ‘generative’ model P(x=%)
= Indirect computation of P(Y|X) through Bayes rule
= But, can generate a sample of the data, P(X) = 2, P(y) P(X]y)
n Ws, e.g., Logistic Regression: Fooakon i
Assume some functional form for P(Y|X) oF. dﬁ,x e
Estimate parameters of P(Y|X) directly from training data ‘”YU ?(\/lX’ )
This is the ‘discriminative’ model i T*

= Directly learn P(Y|X)

= But cannot obtain a sample of the d because P(X) is not available
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