Logistic Regression, cont.

Decision Trees

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University
September 26th, 2007

Logistic Regression

- Learn $P(Y|X)$ directly!
 - Assume a particular functional form
 - Sigmoid applied to a linear function of the data:

$$P(Y = 1|X) = \frac{1}{1 + \exp(-z)}$$

Features can be discrete or continuous!
Loss functions: Likelihood v. Conditional Likelihood

- Generative (Naïve Bayes) Loss function:
 Data likelihood
 \[\ln P(D \mid w) = \sum_{j=1}^{N} \ln P(x_j, y_j \mid w) \]
 \[= \sum_{j=1}^{N} \ln P(y_j \mid x_j, w) + \sum_{j=1}^{N} \ln P(x_j \mid w) \]

- Discriminative models cannot compute \(P(x \mid w) \)

- But, discriminative (logistic regression) loss function:
 Conditional Data Likelihood
 \[\ln P(D_Y \mid D_X, w) = \sum_{j=1}^{N} \ln P(y_j \mid x_j, w) \]

 Doesn’t waste effort learning \(P(X) \) – focuses on \(P(Y \mid X) \) all that matters for classification

Optimizing concave function – Gradient ascent

- Conditional likelihood for Logistic Regression is concave → Find optimum with gradient ascent

 Gradient:
 \[\nabla_w l(w) = \left(\frac{\partial l(w)}{\partial w_0}, \ldots, \frac{\partial l(w)}{\partial w_n} \right)^T \]

 Update rule:
 \[\Delta w = \eta \nabla_w l(w) \]
 \[w_i^{(t+1)} = w_i^{(t)} + \eta \frac{\partial l(w)}{\partial w_i} \]

- Gradient ascent is simplest of optimization approaches
 e.g., Conjugate gradient ascent much better (see reading)
Gradient Descent for LR

Gradient ascent algorithm: iterate until change < ε

\[w_{0(t+1)} \leftarrow w_{0(t)} + \eta \sum_j [y^j - \hat{P}(Y^j = 1 | x^j, w)] \]

For \(i = 1 \ldots n \),

\[w_{i(t+1)} \leftarrow w_{i(t)} + \eta \sum_j x_{ij}^j [y^j - \hat{P}(Y^j = 1 | x^j, w)] \]

That's all M(C)LE. How about MAP?

\[p(w | Y, X) \propto P(Y | X, w)p(w) \]

- One common approach is to define priors on \(w \):
 - Normal distribution, zero mean, identity covariance
 - "Pushes" parameters towards zero
- Corresponds to Regularization
 - Helps avoid very large weights and overfitting
 - More on this later in the semester

MAP estimate

\[w^* = \arg \max_w \ln \left[P(w) \prod_{j=1}^N P(y^j | x^j, w) \right] \]
M(C)AP as Regularization

\[\ln \left[p(w) \prod_{j=1}^{N} P(y^j | \mathbf{x}^j, w) \right] \]

\[= \ln \frac{1}{\sqrt{2\pi J}} e^{-\frac{w^2}{2J}} \prod_{j=1}^{N} P(y^j | \mathbf{x}^j, w) \]

\[\approx \ln \prod_{j=1}^{N} p(y^j | \mathbf{x}^j, w) - \frac{1}{2} \sum_{i=1}^{J} w_i^2 + \frac{1}{2} \ln \frac{1}{\sqrt{2J}} \]

Penalizes high weights, also applicable in linear regression

Large parameters → Overfitting

- If data is linearly separable, weights go to infinity
- Leads to overfitting:
 - Penalizing high weights can prevent overfitting… again, more on this later in the semester
Gradient of M(C)AP

\[\frac{\partial}{\partial w_i} \ln \left[p(w) \prod_{j=1}^{N} P(y_j \mid x^j, w) \right] \]

\[p(w) = \prod_{i} \frac{1}{\kappa \sqrt{2\pi}} e^{-\frac{w_i^2}{2\kappa}} \]

\[\frac{\partial}{\partial w_i} \left[\ln \prod_{j=1}^{N} P(y_j \mid x^j, w) - \frac{\sum_{i} w_i^2}{2\kappa} \right] \]

\[= \frac{\partial}{\partial w_i} \ln \prod_{j=1}^{N} P(y_j \mid x^j, w) - \frac{w_i^2}{\kappa} \]

we know from before

MLE vs MAP

- Maximum conditional likelihood estimate

\[w^* = \arg \max_w \ln \left[\prod_{j=1}^{N} P(y_j \mid x^j, w) \right] \]

\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x^j_i [y^j - \hat{P}(Y^j = 1 \mid x^j, w)] \]

- Maximum conditional a posteriori estimate

\[w^* = \arg \max_w \ln \left[p(w) \prod_{j=1}^{N} P(y_j \mid x^j, w) \right] \]

\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum_j x^j_i [y^j - \hat{P}(Y^j = 1 \mid x^j, w)] \right\} \]
Generative and Discriminative classifiers
- focuses on setting when GNB leads to linear classifier
 - variance \(\frac{1}{n_i} \) (depends on feature \(i \), not on class \(k \))

Asymptotic comparison (# training examples \(\rightarrow \) infinity)
- when GNB model correct
 - GNB, LR produce identical classifiers
- when model incorrect
 - LR is less biased – does not assume conditional independence
 - therefore LR expected to outperform GNB

Non-asymptotic analysis
- convergence rate of parameter estimates, \(n = \# \) of attributes in \(X \)
 - Size of training data to get close to infinite data solution
 - GNB needs \(O(\log n) \) samples
 - LR needs \(O(n) \) samples
 - GNB converges more quickly to its (perhaps less helpful) asymptotic estimates
Some experiments from UCI data sets

What you should know about Logistic Regression (LR)

- Gaussian Naïve Bayes with class-independent variances representationally equivalent to LR
 - Solution differs because of objective (loss) function
- In general, NB and LR make different assumptions
 - NB: Features independent given class → assumption on $P(X|Y)$
 - LR: Functional form of $P(Y|X)$, no assumption on $P(X|Y)$
- LR is a linear classifier
 - decision rule is a hyperplane
- LR optimized by conditional likelihood
 - no closed-form solution
 - concave → global optimum with gradient ascent
 - Maximum conditional a posteriori corresponds to regularization
- Convergence rates
 - GNB (usually) needs less data
 - LR (usually) gets to better solutions in the limit
Linear separability

- A dataset is **linearly separable** iff \exists a separating hyperplane:
 - $\exists \mathbf{w}$, such that:
 - $w_0 + \sum_i w_i x_i > 0$; if $x = \{x_1, \ldots, x_n\}$ is a positive example
 - $w_0 + \sum_i w_i x_i < 0$; if $x = \{x_1, \ldots, x_n\}$ is a negative example

Not linearly separable data

- Some datasets are **not linearly separable**!
Addressing non-linearly separable data – Option 1, non-linear features

- Choose non-linear features, e.g.,
 - Typical linear features: \(w_0 + \sum_i w_i x_i \)
 - Example of non-linear features:
 - Degree 2 polynomials, \(w_0 + \sum_i w_i x_i + \sum_{ij} w_{ij} x_i x_j \)
- Classifier \(h_w(x) \) still linear in parameters \(w \)
 - As easy to learn
 - Data is linearly separable in higher dimensional spaces
 - More discussion later this semester

Addressing non-linearly separable data – Option 2, non-linear classifier

- Choose a classifier \(h_w(x) \) that is non-linear in parameters \(w \), e.g.,
 - Decision trees, neural networks, nearest neighbor,…
- More general than linear classifiers
- But, can often be harder to learn (non-convex/concave optimization required)
- But, but, often very useful
- (BTW, later this semester, we’ll see that these options are not that different)
A small dataset: Miles Per Gallon

Suppose we want to predict MPG

From the UCI repository (thanks to Ross Quinlan)

A Decision Stump

mpg values: bad good

root

pchance = 0.001

cylinders = 3
cylinders = 4
cylinders = 5
cylinders = 6
cylinders = 8

0 0
4 17
1 0
8 0
9 1

Predict bad
Predict good
Predict bad
Predict bad
Predict bad

©Carlos Guestrin 2005-2007
Recursion Step

Take the Original Dataset...

And partition it according to the value of the attribute we split on

Build tree from These records..

Records in which cylinders = 4

Records in which cylinders = 5

Records in which cylinders = 6

Records in which cylinders = 8
Second level of tree

Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia.

(Similar recursion in the other cases)
Classification of a new example

Classifying a test example – traverse tree and report leaf label

Announcements

- Pittsburgh won the Super Bowl !!
 - Two years ago...

- Recitation this Thursday
 - Logistic regression, discriminative v. generative
Are all decision trees equal?

- Many trees can represent the same concept
- But, not all trees will have the same size!
 - e.g., $\phi = A \land B \lor \neg A \land C$ ((A and B) or (not A and C))

```
   A
  / \  
 t   f  
 B     C
/ \ 
/   \ 
/     
 t     t
f     f
 t   t
 f  f
```

Learning decision trees is hard!!!

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest ‘76]
- Resort to a greedy heuristic:
 - Start from empty decision tree
 - Split on next best attribute (feature)
 - Recurse
Choosing a good attribute

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Measuring uncertainty

- Good split if we are more certain about classification after split
 - Deterministic good (all true or all false)
 - Uniform distribution bad

$P(Y=\text{A}) = 1/2$ $P(Y=\text{B}) = 1/4$ $P(Y=\text{C}) = 1/8$ $P(Y=\text{D}) = 1/8$

$P(Y=\text{A}) = 1/4$ $P(Y=\text{B}) = 1/4$ $P(Y=\text{C}) = 1/4$ $P(Y=\text{D}) = 1/4$
Entropy

Entropy $H(X)$ of a random variable Y

$$H(Y) = - \sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

More uncertainty, more entropy!

Information Theory interpretation: $H(Y)$ is the expected number of bits needed to encode a randomly drawn value of Y (under most efficient code).

Andrew Moore’s Entropy in a nutshell

Low Entropy

High Entropy
Andrew Moore’s Entropy in a nutshell

- Low Entropy: the values (locations of soup) sampled entirely from within the soup bowl.
- High Entropy: the values (locations of soup) unpredictable... almost uniformly sampled throughout our dining room.

Information gain

- Advantage of attribute – decrease in uncertainty
 - Entropy of Y before you split: \(H(Y) = -\frac{1}{2} \log 2 + \frac{1}{2} \log 1 \approx -1 \)
 - Entropy after split:
 - Weight by probability of following each branch, i.e., normalized number of records
 - Information gain is difference: \(IG(X) = H(Y) - H(Y \mid X) \)

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

©Carlos Guestrin 2005-2007
Learning decision trees

- Start from empty decision tree
- Split on **next best attribute (feature)**
 - Use, for example, information gain to select attribute
 - Split on $\arg \max \text{IG}(X_i) = \arg \max \text{IG}(Y) - \text{IG}(Y | X_i)$
- Recurse

Suppose we want to predict MPG

Look at all the information gains...
A Decision Stump

mpg values: bad good

root
22 18
pvalue = 0.001

cylinders = 3
cylinders = 4
cylinders = 5
cylinders = 6
cylinders = 8
0 0 4 17 1 0 8 0 9 1
Predict bad Predict good Predict bad Predict bad Predict bad

Base Case One

Don't split a node if all matching records have the same output value
Base Case Two

Don’t split a node if none of the attributes can create multiple non-empty children.
Base Cases

- **Base Case One**: If all records in current data subset have the same output then **don’t recurse**
- **Base Case Two**: If all records have exactly the same set of input attributes then **don’t recurse**

Base Cases: An idea

- **Base Case One**: If all records in current data subset have the same output then **don’t recurse**
- **Base Case Two**: If all records have exactly the same set of input attributes then **don’t recurse**

Proposed Base Case 3:

If all attributes have zero information gain then **don’t recurse**

• *Is this a good idea?*
The problem with Base Case 3

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}
\]

\[y = a \text{ XOR } b\]

The information gains:

<table>
<thead>
<tr>
<th>Input</th>
<th>Value</th>
<th>Distribution</th>
<th>Info Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The resulting decision tree:

\[y \text{ values: } 0, 1\]

root

2 2

Predict 0

If we omit Base Case 3:

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}
\]

\[y = a \text{ XOR } b\]

The resulting decision tree:
Basic Decision Tree Building
Summarized

BuildTree(DataSet, Output)

- If all output values are the same in DataSet, return a leaf node that says “predict this unique output”
- If all input values are the same, return a leaf node that says “predict the majority output”
- Else find attribute X with highest Info Gain
 - Suppose X has n_X distinct values (i.e. X has arity n_X).
 - Create and return a non-leaf node with n_X children.
 - The ith child should be built by calling
 BuildTree(DS$_i$, Output)
 Where DS$_i$ built consists of all those records in DataSet for which $X = i$th distinct value of X.

MPG Test set error
The test set error is much worse than the training set error…

...why?

Decision trees & Learning Bias
Decision trees will overfit

- Standard decision trees are have no learning biased
 - Training set error is always zero!
 - (If there is no label noise)
 - Lots of variance
 - Will definitely overfit!!!
 - Must bias towards simpler trees
- Many strategies for picking simpler trees:
 - Fixed depth
 - Fixed number of leaves
 - Or something smarter…
A chi-square test

Suppose that mpg was completely uncorrelated with maker.
What is the chance we’d have seen data of at least this apparent level of association anyway?

By using a particular kind of chi-square test, the answer is 7.2%

(Such simple hypothesis tests are very easy to compute, unfortunately, not enough time to cover in the lecture, but in your homework, you’ll have fun! :))
Using Chi-squared to avoid overfitting

- Build the full decision tree as before
- But when you can grow it no more, start to prune:
 - Beginning at the bottom of the tree, delete splits in which $p_{\text{chance}} > \text{MaxPchance}$
 - Continue working your way up until there are no more prunable nodes

MaxPchance is a magic parameter you must specify to the decision tree, indicating your willingness to risk fitting noise

Pruning example

- With MaxPchance = 0.1, you will see the following MPG decision tree:

Note the improved test set accuracy compared with the unpruned tree

<table>
<thead>
<tr>
<th>Set</th>
<th>Num Errors</th>
<th>Size</th>
<th>Percent Wrong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>5</td>
<td>40</td>
<td>12.50</td>
</tr>
<tr>
<td>Test</td>
<td>56</td>
<td>352</td>
<td>15.91</td>
</tr>
</tbody>
</table>

©Carlos Guestrin 2005-2007
MaxPchance

- Technical note MaxPchance is a regularization parameter that helps us bias towards simpler models

![Expected Test set Error vs MaxPchance](image)

- We'll learn to choose the value of these magic parameters soon!

Real-Valued inputs

- What should we do if some of the inputs are real-valued?

<table>
<thead>
<tr>
<th>mpg</th>
<th>cylinders</th>
<th>displacement</th>
<th>horsepower</th>
<th>weight</th>
<th>acceleration</th>
<th>modelyear</th>
<th>maker</th>
</tr>
</thead>
<tbody>
<tr>
<td>good</td>
<td>4</td>
<td>75</td>
<td>18.2</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bad</td>
<td>6</td>
<td>196</td>
<td>13</td>
<td>70</td>
<td>america</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bad</td>
<td>4</td>
<td>110</td>
<td>12.8</td>
<td>77</td>
<td>europe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bad</td>
<td>6</td>
<td>198</td>
<td>16.5</td>
<td>74</td>
<td>america</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bad</td>
<td>4</td>
<td>103</td>
<td>16.5</td>
<td>73</td>
<td>asia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bad</td>
<td>8</td>
<td>302</td>
<td>12.8</td>
<td>78</td>
<td>america</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Infinite number of possible split values!!!

Finite dataset, only finite number of relevant splits!

Idea One: Branch on each possible real value
“One branch for each numeric value” idea:

Hopeless: with such high branching factor will shatter the dataset and overfit

Threshold splits

- Binary tree, split on attribute X
 - One branch: $X < t$
 - Other branch: $X \geq t$
Choosing threshold split

- Binary tree, split on attribute X
 - One branch: X < t
 - Other branch: X ≥ t
- Search through possible values of t
 - Seems hard!!!
- But only finite number of t's are important
 - Sort data according to X into {x₁,…,xₘ}
 - Consider split points of the form xᵢ + (xᵢ₊₁ – xᵢ)/2

A better idea: thresholded splits

- Suppose X is real valued
- Define \(IG(Y|X:t) \) as \(H(Y) - H(Y|X:t) \)
- Define \(H(Y|X:t) = H(Y|X < t) P(X < t) + H(Y|X >= t) P(X >= t) \)
- \(IG(Y|X:t) \) is the information gain for predicting Y if all you know is whether X is greater than or less than t
- Then define \(IG^*(Y|X) = \max_t IG(Y|X:t) \)
- For each real-valued attribute, use \(IG^*(Y|X) \) for assessing its suitability as a split
- Note, may split on an attribute multiple times, with different thresholds
Example with MPG

Information gains using the training set (40 records)

<table>
<thead>
<tr>
<th>Input</th>
<th>Value</th>
<th>Distribution</th>
<th>Info Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>cylinders</td>
<td>< 5</td>
<td>blue</td>
<td>0.0286</td>
</tr>
<tr>
<td></td>
<td>>= 5</td>
<td>blue</td>
<td></td>
</tr>
<tr>
<td>displacement</td>
<td>< 108</td>
<td>blue</td>
<td>0.428206</td>
</tr>
<tr>
<td></td>
<td>>= 108</td>
<td>blue</td>
<td></td>
</tr>
<tr>
<td>horsepower</td>
<td>< 94</td>
<td>blue</td>
<td>0.0209</td>
</tr>
<tr>
<td></td>
<td>>= 94</td>
<td>blue</td>
<td></td>
</tr>
<tr>
<td>weight</td>
<td>< 2709</td>
<td>blue</td>
<td>0.378471</td>
</tr>
<tr>
<td></td>
<td>>= 2709</td>
<td>blue</td>
<td></td>
</tr>
<tr>
<td>acceleration</td>
<td>< 18.2</td>
<td>blue</td>
<td>0.159882</td>
</tr>
<tr>
<td></td>
<td>>= 18.2</td>
<td>blue</td>
<td></td>
</tr>
<tr>
<td>modelyear</td>
<td>< 81</td>
<td>blue</td>
<td>0.310193</td>
</tr>
<tr>
<td></td>
<td>>= 81</td>
<td>blue</td>
<td></td>
</tr>
<tr>
<td>maker</td>
<td>america</td>
<td>blue</td>
<td>0.0437296</td>
</tr>
<tr>
<td></td>
<td>Asia</td>
<td>red</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Europe</td>
<td>blue</td>
<td></td>
</tr>
</tbody>
</table>

Example tree using reals

mpg values: bad good

root
 22 18
 pchance = 0.306

 cylinders < 5
 4 17
 pchance = 0.001

 cylinders >= 5
 18 1
 pchance = 0.003

 horsepower < 94
 1 17
 pchance = 0.274

 horsepower >= 94
 5 3
 pchance = 0.274

 acceleration < 18
 18 0
 pchance = 0.1

 acceleration >= 18
 6 1
 pchance = 0.1

 maker = america
 9 10
 pchance = 0.278

 maker = asia
 0 5
 pchance = 0.278

 maker = europe
 1 3
 pchance = 0.278

 displacement < 116
 6 2
 pchance = 0.278

 displacement >= 116
 1 0
 pchance = 0.278
What you need to know about decision trees

- Decision trees are one of the most popular data mining tools
 - Easy to understand
 - Easy to implement
 - Easy to use
 - Computationally cheap (to solve heuristically)
- Information gain to select attributes (ID3, C4.5, …)
- Presented for classification, can be used for regression and density estimation too
- Decision trees will overfit!!!
 - Zero bias classifier → Lots of variance
 - Must use tricks to find “simple trees”, e.g.,
 - Fixed depth/Early stopping
 - Pruning
 - Hypothesis testing

Acknowledgements

- Some of the material in the decision trees presentation is courtesy of Andrew Moore, from his excellent collection of ML tutorials:
 - http://www.cs.cmu.edu/~awm/tutorials