

Logistic Regression

- ☐ Assume a particular functional form
- □ Sigmoid applied to a linear function of the data:

$$P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}$$

Features can be discrete or continuous!

Understanding the sigmoid

$$g(w_0 + \sum_i w_i x_i) = \frac{1}{1 + e^{w_0 + \sum_i w_i x_i}}$$

 $w_0 = -2, w_1 = -1$

 $w_0 = 0, w_1 = -1$

 $w_0 = 0, w_1 = -0.5$

$$g(w_0 + \sum_i w_i x_i) = \frac{1}{1 + e^{w_0 + \sum_i w_i x_i}}$$

Carlos Guestrin 2005-200

5

Very convenient!

$$P(Y = 1 | X = \langle X_1, ... X_n \rangle) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

implies

$$P(Y = 0|X = < X_1, ... X_n >) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

implies

$$\frac{P(Y = 0|X)}{P(Y = 1|X)} = exp(w_0 + \sum_{i} w_i X_i)$$

implies

$$\ln \frac{P(Y=0|X)}{P(Y=1|X)} = w_0 + \sum_i w_i X_i$$

©Carlos Guestrin 2005-2007

0

classification

What if we have continuous X_i ?

Eg., character recognition: X_i is ith pixel

Gaussian Naïve Bayes (GNB):

ssian Naïve Bayes (GNB):
$$P(X_i=x\mid Y=y_k)=\frac{1}{\sigma_{ik}\sqrt{2\pi}} \ e^{\frac{-(x-\mu_{ik})^2}{2\sigma_{ik}^2}}$$
 etimes assume variance

Sometimes assume variance

- is independent of Y (i.e., σ_i),
- or independent of X_i (i.e., σ_k)
- or both (i.e., σ)

Logistic regression v. Naïve Bayes

- Consider learning f: X → Y, where
 - \square X is a vector of real-valued features, $< X_1 ... X_n >$
 - ☐ Y is boolean
- Could use a Gaussian Naïve Bayes classifier
 - □ assume all X_i are conditionally independent given Y
 - □ model $P(X_i | Y = y_k)$ as Gaussian $N(\mu_{ik}, \sigma_i)$
 - \square model P(Y) as Bernoulli(θ , 1- θ)

• What does that imply about the form of P(Y|X)?
$$P(Y=1|X=< X_1,...X_n>) = \frac{1}{1+exp(w_0+\sum_i w_i X_i)}$$

Cool!!!!

Derive form for P(Y|X) for continuous X_i

$$\begin{split} P(Y=1|X) &= \frac{P(Y=1)P(X|Y=1)}{P(Y=1)P(X|Y=1) + P(Y=0)P(X|Y=0)} \\ &= \frac{1}{1 + \frac{P(Y=0)P(X|Y=0)}{P(Y=1)P(X|Y=1)}} \\ &= \frac{1}{1 + \exp(\ln\frac{P(Y=0)P(X|Y=0)}{P(Y=1)P(X|Y=1)})} \\ &= \frac{1}{1 + \exp(\ln\frac{1-\theta}{\theta}) + \left|\sum_i \ln\frac{P(X_i|Y=0)}{P(X_i|Y=1)}\right|} \end{split}$$

©Carlos Guestrin 2005-200

11

Ratio of class-conditional probabilities

$$\ln \frac{P(X_i|Y=0)}{P(X_i|Y=1)}$$

$$P(X_i = x \mid Y = y_k) = \frac{1}{\sigma_i \sqrt{2\pi}} e^{\frac{-(x - \mu_{ik})^2}{2\sigma_i^2}}$$

12

Derive form for P(Y|X) for continuous X_i

$$P(Y = 1|X) = \frac{P(Y = 1)P(X|Y = 1)}{P(Y = 1)P(X|Y = 1) + P(Y = 0)P(X|Y = 0)}$$

$$= \frac{1}{1 + \exp((\ln \frac{1-\theta}{\theta}) + \sum_{i} \ln \frac{P(X_{i}|Y = 0)}{P(X_{i}|Y = 1)})}$$

$$\sum_{i} \left(\frac{\mu_{i0} - \mu_{i1}}{\sigma_{i}^{2}} X_{i} + \frac{\mu_{i1}^{2} - \mu_{i0}^{2}}{2\sigma_{i}^{2}}\right)$$

$$P(Y = 1|X) = \frac{1}{1 + \exp(w_{0} + \sum_{i=1}^{n} w_{i}X_{i})}$$

©Carlos Guestrin 2005-200

13

Gaussian Naïve Bayes v. Logistic Regression

Set of Gaussian Naïve Bayes parameters (feature variance independent of class label) Set of Logistic Regression parameters

- Representation equivalence
 - □ But only in a special case!!! (GNB with class-independent variances)
- But what's the difference???
- LR makes no assumptions about P(X|Y) in learning!!!
- Loss function!!!
 - \square Optimize different functions \rightarrow Obtain different solutions

©Carlos Guestrin 2005-2007

Logistic regression for more than 2 classes

Logistic regression in more general case, where Y ∈ {Y₁ ... Y_R} : learn R-1 sets of weights

15

©Carlos Guestrin 2005-2007

Logistic regression more generally

■ Logistic regression in more general case, where Y ∈ {Y₁ ... Y_R} : learn R-1 sets of weights

for k<R

$$P(Y = y_k | X) = \frac{\exp(w_{k0} + \sum_{i=1}^{n} w_{ki} X_i)}{1 + \sum_{i=1}^{R-1} \exp(w_{i0} + \sum_{i=1}^{n} w_{ji} X_i)}$$

for *k*=*R* (normalization, so no weights for this class)

$$P(Y = y_R | X) = \frac{1}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^{n} w_{ji} X_i)}$$

Features can be discrete or continuous!

Loss functions: Likelihood v. Conditional Likelihood

Generative (Naïve Bayes) Loss function:

Data likelihood

$$\begin{aligned} \ln P(\mathcal{D} \mid \mathbf{w}) &= \sum_{j=1}^{N} \ln P(\mathbf{x}^{j}, y^{j} \mid \mathbf{w}) \\ &= \sum_{j=1}^{N} \ln P(y^{j} \mid \mathbf{x}^{j}, \mathbf{w}) + \sum_{j=1}^{N} \ln P(\mathbf{x}^{j} \mid \mathbf{w}) \end{aligned}$$

- Discriminative models cannot compute P(xi|w)!
- But, discriminative (logistic regression) loss function:

Conditional Data Likelihood

$$\ln P(\mathcal{D}_Y \mid \mathcal{D}_{\mathbf{X}}, \mathbf{w}) = \sum_{j=1}^{N} \ln P(y^j \mid \mathbf{x}^j, \mathbf{w})$$

□ Doesn't waste effort learning P(X) – focuses on P(Y|X) all that matters for classification

17

©Carlos Guestrin 2005-2007

Expressing Conditional Log Likelihood

$$l(\mathbf{w}) \equiv \sum_{j} \ln P(y^{j}|\mathbf{x}^{j},\mathbf{w})$$

$$P(Y = 0|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$P(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$l(\mathbf{w}) = \sum_{j} \left[y^{j} \ln P(y = 1 | \mathbf{x}^{j}, \mathbf{w}) + (1 - y^{j}) \ln P(y = 0 | \mathbf{x}^{j}, \mathbf{w}) \right]$$

18

Maximizing Conditional Log Likelihood

$$l(\mathbf{w}) \equiv \ln \prod_{i} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})$$

$$P(Y = 0 | X, W) = \frac{1}{1 + exp(w_{0} + \sum_{i} w_{i} X_{i})}$$

$$P(Y = 1 | X, W) = \frac{exp(w_{0} + \sum_{i} w_{i} X_{i})}{1 + exp(w_{0} + \sum_{i} w_{i} X_{i})}$$

$$= \sum_{j} \left[y^{j}(w_{0} + \sum_{i}^{n} w_{i} x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i} x_{i}^{j})) \right]$$

Good news: $I(\mathbf{w})$ is concave function of $\mathbf{w} \to \text{no}$ locally optimal solutions

Bad news: no closed-form solution to maximize I(w)

Good news: concave functions easy to optimize

19

©Carlos Guestrin 2005-2007

Optimizing concave function – Gradient ascent

 \blacksquare Conditional likelihood for Logistic Regression is concave \to Find optimum with gradient ascent

Gradient: $\nabla_{\mathbf{w}} l(\mathbf{w}) = [\frac{\partial l(\mathbf{w})}{\partial w_0}, \dots, \frac{\partial l(\mathbf{w})}{\partial w_n}]'$

Learning rate, η>0

Update rule: $\Delta \mathbf{w} = \eta \nabla_{\mathbf{w}} l(\mathbf{w})$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \frac{\partial l(\mathbf{w})}{\partial w_i}$$

- Gradient ascent is simplest of optimization approaches
 - □ e.g., Conjugate gradient ascent much better (see reading)

20

Maximize Conditional Log Likelihood: Gradient ascent

$$l(\mathbf{w}) = \sum_{j} y^{j}(w_{0} + \sum_{i}^{n} w_{i}x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i}x_{i}^{j}))$$

21

Gradient Descent for LR

Gradient ascent algorithm: iterate until change < ε

$$w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w})]$$

For
$$i = 1... n$$
,

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w})]$$

repeat

22

That's all M(C)LE. How about MAP?

- One common approach is to define priors on w
 - □ Normal distribution, zero mean, identity covariance
 - □ "Pushes" parameters towards zero
- Corresponds to Regularization
 - □ Helps avoid very large weights and overfitting
 - □ More on this later in the semester
- MAP estimate

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \ln \left[p(\mathbf{w}) \prod_{j=1}^N P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$

23

M(C)AP as Regularization

$$\ln \left[p(\mathbf{w}) \prod_{j=1}^{N} P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$

$$p(\mathbf{w}) = \prod_{i} \frac{1}{\kappa \sqrt{2\pi}} e^{\frac{-w_i^2}{2\kappa^2}}$$

Penalizes high weights, also applicable in linear regression

©Carlos Guestrin 2005-2007

Gradient of M(C)AP

$$\frac{\partial}{\partial w_i} \ln \left[p(\mathbf{w}) \prod_{j=1}^N P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right] \qquad p(\mathbf{w}) = \prod_i \frac{1}{\kappa \sqrt{2\pi}} e^{\frac{-w_i^2}{2\kappa^2}}$$

$$p(\mathbf{w}) = \prod_{i} \frac{1}{\kappa \sqrt{2\pi}} e^{\frac{-w_{i}^{2}}{2\kappa^{2}}}$$

25

MLE vs MAP

Maximum conditional likelihood estimate

$$\begin{aligned} \mathbf{w}^* &= \arg\max_{\mathbf{w}} \ln \left[\prod_{j=1}^N P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right] \\ & \underbrace{w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w})]} \end{aligned}$$

Maximum conditional a posteriori estimate

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \ln \left[p(\mathbf{w}) \prod_{j=1}^N P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w})] \right\}_{\mathbf{x}}$$

Naïve Bayes vs Logistic Regression

Consider Y boolean, X_i continuous, $X=<X_1 ... X_n>$

Number of parameters:

- NB: 4n +1
- LR: n+1

Estimation method:

- NB parameter estimates are uncoupled
- LR parameter estimates are coupled

27

©Carlos Guestrin 2005-2007

G. Naïve Bayes vs. Logistic Regression 1

[Ng & Jordan, 2002]

- Generative and Discriminative classifiers
- Asymptotic comparison (# training examples → infinity)
 - when model correct
 - GNB, LR produce identical classifiers
 - when model incorrect
 - LR is less biased does not assume conditional independence
 - □ therefore LR expected to outperform GNB

28

G. Naïve Bayes vs. Logistic Regression 2

- [Ng & Jordan, 2002]
- Generative and Discriminative classifiers
- Non-asymptotic analysis
 - □ convergence rate of parameter estimates, n = # of attributes in X
 - Size of training data to get close to infinite data solution
 - GNB needs O(log n) samples
 - LR needs O(n) samples
 - GNB converges more quickly to its (perhaps less helpful) asymptotic estimates

©Carlos Guestrin 2005-2007

29

Some

experiments
from UCI
data sets

Figure 1: Results of 15 experiments on datasets from the UCI Machine Learnin repeditory. Plots are of generalization error vs. m (averaged over 1000 random ratin/lets) splits). Dashed libe is logistic regression; solid libe is in pairs the speech.

What you should know about Logistic Regression (LR)

- Gaussian Naïve Bayes with class-independent variances representationally equivalent to LR
 - □ Solution differs because of objective (loss) function
- In general, NB and LR make different assumptions
 - \square NB: Features independent given class \rightarrow assumption on P(**X**|Y)
 - \Box LR: Functional form of P(Y|X), no assumption on P(X|Y)
- LR is a linear classifier
 - □ decision rule is a hyperplane
- LR optimized by conditional likelihood
 - □ no closed-form solution
 - □ concave → global optimum with gradient ascent
 - □ Maximum conditional a posteriori corresponds to regularization
- Convergence rates
 - ☐ GNB (usually) needs less data
 - □ LR (usually) gets to better solutions in the limit

©Carlos Guestrin 2005-2007