

What about continuous hypothesis spaces?

$$error_{true}(h) \le error_{train}(h) + \sqrt{\frac{\ln|H| + \ln\frac{1}{\delta}}{2m}}$$

- Continuous hypothesis space:
 - □ |H| = ∞
 - □ Infinite variance???
- As with decision trees, only care about the maximum number of points that can be classified exactly!

©2005-2007 Carlos Guestrin

2

Shattering a set of points

Definition: a **dichotomy** of a set S is a partition of S into two disjoint subsets.

Definition: a set of instances S is **shattered** by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.

classifies all St as positive all ST as negative

©2005-2007 Carlos Guestrin

PAC bound using VC dimension Number of training points that can be classified exactly is VC dimension!!! Measures relevant size of hypothesis space, as with decision trees with k leaves Bound for infinite dimension hypothesis spaces: $error_{true}(h) \leq error_{train}(h) + \sqrt{\frac{VC(H)\left(\ln\frac{2m}{VC(H)} + 1\right) + \ln\frac{4}{\delta}}{m}}$

What you need to know

- Finite hypothesis space
 - □ Derive results
 - □ Counting number of hypothesis
 - □ Mistakes on Training data
- Complexity of the classifier depends on number of points that can be classified exactly
 - ☐ Finite case decision trees
 - □ Infinite case VC dimension
- Bias-Variance tradeoff in learning theory
- Remember: will your algorithm find best classifier?

©2005-2007 Carlos Guestrin

Questions / Suggestions

■ Discussion board, hear about it soon

Privacy

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

October 29th, 2007

15

Handwriting recognition

Character recognition, e.g., kernel SVMs

©2005-2007 Carlos Guestrin

16

Today – Bayesian networks

- One of the most exciting advancements in statistical AI in the last 10-15 years
- Generalizes naïve Bayes and logistic regression classifiers
- Compact representation for exponentially-large probability distributions
- Exploit conditional independencies

2005-2007 Carlos Guestrin

20

(Marginal) Independence

■ Flu and Allergy are (marginally) independent

$$P(F,A) = P(F) \cdot P(A)$$

More Generally:

Flu = t	0.2
Flu = f	0.8

Allergy = t	O-3
Allergy = f	0.7

	Flu = t	Flu = f
Allergy = t	0-3 40 12	6.3×0.8
Allergy = f	0.2×0.7	0.7 x 0.8

Marginally independent random variables

- Sets of variables X, Y
- X is independent of Y if $\forall x \in Val(x)$, $y \in Val(x)$
 - $\square \not \models (X=x\perp Y=y), \frac{8 \times 2 \vee al(X), y2 \vee al(Y)}{}$

- P(x=x|y=y) = P(x=x)■ Shorthand:
 - □ Marginal independence: (X ⊥ Y)
- Proposition: P statisfies (X ⊥ Y) if and only if
 - $\square P(X,Y) = P(X) P(Y)$ P(X|y) = P(X)