
1

Markov Decision
Processes (MDPs)
(cont.)

Machine Learning – 10701/15781
Carlos Guestrin

Carnegie Mellon University

November 29th, 2007

2©2005-2007 Carlos Guestrin

Markov Decision Process (MDP)
Representation

 State space:
 Joint state x of entire system

 Action space:
 Joint action a= {a1,…, an} for all agents

 Reward function:
 Total reward R(x,a)

 sometimes reward can depend on action

 Transition model:
 Dynamics of the entire system P(x’|x,a)

3©2005-2007 Carlos Guestrin

Computing the value of a policy
Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) +

γ3 R(x3) + γ4 R(x4) + L]
 Discounted value of a state:

 value of starting from x0 and continuing with policy π from then on

 A recursion!

4©2005-2007 Carlos Guestrin

Simple approach for computing the
value of a policy: Iteratively

 Can solve using a simple convergent iterative approach:
(a.k.a. dynamic programming)
 Start with some guess V0

 Iteratively say:
 Vt+1 = R + γ Pπ Vt

 Stop when ||Vt+1-Vt||1 · ε
 means that ||Vπ-Vt+1||1 · ε/(1-γ)

5©2005-2007 Carlos Guestrin

But we want to learn a Policy
Policy: π(x) = a

At state x, action
a for all agents

π(x0) = both peasants get wood
x0

π(x1) = one peasant builds
barrack, other gets gold

x1

π(x2) = peasants get gold,
footmen attack

x2

 So far, told you how good a
policy is…

 But how can we choose the
best policy???

 Suppose there was only one
time step:
 world is about to end!!!
 select action that maximizes

reward!

6©2005-2007 Carlos Guestrin

Unrolling the recursion

 Choose actions that lead to best value in the long run
 Optimal value policy achieves optimal value V*

7©2005-2007 Carlos Guestrin

Bellman equation

 Evaluating policy π:

 Computing the optimal value V* - Bellman equation

! ""
+=

'

)'(),|'(),(max)(
x

a

xaxxaxx VPRV #

8©2005-2007 Carlos Guestrin

Optimal Long-term Plan

Optimal Policy: π*(x)Optimal value
function V*(x)

Optimal policy:

!

"#(x) = argmax
a

R(x,a) + $ P(x' | x,a)V #(x')
x '

%

9©2005-2007 Carlos Guestrin

Interesting fact – Unique value

 Slightly surprising fact: There is only one V* that solves
Bellman equation!
 there may be many optimal policies that achieve V*

 Surprising fact: optimal policies are good everywhere!!!

! ""
+=

'

)'(),|'(),(max)(
x

a

xaxxaxx VPRV #

10©2005-2007 Carlos Guestrin

Solving an MDP

 Policy iteration [Howard ‘60, Bellman ‘57]

 Value iteration [Bellman ‘57]

 Linear programming [Manne ‘60]

 …

Solve
Bellman
equation

Optimal
value V*(x)

Optimal
policy π*(x)

Many algorithms solve the Bellman equations:

! ""
+=

'

)'(),|'(),(max)(
x

a

xaxxaxx VPRV #

Bellman equation is non-linear!!!

11©2005-2007 Carlos Guestrin

Value iteration (a.k.a. dynamic programming) –
the simplest of all

 Start with some guess V0

 Iteratively say:


 Stop when ||Vt+1-Vt||1 · ε
 means that ||V∗-Vt+1||1 · ε/(1-γ)

! ""
+=

'

)'(),|'(),(max)(
x

a

xaxxaxx VPRV #

!+=+

'

1)'(),|'(),(max)(
x

a

xaxxaxx
tt
VPRV "

12©2005-2007 Carlos Guestrin

A simple example

You run a
startup
company.

In every
state you
must
choose
between
Saving
money or
Advertising.

γ = 0.9

Poor &
Unknown

+0

Rich &
Unknown

+10

Rich &
Famous

+10

Poor &
Famous

+0

S

AA

S

AA

S

S
1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

13©2005-2007 Carlos Guestrin

Let’s compute Vt(x) for our example

6
5
4
3
2
1

Vt(RF)Vt(RU)Vt(PF)Vt(PU)t

γ = 0.9

Poor &
Unknown

+0

Rich &
Unknown

+10

Rich &
Famous

+10

Poor &
Famous

+0

S

AA

S

AA

S

S
1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

!+=+

'

1)'(),|'(),(max)(
x

a

xaxxaxx
tt
VPRV "

14©2005-2007 Carlos Guestrin

Let’s compute Vt(x) for our example

22.4333.5817.6510.036
20.4032.0015.077.225
19.2629.6312.203.8524
18.5525.086.532.033

1914.54.502
1010001

Vt(RF)Vt(RU)Vt(PF)Vt(PU)t

γ = 0.9

Poor &
Unknown

+0

Rich &
Unknown

+10

Rich &
Famous

+10

Poor &
Famous

+0

S

AA

S

AA

S

S
1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

!+=+

'

1)'(),|'(),(max)(
x

a

xaxxaxx
tt
VPRV "

15©2005-2007 Carlos Guestrin

What you need to know

 What’s a Markov decision process
 state, actions, transitions, rewards
 a policy
 value function for a policy

 computing Vπ

 Optimal value function and optimal policy
 Bellman equation

 Solving Bellman equation
 with value iteration, (other possibilities: policy iteration

and linear programming)

16©2005-2007 Carlos Guestrin

Acknowledgment

 This lecture contains some material from
Andrew Moore’s excellent collection of ML
tutorials:
 http://www.cs.cmu.edu/~awm/tutorials

17

Reinforcement
Learning

Machine Learning – 10701/15781
Carlos Guestrin

Carnegie Mellon University

November 29th, 2007

18©2005-2007 Carlos Guestrin

The Reinforcement Learning task

World: You are in state 34.
Your immediate reward is 3. You have possible 3 actions.

Robot: I’ll take action 2.
World: You are in state 77.

Your immediate reward is -7. You have possible 2 actions.

Robot: I’ll take action 1.
World: You’re in state 34 (again).

Your immediate reward is 3. You have possible 3 actions.

19©2005-2007 Carlos Guestrin

Formalizing the (online)
reinforcement learning problem

 Given a set of states X and actions A
 in some versions of the problem size of X and A unknown

 Interact with world at each time step t:
 world gives state xt and reward rt

 you give next action at

 Goal: (quickly) learn policy that (approximately)
maximizes long-term expected discounted reward

20©2005-2007 Carlos Guestrin

The “Credit Assignment” Problem

Yippee! I got to a state with a big reward! But which of my
actions along the way actually helped me get there??
This is the Credit Assignment problem.

“ = 100,“ “ “ 26,
 “ = 2“ = 0,“ “ “ 54,
 “ = 2“ = 0,“ “ “ 13,
 “ = 1“ = 0,“ “ “ 21,
 “ = 1“ = 0,“ “ “ 21,
 “ = 1“ = 0,“ “ “ 22,
 “ = 4“ = 0,“ “ “ 39,
action = 2reward = 0,I’m in state 43,

21©2005-2007 Carlos Guestrin

Exploration-Exploitation tradeoff

 You have visited part of the state
space and found a reward of 100
 is this the best I can hope for???

 Exploitation: should I stick with
what I know and find a good
policy w.r.t. this knowledge?
 at the risk of missing out on some

large reward somewhere
 Exploration: should I look for a

region with more reward?
 at the risk of wasting my time or

collecting a lot of negative reward

22©2005-2007 Carlos Guestrin

Two main reinforcement learning
approaches

 Model-based approaches:
 explore environment, then learn model (P(x’|x,a) and R(x,a))

(almost) everywhere
 use model to plan policy, MDP-style
 approach leads to strongest theoretical results
 works quite well in practice when state space is manageable

 Model-free approach:
 don’t learn a model, learn value function or policy directly
 leads to weaker theoretical results
 often works well when state space is large

23

Rmax – A model-based
approach

24©2005-2007 Carlos Guestrin

Given a dataset – learn model

 Dataset:

 Learn reward function:
 R(x,a)

 Learn transition model:
 P(x’|x,a)

Given data, learn (MDP) Representation:

25©2005-2007 Carlos Guestrin

Some challenges in model-based RL 1:
Planning with insufficient information
 Model-based approach:

 estimate R(x,a) & P(x’|x,a)
 obtain policy by value or policy iteration, or linear programming
 No credit assignment problem ! learning model, planning algorithm takes care of

“assigning” credit
 What do you plug in when you don’t have enough information about a state?

 don’t reward at a particular state
 plug in smallest reward (Rmin)?
 plug in largest reward (Rmax)?

 don’t know a particular transition probability?

26©2005-2007 Carlos Guestrin

Some challenges in model-based RL 2:
Exploration-Exploitation tradeoff

 A state may be very hard to reach
 waste a lot of time trying to learn rewards and

transitions for this state
 after a much effort, state may be useless

 A strong advantage of a model-based approach:
 you know which states estimate for rewards and

transitions are bad
 can (try) to plan to reach these states
 have a good estimate of how long it takes to get there

27©2005-2007 Carlos Guestrin

A surprisingly simple approach for model
based RL – The Rmax algorithm [Brafman & Tennenholtz]

 Optimism in the face of uncertainty!!!!
 heuristic shown to be useful long before theory was done

(e.g., Kaelbling ’90)
 If you don’t know reward for a particular state-action

pair, set it to Rmax!!!

 If you don’t know the transition probabilities
P(x’|x,a) from some some state action pair x,a
assume you go to a magic, fairytale new state x0!!!
 R(x0,a) = Rmax

 P(x0|x0,a) = 1

28©2005-2007 Carlos Guestrin

Understanding Rmax

 With Rmax you either:
 explore – visit a state-action

pair you don’t know much
about

 because it seems to have lots of
potential

 exploit – spend all your time
on known states

 even if unknown states were
amazingly good, it’s not worth it

 Note: you never know if you
are exploring or exploiting!!!

29©2005-2007 Carlos Guestrin

Implicit Exploration-Exploitation Lemma

 Lemma: every T time steps, either:
 Exploits: achieves near-optimal reward for these T-steps, or
 Explores: with high probability, the agent visits an unknown

state-action pair
 learns a little about an unknown state

 T is related to mixing time of Markov chain defined by MDP
 time it takes to (approximately) forget where you started

30©2005-2007 Carlos Guestrin

The Rmax algorithm
 Initialization:

 Add state x0 to MDP
 R(x,a) = Rmax, ∀x,a
 P(x0|x,a) = 1, ∀x,a
 all states (except for x0) are unknown

 Repeat
 obtain policy for current MDP and Execute policy

 for any visited state-action pair, set reward function to appropriate value

 if visited some state-action pair x,a enough times to estimate P(x’|x,a)
 update transition probs. P(x’|x,a) for x,a using MLE
 recompute policy

31©2005-2007 Carlos Guestrin

Visit enough times to estimate P(x’|x,a)?

 How many times are enough?
 use Chernoff Bound!

 Chernoff Bound:
 X1,…,Xn are i.i.d. Bernoulli trials with prob. θ
 P(|1/n ∑i Xi - θ| > ε) ≤ exp{-2nε2}

32©2005-2007 Carlos Guestrin

Putting it all together

 Theorem: With prob. at least 1-δ, Rmax will reach a
ε-optimal policy in time polynomial in: num. states,
num. actions, T, 1/ε, 1/δ
 Every T steps:

 achieve near optimal reward (great!), or
 visit an unknown state-action pair ! num. states and actions is

finite, so can’t take too long before all states are known

33©2005-2007 Carlos Guestrin

Announcements

 University Course Assessments
 Please, please, please, please, please, please, please,

please, please, please, please, please, please, please,
please, please…

 Project:
 Poster session: Tomorrow 2-4:45pm, NSH Atrium

 please arrive a 15mins early to set up
 Paper: Friday December 14th by 2pm

 electronic submission by email to instructors list
 maximum of 8 pages, NIPS format
 no late days allowed

34

TD-Learning and
Q-learning – Model-free
approaches

35©2005-2007 Carlos Guestrin

Value of Policy

Value: Vπ(x)
Expected long-

term reward
starting from x

Start
from x0

x0

R(x0)

π(x0)

Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) +
γ3 R(x3) + γ4 R(x4) + L]

Future rewards
discounted by γ 2 [0,1)x1

R(x1)

 x1’’

 x1’
R(x1’)

R(x1’’)

π(x1)

x2

R(x2)

π(x2)

x3

R(x3)

π(x3)
x4

R(x4)

π(x1’)

π(x1’’)

36©2005-2007 Carlos Guestrin

A simple monte-carlo policy evaluation

 Estimate Vπ(x), start several trajectories from x !
Vπ(x) is average reward from these trajectories
 Hoeffding’s inequality tells you how many you need
 discounted reward ! don’t have to run each trajectory

forever to get reward estimate

37©2005-2007 Carlos Guestrin

Problems with monte-carlo approach

 Resets: assumes you can restart process from
same state many times

 Wasteful: same trajectory can be used to
estimate many states

38©2005-2007 Carlos Guestrin

Reusing trajectories

 Value determination:

 Expressed as an expectation over next states:

 Initialize value function (zeros, at random,…)
 Idea 1: Observe a transition: xt !xt+1,rt+1, approximate expec. with single sample:

 unbiased!!
 but a very bad estimate!!!

39©2005-2007 Carlos Guestrin

Simple fix: Temporal Difference
(TD) Learning [Sutton ’84]

 Idea 2: Observe a transition: xt !xt+1,rt+1, approximate expectation by mixture of
new sample with old estimate:

 α>0 is learning rate

40©2005-2007 Carlos Guestrin

TD converges (can take a long time!!!)

 Theorem: TD converges in the limit (with prob. 1), if:
 every state is visited infinitely often
 Learning rate decays just so:

 ∑i=1
1 αi = 1

 ∑i=1
1 αi

2 < 1

41©2005-2007 Carlos Guestrin

Another model-free RL approach:
Q-learning [Watkins & Dayan ’92]

 TD is just for one policy…
 How do we find the optimal policy?

 Q-learning:
 Simple modification to TD
 Learns optimal value function (and policy), not just

value of fixed policy
 Solution (almost) independent of policy you execute!

42©2005-2007 Carlos Guestrin

Recall Value Iteration

 Value iteration:

 Or:

 Writing in terms of Q-function:

!+=+

'

1)'(),|'(),(max)(
x

a

xaxxaxx
tt
VPRV "

!+=+

'

1)'(),|'(),(),(
x

xaxxaxax tt VPRQ "

),(max)(11 axx
a

++ = tt QV

!+=+

'
'

1)','(max),|'(),(),(
x

a

axaxxaxax tt QPRQ "

43©2005-2007 Carlos Guestrin

Q-learning

 Observe a transition: xt,at !xt+1,rt+1, approximate expectation by mixture of new
sample with old estimate:
 transition now from state-action pair to next state and reward

 α>0 is learning rate

!+=+

'
'

1)','(max),|'(),(),(
x

a

axaxxaxax tt QPRQ "

44©2005-2007 Carlos Guestrin

Q-learning convergence

),(maxarg axa

a

tt Q=

!
"
#

$
%
&

'
K

Q
P t

t

),(
exp)|(

ax
xa

 Under same conditions as TD, Q-learning converges to optimal value function Q*

 Can run any policy, as long as policy visits every state-action pair infinitely often
 Typical policies (non of these address Exploration-Exploitation tradeoff)

 ε-greedy:
 with prob. (1-ε) take greedy action:

 with prob. ε take an action at (uniformly) random

 Boltzmann (softmax) policy:



 K – “temperature” parameter, K!0, as t!1

45©2005-2007 Carlos Guestrin

The curse of dimensionality:
A significant challenge in MDPs and RL

 MDPs and RL are polynomial in number of states and
actions

 Consider a game with n units (e.g., peasants, footmen,
etc.)
 How many states?
 How many actions?

 Complexity is exponential in the number of variables
used to define state!!!

46©2005-2007 Carlos Guestrin

Addressing the curse!

 Some solutions for the curse of dimensionality:
 Learning the value function: mapping from state-

action pairs to values (real numbers)
 A regression problem!

 Learning a policy: mapping from states to actions
 A classification problem!

 Use many of the ideas you learned this
semester:
 linear regression, SVMs, decision trees, neural

networks, Bayes nets, etc.!!!

47©2005-2007 Carlos Guestrin

What you need to know about RL

 A model-based approach:
 address exploration-exploitation tradeoff and credit

assignment problem
 the R-max algorithm

 A model-free approach:
 never needs to learn transition model and reward function
 TD-learning
 Q-learning

48

Closing….
Machine Learning – 10701/15781

Carlos Guestrin
Carnegie Mellon University

November 29th, 2007

49©2005-2007 Carlos Guestrin

What you have learned this
semester
 Learning is function approximation
 Point estimation
 Regression
 Discriminative v. Generative learning
 Naïve Bayes
 Logistic regression
 Bias-Variance tradeoff
 Neural nets
 Decision trees
 Cross validation
 Boosting
 Instance-based learning
 SVMs
 Kernel trick
 PAC learning
 VC dimension
 Mistake bounds
 Bayes nets

 representation, inference, parameter and structure learning
 HMMs

 representation, inference, learning
 K-means
 EM
 Feature selection, dimensionality reduction, PCA
 MDPs
 Reinforcement learning

50©2005-2007 Carlos Guestrin

BIG PICTURE

 Improving the performance at some task though experience!!! 
 before you start any learning task, remember the fundamental questions:

What is the
learning problem?

From what
experience?

What loss function
are you optimizing?

With what
optimization algorithm?

What model?

Which learning
algorithm?

With what
guarantees?

How will you
evaluate it?

51©2005-2007 Carlos Guestrin

What next?
 Machine Learning Lunch talks: http://www.cs.cmu.edu/~learning/
 Intelligence Seminars: http://www.cs.cmu.edu/~iseminar/

 Journal:
 JMLR – Journal of Machine Learning Research (free, on the web)

 Conferences:
 ICML: International Conference on Machine Learning
 NIPS: Neural Information Processing Systems
 COLT: Computational Learning Theory
 UAI: Uncertainty in AI
 AIStats: intersection of Statistics and AI
 Also AAAI, IJCAI and others

 Some MLD courses:
 10-708 Probabilistic Graphical Models (Fall)
 10-705 Intermediate Statistics (Fall)
 11-762 Language and Statistics II (Fall)
 10-702 Statistical Foundations of Machine Learning (Spring)
 10-70? Optimization (Spring)
 …

