

Machine Learning – 10701/15781

Carlos Guestrin

Carnegie Mellon University

November 29th, 2007

1

Markov Decision Process (MDP) Representation

- State space:
 - □ Joint state **x** of entire system
- Action space:
 - □ Joint action $\mathbf{a} = \{a_1, ..., a_n\}$ for all agents
- Reward function:
 - □ Total reward R(**x**,**a**)
 - sometimes reward can depend on action
- Transition model:
 - \Box Dynamics of the entire system $P(\mathbf{x}'|\mathbf{x},\mathbf{a})$

Computing the value of a policy

$$V_{\pi}(\mathbf{x_0}) = \mathbf{E_{\pi}}[R(\mathbf{x_0}) + \gamma R(\mathbf{x_1}) + \gamma^2 R(\mathbf{x_2}) + \gamma^3 R(\mathbf{x_3}) + \gamma^4 R(\mathbf{x_4}) + \Delta]$$

- Discounted value of a state:

value of starting from
$$\mathbf{x}_0$$
 and continuing with policy π from then on
$$V_{\pi}(x_0) = E_{\pi}[R(x_0) + \gamma R(x_1) + \gamma^2 R(x_2) + \gamma^3 R(x_3) + \cdots]$$
$$= E_{\pi}[\sum_{t=0}^{\infty} \gamma^t R(x_t)]$$
A recursion!

A recursion!

A recursion!

Vir(
$$x_0$$
) = Eii [$R(x_0) + 8R(x_1) + 8^2R(x_2) + \cdots$]

= $E_{ii}[R(x_0)] + 8E_{ii}[R(x_1) + 8R(x_2) + 8^2R(x_3) + 8^2R(x_3)$

Simple approach for computing the value of a policy: Iteratively $\begin{cases} V_{\pi}(x) = R(x) + \gamma \sum_{i} P(x' \mid x, a = \pi(x)) V_{\pi}(x') \end{cases}$

$$V_{\pi}(x) = R(x) + \gamma \sum_{x'} P(x' \mid x, a = \pi(x)) V_{\pi}(x')$$

- Can solve using a simple convergent iterative approach:

 - (a.k.a. dynamic programming)

 Start with some guess V_0 and guess V_0 but a good guess V_0 is $V_0(x) = R(x_0)$
 - ☐ Iteratively say:
 - $V_{t+1} = \mathbb{R} + \frac{\gamma}{2} P_{\pi} V_{t}$ $V_{t+1} = \mathbb{R} + \frac{\gamma}{2} P_{\pi} V_{t}$ $V_{t+1} = \mathbb{R} + \frac{\gamma}{2} P_{\pi} V_{t}$
 - □ Stop when $||V_{t+1}-V_t|| \le \varepsilon$
 - means that $||V_{\pi}-V_{t+1}||_{A} \leq \varepsilon/(1-\gamma)$

Unrolling the recursion

- Choose actions that lead to best value in the long run
 - □ Optimal value policy achieves optimal value V*

$$V^*(x_0) = \max_{a_0} R(x_0, a_0) + \gamma E_{a_0} [\max_{a_1} R(x_1) + \gamma^2 E_{a_1} [\max_{a_2} R(x_2) + \cdots]]$$

Bellman equation

Evaluating policy π:

$$V_{\pi}(x) = R(x) + \gamma \sum_{x'} P(x' \mid x, a = \pi(x)) V_{\pi}(x')$$

Computing the optimal value V* - Bellman equation

$$V^*(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

©2005-2007 Carlos Guestria

7

ø

Optimal Long-term Plan

Optimal value function $V^*(\mathbf{x})$

Optimal Policy: $\pi^*(\mathbf{x})$

Optimal policy:

$$\pi^*(\mathbf{x}) = \underset{a}{\operatorname{arg\,max}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

©2005-2007 Carlos Guestrin

Interesting fact – Unique value

$$V^*(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

- Slightly surprising fact: There is only one V* that solves Bellman equation!
 - □ there may be many optimal policies that achieve V*
- Surprising fact: optimal policies are good everywhere!!!

$$V_{\pi^*}(x) \geq V_{\pi}(x), \ \forall x, \ \forall \pi$$

©2005-2007 Carlos Guestrin

9

Solving an MDP

Solve Bellman equation

Optimal policy π*(**x**)

$$V^*(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

Bellman equation is non-linear!!!

Many algorithms solve the Bellman equations:

- Policy iteration [Howard '60, Bellman '57]
- Value iteration [Bellman '57]
- Linear programming [Manne '60]

..

©2005-2007 Carlos Guestrin

Value iteration (a.k.a. dynamic programming) – the simplest of all

$$V^*(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

- Start with some guess V₀
- Iteratively say:

$$V_{t+1}(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V_t(\mathbf{x}')$$

- Stop when $||V_{t+1}-V_t||_1 \cdot \epsilon$
 - $\hfill \square$ means that $||V^*\text{-}V_{t+1}||_1 \cdot \epsilon/(1\text{-}\gamma)$

©2005-2007 Carlos Guestri

11

A simple example

Let's compute $V_t(x)$ for our example

t	V _t (PU)	V _t (PF)	V _t (RU)	$V_t(RF)$
1				
2				
3				
4				
5				
6				

$$V_{t+1}(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V_t(\mathbf{x}')$$

13

Let's compute $V_t(x)$ for our example

t	V _t (PU)	$V_t(PF)$	V _t (RU)	V _t (RF)
1	0	0	10	10
2	0	4.5	14.5	19
3	2.03	6.53	25.08	18.55
4	3.852	12.20	29.63	19.26
5	7.22	15.07	32.00	20.40
6	10.03	17.65	33.58	22.43

$$V_{t+1}(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x'}} P(\mathbf{x'} | \mathbf{x}, \mathbf{a}) V_t(\mathbf{x'})$$

arlos Guestrin

What you need to know

- What's a Markov decision process
 - □ state, actions, transitions, rewards
 - □ a policy
 - □ value function for a policy
 - computing V_π
- Optimal value function and optimal policy
 - □ Bellman equation
- Solving Bellman equation
 - □ with value iteration, (other possibilities: policy iteration and linear programming)

©2005-2007 Carlos Guestrii

15

Acknowledgment

- This lecture contains some material from Andrew Moore's excellent collection of ML tutorials:
 - □ http://www.cs.cmu.edu/~awm/tutorials

©2005-2007 Carlos Guestrin

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University
November 29th, 2007

17

The Reinforcement Learning task

World: You are in state 34.

Your immediate reward is 3. You have possible 3 actions.

Robot: I'll take action 2.

World: You are in state 77.

Your immediate reward is -7. You have possible 2 actions.

Robot: I'll take action 1.

World: You're in state 34 (again).

Your immediate reward is 3. You have possible 3 actions.

Formalizing the (online) reinforcement learning problem

- Given a set of states X and actions A
 - □ in some versions of the problem size of **X** and **A** unknown
- Interact with world at each time step *t*:
 - □ world gives state **x**_t and reward r_t
 - □ you give next action a_t
- Goal: (quickly) learn policy that (approximately) maximizes long-term expected discounted reward

©2005-2007 Carlos Guestrii

19

The "Credit Assignment" Problem

I'm in state 43, reward = 0, action = 2

Yippee! I got to a state with a big reward! But which of my actions along the way actually helped me get there??

This is the Credit Assignment problem.

©2005-2007 Carlos Guestrin

Exploration-Exploitation tradeoff

- You have visited part of the state space and found a reward of 100
 - □ is this the best I can hope for???
- Exploitation: should I stick with what I know and find a good policy w.r.t. this knowledge?
 - □ at the risk of missing out on some large reward somewhere
- Exploration: should I look for a region with more reward?
 - □ at the risk of wasting my time or collecting a lot of negative reward

©2005-2007 Carlos Guestrin

21

Two main reinforcement learning approaches

- Model-based approaches:
 - \square explore environment, then learn model (P(\mathbf{x} '| \mathbf{x} , \mathbf{a}) and R(\mathbf{x} , \mathbf{a})) (almost) everywhere
 - □ use model to plan policy, MDP-style
 - □ approach leads to strongest theoretical results
 - □ works quite well in practice when state space is manageable
- Model-free approach:
 - □ don't learn a model, learn value function or policy directly
 - leads to weaker theoretical results
 - □ often works well when state space is large

©2005-2007 Carlos Guestrin

Given a dataset – learn model

Given data, learn (MDP) Representation:

- Dataset:
- Learn reward function:
 - \square R(x,a)
- Learn transition model:
 - \square P(x'|x,a)

Some challenges in model-based RL 1: Planning with insufficient information

- Model-based approach:
 - □ estimate R(x,a) & P(x'|x,a)
 - obtain policy by value or policy iteration, or linear programming
 - □ No credit assignment problem! learning model, planning algorithm takes care of "assigning" credit
- What do you plug in when you don't have enough information about a state?
 - □ don't reward at a particular state
 - plug in smallest reward (R_{min})?
 - plug in largest reward (R_{max})?
 - don't know a particular transition probability?

©2005-2007 Carlos Guestrin

25

Some challenges in model-based RL 2: Exploration-Exploitation tradeoff

- A state may be very hard to reach
 - □ waste a lot of time trying to learn rewards and transitions for this state
 - □ after a much effort, state may be useless
- A strong advantage of a model-based approach:
 - □ you know which states estimate for rewards and transitions are bad
 - □ can (try) to plan to reach these states
 - $\hfill\square$ have a good estimate of how long it takes to get there

©2005-2007 Carlos Guestrin

A surprisingly simple approach for model based RL – The Rmax algorithm [Brafman & Tennenholtz]

- Optimism in the face of uncertainty!!!!
 - □ heuristic shown to be useful long before theory was done (e.g., Kaelbling '90)
- If you don't know reward for a particular state-action pair, set it to R_{max}!!!
- If you don't know the transition probabilities P(x'|x,a) from some some state action pair x,a assume you go to a magic, fairytale new state x₀!!!
 - $\square R(\mathbf{x}_0, \mathbf{a}) = R_{\text{max}}$
 - $\square P(\mathbf{x}_0|\mathbf{x}_0,\mathbf{a}) = 1$

©2005-2007 Carlos Guestrin

27

Understanding R_{max}

- With R_{max} you either:
 - explore visit a state-action pair you don't know much about
 - because it seems to have lots of potential
 - exploit spend all your time on known states
 - even if unknown states were amazingly good, it's not worth it
- Note: you never know if you are exploring or exploiting!!!

Implicit Exploration-Exploitation Lemma

- Lemma: every T time steps, either:
 - □ Exploits: achieves near-optimal reward for these T-steps, or
 - □ **Explores**: with high probability, the agent visits an unknown state-action pair
 - learns a little about an unknown state
 - □ T is related to mixing time of Markov chain defined by MDP
 - time it takes to (approximately) forget where you started

©2005-2007 Carlos Guestria

29

The Rmax algorithm

- Initialization:
 - □ Add state x₀ to MDP
 - \sqcap R(x,a) = R_{max}, \forall x,a
 - \square P($\mathbf{x}_0 | \mathbf{x}, \mathbf{a}$) = 1, $\forall \mathbf{x}, \mathbf{a}$
 - \square all states (except for \mathbf{x}_0) are **unknown**
- Repeat
 - obtain policy for current MDP and Execute policy
 - □ for any visited state-action pair, set reward function to appropriate value
 - \Box if visited some state-action pair \mathbf{x} , \mathbf{a} enough times to estimate $P(\mathbf{x}'|\mathbf{x},\mathbf{a})$
 - update transition probs. P(x'|x,a) for x,a using MLE
 - recompute policy

©2005-2007 Carlos Guestrin

Visit enough times to estimate P(x'|x,a)?

- How many times are enough?
 - □ use Chernoff Bound!
- Chernoff Bound:
 - $\hfill X_1, \ldots, X_n$ are i.i.d. Bernoulli trials with prob. θ

©2005-2007 Carlos Guestria

31

Putting it all together

- **Theorem**: With prob. at least 1-δ, Rmax will reach a ε-optimal policy in time polynomial in: num. states, num. actions, T, 1/ε, 1/δ
 - □ Every T steps:
 - achieve near optimal reward (great!), or
 - visit an unknown state-action pair ! num. states and actions is finite, so can't take too long before all states are known

©2005-2007 Carlos Guestrin

Announcements

- University Course Assessments
 - □ Please, please...
- Project:
 - □ Poster session: Tomorrow 2-4:45pm, NSH Atrium
 - please arrive a 15mins early to set up
 - □ Paper: Friday December 14th by 2pm
 - electronic submission by email to instructors list
 - maximum of 8 pages, NIPS format
 - no late days allowed

©2005-2007 Carlos Guestrin

A simple monte-carlo policy evaluation

- Estimate $V_{\pi}(\mathbf{x})$, start several trajectories from \mathbf{x} ! $V_{\pi}(\mathbf{x})$ is average reward from these trajectories
 - $\hfill\Box$ Hoeffding's inequality tells you how many you need
 - □ discounted reward ! don't have to run each trajectory forever to get reward estimate

Problems with monte-carlo approach

- Resets: assumes you can restart process from same state many times
- Wasteful: same trajectory can be used to estimate many states

©2005-2007 Carlos Guestria

37

Reusing trajectories

Value determination:

$$V_{\pi}(x) = R(x) + \gamma \sum_{i} P(x' \mid x, a = \pi(x)) V_{\pi}(x')$$

Expressed as an expectation over next x'

$$V_{\pi}(x) = R(x) + \gamma E \left[V_{\pi}(x') \mid x, a = \pi(x) \right]$$

- Initialize value function (zeros, at random,...)
- ldea 1: Observe a transition: $\mathbf{x_t} \cdot \mathbf{x_{t+1}}, \mathbf{r_{t+1}}$, approximate expec. with single sample:
 - □ unbiased!!
 - □ but a very bad estimate!!!

©2005-2007 Carlos Guestrin

Simple fix: Temporal Difference (TD) Learning [Sutton '84] $V_{\pi}(x) = R(x) + \gamma E \left[V_{\pi}(x') \mid x, a = \pi(x) \right]$

$$V_{\pi}(x) = R(x) + \gamma E \left[V_{\pi}(x') \mid x, a = \pi(x) \right]$$

- Idea 2: Observe a transition: $\mathbf{x}_{t} ! \mathbf{x}_{t+1}, \mathbf{r}_{t+1}$, approximate expectation by mixture of new sample with old estimate:
 - \square α >0 is learning rate

39

TD converges (can take a long time!!!)

$$V_{\pi}(x) = R(x) + \gamma \sum_{x'} P(x' \mid x, a = \pi(x)) V_{\pi}(x')$$

- **Theorem**: TD converges in the limit (with prob. 1), if:
 - □ every state is visited infinitely often
 - □ Learning rate decays just so:
 - $\sum_{i=1}^{1} \alpha_i = 1$
 - $\sum_{i=1}^{1} \alpha_i^2 < 1$

Another model-free RL approach: Q-learning [Watkins & Dayan '92]

- TD is just for one policy...
 - □ How do we find the optimal policy?
- Q-learning:
 - □ Simple modification to TD
 - □ Learns optimal value function (and policy), not just value of fixed policy
 - □ Solution (almost) independent of policy you execute!

©2005-2007 Carlos Guestrin

41

Recall Value Iteration

- Value iteration: $V_{t+1}(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x'}} P(\mathbf{x'} | \mathbf{x}, \mathbf{a}) V_t(\mathbf{x'})$
- Or: $Q_{t+1}(\mathbf{x}, \mathbf{a}) = R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V_t(\mathbf{x}')$ $V_{t+1}(\mathbf{x}) = \max_{\mathbf{a}} Q_{t+1}(\mathbf{x}, \mathbf{a})$
- Writing in terms of Q-function:

$$Q_{t+1}(\mathbf{x}, \mathbf{a}) = R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) \max_{\mathbf{a}'} Q_t(\mathbf{x}', \mathbf{a}')$$

©2005-2007 Carlos Guestrin

Q-learning

$$Q_{t+1}(\mathbf{x}, \mathbf{a}) = R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) \max_{\mathbf{a}'} Q_t(\mathbf{x}', \mathbf{a}')$$

- Observe a transition: $\mathbf{x}_{t}, \mathbf{a}_{t} \mid \mathbf{x}_{t+1}, \mathbf{r}_{t+1}$, approximate expectation by mixture of new sample with old estimate:
 - □ transition now from state-action pair to next state and reward
 - \square α >0 is learning rate

©2005-2007 Carlos Guestrin

43

Q-learning convergence

- Under same conditions as TD, Q-learning converges to optimal value function Q[⋆]
- Can run any policy, as long as policy visits every state-action pair infinitely often
- Typical policies (non of these address Exploration-Exploitation tradeoff)
 - - with prob. ε take an action at (uniformly) random
 - □ Boltzmann (softmax) policy:
 - $P(\mathbf{a}_t \mid \mathbf{x}) \propto \exp\left\{\frac{Q_t(\mathbf{x}, \mathbf{a})}{K}\right\}$
 - K "temperature" parameter, K!0, as t!1

The curse of dimensionality:

A significant challenge in MDPs and RL

- MDPs and RL are polynomial in number of states and actions
- Consider a game with n units (e.g., peasants, footmen, etc.)
 - □ How many states?
 - □ How many actions?
- Complexity is exponential in the number of variables used to define state!!!

©2005-2007 Carlos Guestrin

45

Addressing the curse!

- Some solutions for the curse of dimensionality:
 - □ **Learning the value function**: mapping from stateaction pairs to values (real numbers)
 - A regression problem!
 - □ **Learning a policy**: mapping from states to actions
 - A classification problem!
- Use many of the ideas you learned this semester:
 - □ linear regression, SVMs, decision trees, neural networks, Bayes nets, etc.!!!

©2005-2007 Carlos Guestrin

What you need to know about RL

- w
- A model-based approach:
 - □ address exploration-exploitation tradeoff and credit assignment problem
 - □ the R-max algorithm
- A model-free approach:
 - □ never needs to learn transition model and reward function
 - □ TD-learning
 - □ Q-learning

©2005-2007 Carlos Guestria

47

Closing....

Machine Learning – 10701/15781 Carlos Guestrin Carnegie Mellon University

November 29th, 2007

What next?

- Machine Learning Lunch talks: http://www.cs.cmu.edu/~learning/
- Intelligence Seminars: http://www.cs.cmu.edu/~iseminar/
- Journal
 - □ JMLR Journal of Machine Learning Research (free, on the web)
- Conferences:
 - □ ICML: International Conference on Machine Learning
 - NIPS: Neural Information Processing Systems
 - □ COLT: Computational Learning Theory
 - UAI: Uncertainty in AI
 - □ AlStats: intersection of Statistics and Al
 - Also AAAI, IJCAI and others
- Some MLD courses:
 - □ 10-708 Probabilistic Graphical Models (Fall)
 - □ 10-705 Intermediate Statistics (Fall)
 - □ 11-762 Language and Statistics II (Fall)
 - □ 10-702 Statistical Foundations of Machine Learning (Spring)
 - □ 10-70? Optimization (Spring)
 - **-**

©2005-2007 Carlos Guestrin