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Markov Decision Process (MDP)
Representation

 State space:
 Joint state x of entire system

 Action space:
 Joint action a= {a1,…, an} for all agents

 Reward function:
 Total reward R(x,a)

 sometimes reward can depend on action

 Transition model:
 Dynamics of the entire system P(x’|x,a)
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Computing the value of a policy
Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) + 

γ3 R(x3) + γ4 R(x4) + L]
 Discounted value of a state:

 value of starting from x0 and continuing with policy π from then on

 A recursion!
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Simple approach for computing the
value of a policy: Iteratively

 Can solve using a simple convergent iterative approach:
(a.k.a. dynamic programming)
 Start with some guess V0

 Iteratively say:
 Vt+1 = R + γ Pπ Vt

 Stop when ||Vt+1-Vt||1 · ε
 means that ||Vπ-Vt+1||1 · ε/(1-γ)
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But we want to learn a Policy
Policy: π(x) = a

At state x, action
a for all agents

π(x0) = both peasants get wood
x0

π(x1) = one peasant builds 
barrack, other gets gold 

x1

π(x2) = peasants get gold, 
footmen attack

x2

 So far, told you how good a
policy is…

 But how can we choose the
best policy???

 Suppose there was only one
time step:
 world is about to end!!!
 select action that maximizes

reward!
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Unrolling the recursion

 Choose actions that lead to best value in the long run
 Optimal value policy achieves optimal value V*
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Bellman equation

 Evaluating policy π:

 Computing the optimal value V* - Bellman equation
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Optimal Long-term Plan

Optimal Policy: π*(x)Optimal value
function V*(x)

Optimal policy:

! 

"#(x) = argmax
a

R(x,a) + $ P(x' | x,a)V #(x')
x '
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Interesting fact – Unique value

 Slightly surprising fact: There is only one V* that solves
Bellman equation!
 there may be many optimal policies that achieve V*

 Surprising fact: optimal policies are good everywhere!!!
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Solving an MDP

 Policy iteration [Howard ‘60, Bellman ‘57]

 Value iteration [Bellman ‘57]

 Linear programming [Manne ‘60]

 …

Solve
Bellman
equation

Optimal
value V*(x)

Optimal
policy π*(x)

Many algorithms solve the Bellman equations:
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Bellman equation is non-linear!!!
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Value iteration (a.k.a. dynamic programming) –
the simplest of all

 Start with some guess V0

 Iteratively say:


 Stop when ||Vt+1-Vt||1 · ε
 means that ||V∗-Vt+1||1 · ε/(1-γ)
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A simple example

You run a
startup
company.

In every
state you
must
choose
between
Saving
money or
Advertising.
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Let’s compute Vt(x) for our example
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Let’s compute Vt(x) for our example

22.4333.5817.6510.036
20.4032.0015.077.225
19.2629.6312.203.8524
18.5525.086.532.033

1914.54.502
1010001
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What you need to know

 What’s a Markov decision process
 state, actions, transitions, rewards
 a policy
 value function for a policy

 computing Vπ

 Optimal value function and optimal policy
 Bellman equation

 Solving Bellman equation
 with value iteration, (other possibilities: policy iteration

and linear programming)
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The Reinforcement Learning task

World: You are in state 34.
Your immediate reward is 3.  You have possible 3 actions.

Robot: I’ll take action 2.
World:   You are in state 77.

Your immediate reward is -7.  You have possible 2 actions.

Robot:   I’ll take action 1.
World: You’re in state 34 (again).

Your immediate reward is 3.  You have possible 3 actions.
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Formalizing the (online)
reinforcement learning problem

 Given a set of states X and actions A
 in some versions of the problem size of X and A unknown

 Interact with world at each time step t:
 world gives state xt and reward rt

 you give next action at

 Goal: (quickly) learn policy that (approximately)
maximizes long-term expected discounted reward
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The “Credit Assignment” Problem

Yippee!  I got to a state with a big reward!  But which of my
actions along the way actually helped me get there??
This is the Credit Assignment problem.

“   = 100,“    “     “   26,
   “     = 2“      = 0,“    “     “   54,
   “     = 2“      = 0,“    “     “   13,
   “     = 1“      = 0,“    “     “   21,
   “     = 1“      = 0,“    “     “   21,
   “     = 1“      = 0,“    “     “   22,
   “     = 4“      = 0,“    “     “   39,
action = 2reward = 0,I’m in state 43,
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Exploration-Exploitation tradeoff

 You have visited part of the state
space and found a reward of 100
 is this the best I can hope for???

 Exploitation: should I stick with
what I know and find a good
policy w.r.t. this knowledge?
 at the risk of missing out on some

large reward somewhere
 Exploration: should I look for a

region with more reward?
 at the risk of wasting my time or

collecting a lot of negative reward
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Two main reinforcement learning
approaches

 Model-based approaches:
 explore environment, then learn model (P(x’|x,a) and R(x,a))

(almost) everywhere
 use model to plan policy, MDP-style
 approach leads to strongest theoretical results
 works quite well in practice when state space is manageable

 Model-free approach:
 don’t learn a model, learn value function or policy directly
 leads to weaker theoretical results
 often works well when state space is large
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Rmax – A model-based
approach
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Given a dataset – learn model

 Dataset:

 Learn reward function:
 R(x,a)

 Learn transition model:
 P(x’|x,a)

Given data, learn (MDP) Representation:
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Some challenges in model-based RL 1:
Planning with insufficient information
 Model-based approach:

 estimate R(x,a) & P(x’|x,a)
 obtain policy by value or policy iteration, or linear programming
 No credit assignment problem ! learning model, planning algorithm takes care of

“assigning” credit
 What do you plug in when you don’t have enough information about a state?

 don’t reward at a particular state
 plug in smallest reward (Rmin)?
 plug in largest reward (Rmax)?

 don’t know a particular transition probability?
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Some challenges in model-based RL 2:
Exploration-Exploitation tradeoff

 A state may be very hard to reach
 waste a lot of time trying to learn rewards and

transitions for this state
 after a much effort, state may be useless

 A strong advantage of a model-based approach:
 you know which states estimate for rewards and

transitions are bad
 can (try) to plan to reach these states
 have a good estimate of how long it takes to get there
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A surprisingly simple approach for model
based RL – The Rmax algorithm [Brafman & Tennenholtz]

 Optimism in the face of uncertainty!!!!
 heuristic shown to be useful long before theory was done

(e.g., Kaelbling ’90)
 If you don’t know reward for a particular state-action

pair, set it to Rmax!!!

 If you don’t know the transition probabilities
P(x’|x,a) from some some state action pair x,a
assume you go to a magic, fairytale new state x0!!!
 R(x0,a) = Rmax

 P(x0|x0,a) = 1
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Understanding Rmax

 With Rmax you either:
 explore – visit a state-action

pair you don’t know much
about

 because it seems to have lots of
potential

 exploit – spend all your time
on known states

 even if unknown states were
amazingly good, it’s not worth it

 Note: you never know if you
are exploring or exploiting!!!
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Implicit Exploration-Exploitation Lemma

 Lemma: every T time steps, either:
 Exploits: achieves near-optimal reward for these T-steps, or
 Explores: with high probability, the agent visits an unknown

state-action pair
 learns a little about an unknown state

 T is related to mixing time of Markov chain defined by MDP
 time it takes to (approximately) forget where you started
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The Rmax algorithm
 Initialization:

 Add state x0 to MDP
 R(x,a) = Rmax, ∀x,a
 P(x0|x,a) = 1, ∀x,a
 all states (except for x0) are unknown

 Repeat
 obtain policy for current MDP and Execute policy

 for any visited state-action pair, set reward function to appropriate value

 if visited some state-action pair x,a enough times to estimate P(x’|x,a)
 update transition probs. P(x’|x,a) for x,a using MLE
 recompute policy
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Visit enough times to estimate P(x’|x,a)?

 How many times are enough?
 use Chernoff Bound!

 Chernoff Bound:
 X1,…,Xn are i.i.d. Bernoulli trials with prob. θ
  P(|1/n ∑i Xi - θ| > ε) ≤ exp{-2nε2}
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Putting it all together

 Theorem: With prob. at least 1-δ, Rmax will reach a
ε-optimal policy in time polynomial in: num. states,
num. actions, T, 1/ε, 1/δ
 Every T steps:

 achieve near optimal reward (great!), or
 visit an unknown state-action pair ! num. states and actions is

finite, so can’t take too long before all states are known
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Announcements

 University Course Assessments
 Please, please, please, please, please, please, please,

please, please, please, please, please, please, please,
please, please…

 Project:
 Poster session: Tomorrow 2-4:45pm, NSH Atrium

 please arrive a 15mins early to set up
 Paper: Friday December 14th by 2pm

 electronic submission by email to instructors list
 maximum of 8 pages, NIPS format
 no late days allowed
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TD-Learning and
Q-learning – Model-free
approaches
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Value of Policy

Value: Vπ(x)
Expected long-

term reward
starting from x

Start 
from x0

x0

R(x0)

π(x0)

Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) + 
γ3 R(x3) + γ4 R(x4) + L]

Future rewards 
discounted by γ 2 [0,1)x1

R(x1)

   x1’’

 x1’
R(x1’)

R(x1’’)

π(x1)

x2

R(x2)

π(x2)

x3

R(x3)

π(x3)
x4

R(x4)

π(x1’)

π(x1’’)
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A simple monte-carlo policy evaluation

 Estimate Vπ(x), start several trajectories from x !
Vπ(x) is average reward from these trajectories
  Hoeffding’s inequality tells you how many you need
 discounted reward ! don’t have to run each trajectory

forever to get reward estimate
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Problems with monte-carlo approach

 Resets: assumes you can restart process from
same state many times

 Wasteful: same trajectory can be used to
estimate many states
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Reusing trajectories

 Value determination:

 Expressed as an expectation over next states:

 Initialize value function (zeros, at random,…)
 Idea 1: Observe a transition: xt !xt+1,rt+1, approximate expec. with single sample:

 unbiased!!
 but a very bad estimate!!!
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Simple fix: Temporal Difference
(TD) Learning [Sutton ’84]

 Idea 2: Observe a transition: xt !xt+1,rt+1, approximate expectation by mixture of
new sample with old estimate:

  α>0 is learning rate
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TD converges (can take a long time!!!)

 Theorem: TD converges in the limit (with prob. 1), if:
 every state is visited infinitely often
 Learning rate decays just so:

  ∑i=1
1 αi = 1

  ∑i=1
1 αi

2 < 1
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Another model-free RL approach:
Q-learning [Watkins & Dayan ’92]

 TD is just for one policy…
 How do we find the optimal policy?

 Q-learning:
 Simple modification to TD
 Learns optimal value function (and policy), not just

value of fixed policy
 Solution (almost) independent of policy you execute!

42©2005-2007 Carlos Guestrin

Recall Value Iteration

 Value iteration:

 Or:

 Writing in terms of Q-function:
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Q-learning

 Observe a transition: xt,at !xt+1,rt+1, approximate expectation by mixture of new
sample with old estimate:
 transition now from state-action pair to next state and reward

  α>0 is learning rate
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Q-learning convergence
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 Under same conditions as TD, Q-learning converges to optimal value function Q*

 Can run any policy, as long as policy visits every state-action pair infinitely often
 Typical policies (non of these address Exploration-Exploitation tradeoff)

 ε-greedy:
 with prob. (1-ε) take greedy action:

 with prob. ε take an action at (uniformly) random

 Boltzmann (softmax) policy:



 K – “temperature” parameter, K!0, as t!1
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The curse of dimensionality:
A significant challenge in MDPs and RL

 MDPs and RL are polynomial in number of states and
actions

 Consider a game with n units (e.g., peasants, footmen,
etc.)
 How many states?
 How many actions?

 Complexity is exponential in the number of variables
used to define state!!!
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Addressing the curse!

 Some solutions for the curse of dimensionality:
 Learning the value function: mapping from state-

action pairs to values (real numbers)
 A regression problem!

 Learning a policy: mapping from states to actions
 A classification problem!

 Use many of the ideas you learned this
semester:
 linear regression, SVMs, decision trees, neural

networks, Bayes nets, etc.!!!
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What you need to know about RL

 A model-based approach:
 address exploration-exploitation tradeoff and credit

assignment problem
 the R-max algorithm

 A model-free approach:
 never needs to learn transition model and reward function
 TD-learning
 Q-learning
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What you have learned this
semester
 Learning is function approximation
 Point estimation
 Regression
 Discriminative v. Generative learning
 Naïve Bayes
 Logistic regression
 Bias-Variance tradeoff
 Neural nets
 Decision trees
 Cross validation
 Boosting
 Instance-based learning
 SVMs
 Kernel trick
 PAC learning
 VC dimension
 Mistake bounds
 Bayes nets

 representation, inference, parameter and structure learning
 HMMs

 representation, inference, learning
 K-means
 EM
 Feature selection, dimensionality reduction, PCA
 MDPs
 Reinforcement learning
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BIG PICTURE

 Improving the performance at some task though experience!!! 
 before you start any learning task, remember the fundamental questions:

What is the 
learning problem?

From what
experience?

What loss function
are you optimizing?

With what 
optimization algorithm?

What model?

Which learning
algorithm?

With what 
guarantees?

How will you 
evaluate it?
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What next?
 Machine Learning Lunch talks: http://www.cs.cmu.edu/~learning/
 Intelligence Seminars: http://www.cs.cmu.edu/~iseminar/

 Journal:
 JMLR – Journal of Machine Learning Research (free, on the web)

 Conferences:
 ICML: International Conference on Machine Learning
 NIPS: Neural Information Processing Systems
 COLT: Computational Learning Theory
 UAI: Uncertainty in AI
 AIStats: intersection of Statistics and AI
 Also AAAI, IJCAI and others

 Some MLD courses:
 10-708 Probabilistic Graphical Models (Fall)
 10-705 Intermediate Statistics (Fall)
 11-762 Language and Statistics II (Fall)
 10-702 Statistical Foundations of Machine Learning (Spring)
 10-70? Optimization (Spring)
 …


