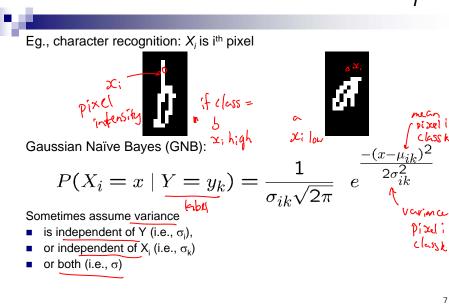


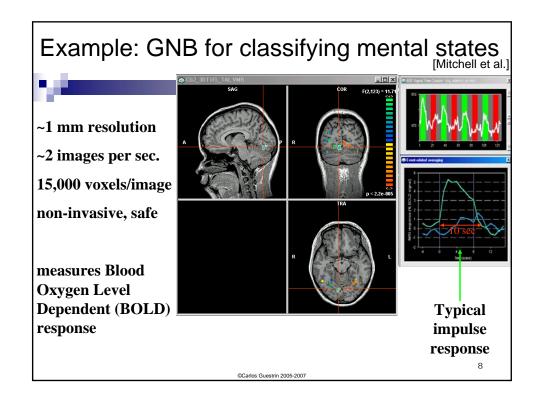
Very convenient!

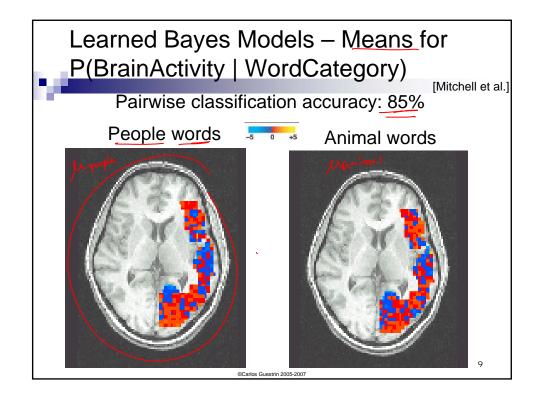
$$P(Y = 1 | X = \langle X_1, ... X_n \rangle) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$
implies
$$P(Y = 0 | X = \langle X_1, ... X_n \rangle) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_i w_i X_i)$$
implies
$$P(Y = 0 | X) = exp(w_0 + \sum_$$

What if we have continuous X_i ?



©Carlos Guestrin 2005-2007





Logistic regression v. Naïve Bayes

- Consider learning f: X → Y, where
 - \square X is a vector of real-valued features, $< X_1 ... X_n >$
 - ☐ Y is boolean
- Could use a Gaussian Naïve Bayes classifier
 - □ assume all X_i are conditionally independent given Y
 - \square model $P(X_i | Y = y_k)$ as Gaussian $N(\mu_{ik}, \sigma_i)$
 - □ model P(Y) as Bernoulli(θ ,1- θ)

What does that imply about the form of P(Y|X)?

$$P(Y = 1|X = < X_1, ...X_n >) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

Cool!!!!

©Carlos Guestrin 2005-2007

10

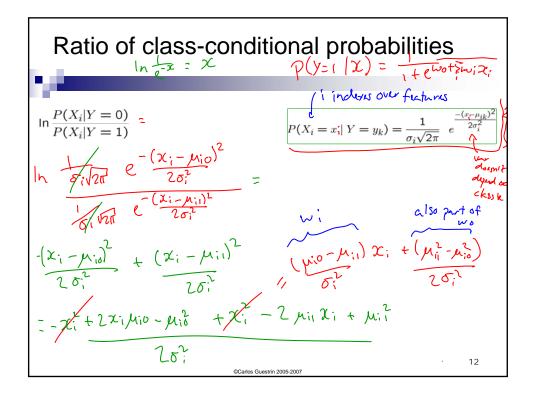
Derive form for P(Y|X) for continuous
$$X_i$$

$$P(Y=1|X) = \frac{P(Y=1)P(X|Y=1)}{P(Y=1)P(X|Y=1) + P(Y=0)P(X|Y=0)}$$

$$= \frac{1}{1 + \frac{P(Y=0)P(X|Y=0)}{P(Y=1)P(X|Y=1)}}$$

$$= \frac{1}{1 + \exp(\ln\frac{P(Y=0)P(X|Y=0)}{P(Y=1)P(X|Y=1)})}$$

$$= \frac{1}{1 + \exp((\ln\frac{1-\theta}{\theta}) + \sum_{i} \ln\frac{P(X_i|Y=0)}{P(X_i|Y=1)})}$$
Flucks (ike we as independent of X_i)



Derive form for P(Y|X) for continuous X_i

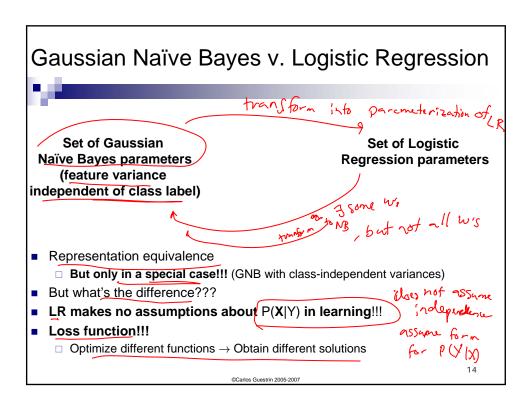
$$P(Y = 1|X) = \frac{P(Y = 1)P(X|Y = 1)}{P(Y = 1)P(X|Y = 1) + P(Y = 0)P(X|Y = 0)}$$

$$= \frac{1}{1 + \exp((\ln \frac{1-\theta}{\theta}) + \sum_{i} \ln \frac{P(X_{i}|Y = 0)}{P(X_{i}|Y = 1)})}$$

$$\sum_{i} \frac{\mu_{i0} - \mu_{i1}}{\sigma_{i}^{2}} X_{i} + \frac{\mu_{i1}^{2} - \mu_{i0}^{2}}{2\sigma_{i}^{2}}$$

$$P(Y = 1|X) = \frac{1}{1 + \exp(w_{0} + \sum_{i=1}^{n} w_{i}X_{i})}$$

$$w_{0} = \ln \frac{1-\theta}{\theta} + \sum_{i} \frac{\lambda_{i}}{\sigma_{i}^{2}} - \mu_{i0}$$



Logistic regression for more than 2 classes

■ Logistic regression in more general case, where $Y \in \{Y_1 \dots Y_R\}$: learn R-1 sets of weights $4 \text{ class} : \frac{3}{5} \text{ sets}$

$$P(Y=1|X, w_1) \propto e^{w_0 + \sum_{i=1}^{N} w_i \cdot x_i}$$
 $P(Y=2|X, w_2) \propto e^{w_2 \cdot x_i} + \sum_{i=1}^{N} w_{k-1,i} \cdot x_i$
 $P(Y=k-1|X, w_{k-1}) \propto e^{w_{k-1,0}} + \sum_{i=1}^{N} w_{k-1,i} \cdot x_i$
 $P(Y=k-1|X, w_{k-1}) \propto e^{w_{k-1,0}} + \sum_{i=1}^{N} e^{w_i \cdot x_i} + \sum_{$

©Carlos Guestrin 2005-200

Logistic regression more generally

Logistic regression in more general case, where Y ∈ {Y₁ ... Y_R}: learn R-1 sets of weights

for
$$k < R$$

$$P(Y = y_k | X) = \frac{\exp(w_{k0} + \sum_{i=1}^n w_{ki} X_i)}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^n w_{ji} X_i)}$$

for k=R (normalization, so no weights for this class)

$$P(Y = y_R | X) = \frac{1}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^{n} w_{ji} X_i)}$$

Features can be discrete or continuous in 1070,

Loss functions: Likelihood v. P(x,y|v). P(z)w Conditional Likelihood

Generative (Naïve Bayes) Loss function:

Data likelihood

$$\frac{\ln P(\mathcal{D} \mid \mathbf{w})}{\ln P(\mathbf{w})} = \sum_{j=1}^{N} \ln P(\mathbf{x}^{j}, \mathbf{y}^{j} \mid \mathbf{w})$$

$$= \sum_{j=1}^{N} \ln P(\mathbf{y}^{j} \mid \mathbf{x}^{j}, \mathbf{w}) + \sum_{j=1}^{N} \ln P(\mathbf{x}^{j} \mid \mathbf{w})$$
Discriminative models cannot compute $P(\mathbf{x}^{j} \mid \mathbf{w})$:

But, discriminative (logistic regression) loss function:

Conditional Data Likelihood

Conditional Data Likelihood
$$\ln P(\mathcal{D}_Y \mid \mathcal{D}_X, \mathbf{w}) = \sum_{j=1}^{N} \ln P(y^j \mid \mathbf{x}^j, \mathbf{w})$$

$$\square \text{ Doesn't waste effort learning P(X) - focuses on P(Y|X) all that matters for classification}$$

classification

Expressing Conditional Log Likelihood

$$l(\mathbf{w}) \equiv \sum_{j} \ln P(y^{j}|\mathbf{x}^{j}, \mathbf{w}) \qquad P(Y = 0|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + \exp(w_{0} + \sum_{i} w_{i} X_{i})}$$

$$p(Y = 0|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + \exp(w_{0} + \sum_{i} w_{i} X_{i})}$$

$$p(Y = 0|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + \exp(w_{0} + \sum_{i} w_{i} X_{i})}$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{\exp(w_{0} + \sum_{i} w_{i} X_{i})}{1 + \exp(w_{0} + \sum_{i} w_{i} X_{i})}$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + \exp(w_{0} + \sum_{i} w_{i} X_{i})}$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + \exp(w_{0} + \sum_{i} w_{i} X_{i})}$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + \exp(w_{0} + \sum_{i} w_{i} X_{i})}$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + \exp(w_{0} + \sum_{i} w_{i} X_{i})}$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + \exp(w_{0} + \sum_{i} w_{i} X_{i})}$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + \exp(w_{0} + \sum_{i} w_{i} X_{i})}$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + \exp(w_{0} + \sum_{i} w_{i} X_{i})}$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + \exp(w_{0} + \sum_{i} w_{i} X_{i})}$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + \exp(w_{0} + \sum_{i} w_{i} X_{i})}$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + \exp(w_{0} + \sum_{i} w_{i} X_{i})}$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + \exp(w_{0} + \sum_{i} w_{i} X_{i})}$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + \exp(w_{0} + \sum_{i} w_{i} X_{i})}$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + \exp(w_{0} + \sum_{i} w_{i} X_{i})}$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + \exp(w_{0} + \sum_{i} w_{i} X_{i})}$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + \exp(w_{0} + \sum_{i} w_{i} X_{i})}$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) + (1 - y^{j}) \ln P(y = 0|\mathbf{X}^{j}, \mathbf{w})$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) + (1 - y^{j}) \ln P(y = 0|\mathbf{X}^{j}, \mathbf{w})$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) + (1 - y^{j}) \ln P(y = 0|\mathbf{X}^{j}, \mathbf{w})$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) + (1 - y^{j}) \ln P(y = 0|\mathbf{X}^{j}, \mathbf{w})$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) + (1 - y^{j}) \ln P(y = 0|\mathbf{X}^{j}, \mathbf{w})$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) + (1 - y^{j}) \ln P(y = 0|\mathbf{X}^{j}, \mathbf{w})$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) + (1 - y^{j}) \ln P(y = 0|\mathbf{X}^{j}, \mathbf{w})$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) + (1 - y^{j}) \ln P(y = 0|\mathbf{X}^{j}, \mathbf{w})$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) + (1 - y^{j}) \ln P(y = 0|\mathbf{X}^{j}, \mathbf{w})$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) + (1 - y^{j}) \ln P(y = 0|\mathbf{X}^{j}, \mathbf{w})$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) + (1 - y^{j}) \ln P(y = 0|\mathbf{X}^{j}, \mathbf{w})$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) + (1 - y^{j}) \ln P(y = 0|\mathbf{X}^{j}, \mathbf{w})$$

$$p(Y = 1|\mathbf{X}, \mathbf{w}) + (1 - y^{j}$$

Maximizing Conditional Log Likelihood

$$P(Y = 0|X, W) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$P(Y = 1|X, W) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$l(\mathbf{w}) \equiv \ln \prod_{j} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})$$

$$= \sum_{j} \left[y^{j} (w_{0} + \sum_{i}^{n} w_{i} x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i} x_{i}^{j})) \right]$$

Good news: $I(\mathbf{w})$ is concave function of $\mathbf{w} \to \text{no locally optimal solutions}$

Bad news: no closed-form solution to maximize I(w)

Good news: concave functions easy to optimize

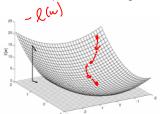
@Corlos Cucatria 2005 2007

19

20

Optimizing concave function — Gradient ascent (Conjugate G.D.)

■ Conditional likelihood for Logistic Regression is concave → Find optimum with gradient ascent



Gradient: $\nabla_{\mathbf{w}} l(\mathbf{w}) = [\frac{\partial l(\mathbf{w})}{\partial w_0}, \dots, \frac{\partial l(\mathbf{w})}{\partial w_n}]'$

Jpdate rule: $\Delta \mathbf{w} = \eta \nabla_{\mathbf{w}} l(\mathbf{w})$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \frac{\partial l(\mathbf{w})}{\partial w_i}$$

Gradient ascent is simplest of optimization approaches
 e.g., Conjugate gradient ascent much better (see reading)

Carlos Guestrin 2005-200

Maximize Conditional Log likelihood:
$$\frac{\partial \mathcal{L}(w)}{\partial w} = \frac{\partial \mathcal{L$$

