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Generative v. Discriminative
classifiers — Intuition A
JE

SD\./V\P(Q__ (Qr SK‘H
= WanttoLearn:hXi>Y < (1,),3, .k

PLY = 3pan)

G (e
X — features achly E\»C&LL
Y — target classes 4 £ P( ) -
= Bayes optimal classifier — P(Y|X) s XilY-sm]

N B
= Generative classifier, e.g.,mBayes:'/%WWCﬂ
L Assume some functional form for P(X]Y), P(Y)
f\m l)(\ Estimate parameters of P(X]Y), P(Y) directly /;rom trajning data
Use Bayes rule to calculate P(Y|X=x) = | O{,%' 2)
This is a ‘generative’ model P(x= x)
= Indirect computation of P(Y|X) through Bayes rule
= But, can geﬁge_mmple of the data, P(X) = 3, P(y) P(X]y)
m Discriminative classifiers, e.g., Logistic Regression: o .
7 Assume some functional form for P(Y[X) ), o ¢ t&f"[’;‘"b‘ Ao
Estimate parameters of P(Y|X) directly from training data g 0
This is the ‘discriminative’ model answer P (K22 )
= Directly learn P(Y|X)
= But CW because P(X) is not available
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Logistic 1

. . . function e

Logistic Regression  (orsigmoia): ¥ +eer(-

s Learn P(Y|X) directly! - //
Assume a particular functional form :.. //
Sigmoid applied to a linear function /
of the data: oz /

P(Y = 1|X) = ! T :

- T 14 exp(wo + 27q wiX;) z
Features can be discrete or continuous! 3

Understanding the sigmoid
" A
1
9(wo + Z wii) 1 4 ewot2_; wiw;
7

Wy=-2, w,=-1 w,=0, w,=-1 w,=0, w,=-0.5
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Logistic Regression —

a Linear classifier
"

g(wo + sz‘l‘z’) =

rrrrrrr

Very convenient!

]
P(Y =1|X =< Xq,..Xp>) =

implies
P(Y =0|X =< X1,..Xp>) =
implies

P(Y =0|X)
P(Y = 1|X)

implies
n P(Y =0|X)

P(Y = 1|X)

1
1+ exp(wo + X5 wi X;)

exp(wo + 205 w X;)

= exp(wo + Z%Uin‘)

1+ exp(wo + X w; X;)

linear

classification
rule!

7
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What if we have continuous X;?

= B
Eg character recognition: X; is it pixel

Gaussian Naive Bayes (GNB): 7(11,7“.]{)2
1 — 2
PX;=z2|Y =y,) = e ik

oLV 2T

Sometimes assume variance

m s independent of Y (i.e., o),
m orindependent of X; (i.e., o))
m orboth (i.e., 0)
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Example: GNB for classifying mental states

[Mltchell etal]

~1 mm resolution
~2 images per sec.
15,000 voxels/image

non-invasive, safe

measures Blood

Oxygen Level :
Dependent (BOLD) Typical
response impulse

response
8
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Learned Bayes Models — Means for

_ P‘BrainActiviti/lWordCategory) ———

Pairwise classification accuracy: 85%

People words 5% . Animal words

Logistic regression v. Naive Bayes
" J

m Consider learning f: X 2 Y, where
X is a vector of real-valued features, < X, ... X, >
Y is boolean

m Could use a Gaussian Naive Bayes classifier
assume all X; are conditionally independent given Y
model P(X; | Y =y,) as Gaussian N(w,,0;)
model P(Y) as Bernoulli(6,1-0)

m What does that imply about the form of P(Y|X)?
1

1 + exp(wo + > wiX;)
Cool!!!! | w0

P(Y =1|X =< Xq,..Xp>) =




Derive form for P(Y|X) for continuous X

P(Y = 11X) = P(Y = 1)P(X]Y = 1)

P(Y =1)P(X|Y =1)+ P(Y = 0)P(X|Y =0)

1
P(Y=0)P(X|Y=0
1+ PEY:l%PéXIY:lg
1

= P(Y=0)P(X|Y =0
1+ exp(In P%Y:l;PEX;Y:lg)

1
1+ exp( (In159) + 5 In 5=
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Ratio of class-conditional probabilities
"

In

P(XZ|Y:1) P(XiZZ"Y:yk):O_i\/?e
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Derive form for P(Y|X) for continuous X

P(Y =1)P(X|Y =1)

| JP(Yz 11X) = P(Y =1)P(X|Y =1)4+ P(Y =0)P(X|Y =0)
1
1+ exp( ('”%)+Ziln%
1
P(Y =1|X) =

14 exp(wo + X w; X;)

13
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Gaussian Naive Bayes v. Logistic Regression
“ J

Set of Gaussian Set of Logistic
Naive Bayes parameters Regression parameters
(feature variance
independent of class label)

Representation equivalence
But only in a special case!!! (GNB with class-independent variances)
But what's the difference???
LR makes no assumptions about P(X|Y) in learning!!!
Loss function!!!
Optimize different functions — Obtain different solutions

14
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Logistic regression for more

. dian2lasses

m Logistic regression in more general case, where

Y €{Y, ... Yg} : learn R-1 sets of weights
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Logistic regression more generally

m Logistic regression in more general case, where Y €

{Y, ... Yg} i learn R-1 sets of weights

for k<R
exp(wko + E?:l wkzXz)

P(Y = y|X) =

for k=R (normalization, so no weights for this class)

1

1+ 50 exp(w)o + Xy wyiXy)

PY =yplX) =

Features can be discrete or continuous!
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1+ 3 exp(wjo + Xy wyiX;)
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Loss functions: Likelihood v.
Conditional Likelihood
" SN

m  Generative (Naive Bayes) Loss function:
Data likelihood

N
InP(D|w) = Y InP(x),y/ |w)
=1
N . . N .
= NP |x),w)+ > InP& | w)
=1 j=1
Discriminative models cannot compute P(xi|w)!
But, discriminative (logistic regression) loss function:
Conditional Data Likelihood
N . .
InP(Dy | Dx,w) = ) _ InP(y | x/,w)
Jj=1
Doesn’t waste effort learning P(X) — focuses on P(Y|X) all that matters for

classification

17
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Expressing Conditional Log Likelihood

I(w) =Y InP(y/ X, w)
j

1

PO = 01X, w) = 1+ exp(wo + 3w X;)

exp(wg + >; w; X;)

POT=1Xw) = (o + 3 wiX)

(w) = Y [V InPly=1x,w) + (1 —¢/) In P(y = Ofx/, w)]

J

18
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Maximizing Conditional Log Likelihood

P(Y =0|X,W) =

1
" JE

P(Y =1|X,W) =

1+ exp(wo + X5 wiX;)
exp(wo + >; w; X;)
I(w) = In][PG|x7,w)
J

1+ exp(wo + 25 wiX;)
= 3 [0 + 3 wied) - In(1 + eap(uwo + 3" wiad)
7 7

J

Good news: /(w) is concave function of w — no locally optimal
solutions

Bad news: no closed-form solution to maximize /(w)

Good news: concave functions easy to optimize

19
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Optimizing concave function —
Gradient ascent
SR

m Conditional likelihood for Logistic Regression is concave — Find
optimum with gradient ascent

ol(w) ol(w)

*

] /
|

Gradient: Vywl(w) = [

8wo ’ 8'1,Un

Update rule: o _ nVwl(w)

ol(w)
811)2'

wi(t-i_l) - wi(t) +n

m Gradient ascent is simplest of optimization approaches
e.g., Conjugate gradient ascent much better (see reading)

20
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Maximize Conditional Log Likelihood:

Gradient ascent
"
(W) = Y ¢ (wo + Y wiel) — In(1 + exp(wg + > wizl))
j i g

21

Gradient Descent for LR
" J

Gradient ascent algorithm: iterate until change < ¢

wéH—l) — wc()t) + ”Z[yj —P(YI =1|x,w)]
J

Fori=1...n,

w0 ® 4 S - P(v =1 | xI,w)]
J

repeat

22

11



That’s all M(C)LE. How about MAP?
p(w ‘ Y,X) o P(Y | X, w)p(w)

m One common approach is to define priors on w
Normal distribution, zero mean, identity covariance
“Pushes” parameters towards zero

m Corresponds to Regularization
Helps avoid very large weights and overfitting
More on this later in the semester

m MAP estimate

N
* J | xJ
w* =argmaxin |p(w) ‘Hl Py’ | x7,w)
]:

23
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M(C)AP as Regularization
"

N —u2
In w Pyl | x),w S B
{p( )j];[l (v | %, )w e =11 o o2
Penalizes high weights, also applicable in linear regression 24
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Gradient of M(C)AP
"

a N y ] 1 —uriz
9 In p(W) H P(y-7 | X]’ W) p(w) = H R v
Wi j=1 i

©Carlos Guestrin 2005-2007

25

MLE vs MAP
"

m Maximum conditional likelihood estimate

N
* J | xJ
w* = argmaxIn Ll:[lP(y |X’W)W

w4 Sy — Py =1 | %, w)]
J

m Maximum conditional a posteriori estimate

N
* J | xJ
w* =argmaxin [p(w) ‘Hl Py | x ,w)}
]:

WD 0 {_szm FY el - POV =1 %, w)]
J
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Naive Bayes vs Logistic Regression
"

Consider Y boolean, X, continuous, X=<X, ... X,>

Number of parameters:

m NB: 4n +1
m LR: n+1

Estimation method:

m NB parameter estimates are uncoupled
m LR parameter estimates are coupled

27
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G. Naive Bayes vs. Logistic Regression 1

" A0 [Ng & Jordan, 2002]
m Generative and Discriminative classifiers

m Asymptotic comparison (# training examples - infinity)

when model correct
m GNB, LR produce identical classifiers

when model incorrect

m LR s less biased — does not assume conditional independence
therefore LR expected to outperform GNB

28
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G. Naive Bayes vs. Logistic Regression 2

"
m Generative and Discriminative classifiers

m Non-asymptotic analysis

convergence rate of parameter estimates, n = # of attributes in X
m Size of training data to get close to infinite data solution

= GNB needs O(log n) samples
= LR needs O(n) samples

GNB converges more quickly to its (perhaps less helpful)

asymptotic estimates
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[Ng & Jordan, 2002]
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pima (continuous)

boston (precict f » median price, continucus)

o4ty

— Naive bayes
------- Logistic Regression

sonar (coninuoLs) acult (derete)

Some

experiments
from UCI
data sets

EREINEEEEE

lenses (predict hard vs. soft, iscrete)

5 10 15 20
m

Figure 1: Results of 15 experiments on datasets from the UCT Machine Learnin
repository. Plots are of generalization error vs. m (averaged over 1000 randoy
train/test splits). Dashed line is logistic regression; solid line is naive Bayes.

s
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What you should know about

_ Logistic Regression (LR)

m Gaussian Naive Bayes with class-independent variances

representationally equivalent to LR
Solution differs because of objective (loss) function
In general, NB and LR make different assumptions
NB: Features independent given class — assumption on P(X]Y)
LR: Functional form of P(Y|X), no assumption on P(X|Y)
LR is a linear classifier
decision rule is a hyperplane
LR optimized by conditional likelihood
no closed-form solution
concave — global optimum with gradient ascent
Maximum conditional a posteriori corresponds to regularization
Convergence rates
GNB (usually) needs less data
LR (usually) gets to better solutions in the limit
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