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A simple setting...
" JE

m Classification
m data points
umber of possible hypothesis (e.g., dec. trees

m A learner finds a hypothesis h that is consistent
with training data

Gets zero error in training t<error,.,,(h) = 0

m What is the probability that rhas'more than ¢
true ?

error, (h)2e \ &G

©2005-2007 Carlos Guestrin 2




How likely is a bad hypothesis to

. getm data goints right?

m Hypothesis_h that is consistent with training data —
got m i.i.d. points right
?h:ba/d’:’if)t gets all this data right, but has high true error
—— B —— ]

m Prob. h with error,, .(h) 2 € gets one data point right
o( L\vgzh s~ port y;@pr)é [-&

/;

m Prob. h with error,.(h) 2 ¢ gets m data points right
?(K;,‘A ?ﬂn‘-sm U points \m'f)*\ﬂ < ([—Q\M

Q)(fbruuq{\'a{% Sowl| (a3 ™ ‘mcﬂ(ft&%}
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But there are many possible hypothesis

that are consistent with training data
= S

[PERENT PFC/‘S
l/\_/ ov gj— (o'W

€rvo Ir_f’_‘%L ([\']
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How likely is learner to pick a bad

. gaypothesis

m Prob. h with error,.(h) 2 € gets m data points right
Plhpd comitent with Ad) < (1-€]7

m There are k hypothesis consistent with data
How likely is learner to pick a bad one?
?(3 W Hhetis LA cnd Comgighrt with ”fdc\)
LV A bed Sethd)

- ?(L\\ locd/amfdh% 4 l]z QM‘( cossisisht V7
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Union bound
" J
= P(AorBorCorDor...)< Pl4) + P(H)+ (D~

—
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How likely is learner to pick a bad

. gaypothesis

m Prob. h with error, .(h) 2 ¢ gets m data points right
?(L\M,Cans'/sfbr)')s (1’Z) i
VUres
m There are k hypothesis consistent with data
How likely is learner to pick a bad one?

P bk W comsishd it ek ) < K (=)

e K7
K<[HI

Vs
‘\L‘j P"’Hlﬂ,s
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Review: Generalization error in

finite hxgothesis spaces [Haussler '88]

m Theorem: Hypothesis space H finite, dataset D

:?&_7\/!.——\_1\

with m i.i.d. samples, 0 < g < 1% for any Iearned
hypothe3|§h that is ConSISt@n the training data:

P(errortrue(h) > 6) SM
u#,o@

O wf

c\lmf

bopohs i drcress ()(fw%'o(fy

~ <
e ’ m
e L
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Using a PAC bound
* JE
m Typically, 2 use cases: P(erroryye(h) > ¢) < |H|e ™

kewm, fl -Z%%"’\o'\ L\.Q{&S

1: Pick € and 8, give you m Ve n /}L
2: Pick m and 8, give you e L | (V\/H{ /3
[, =02 =008,
&

et 2 [ e st b
\'\([H\-(h{) Urﬂf\ﬁsf/,(fhlmf%‘cf\

H.HC '“‘\551.
\v\/JG
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Review: Generalization error in

_ finite hypothesis spaces [Haussler '88]

m Theorem: Hypothesis space H finite, dataset D
with mi.i.d. samples, 0 < ¢ <1 : for any learned
hypothesis h that is consistent on the training data:

P(errorgque(h) > ¢€) < |H|le” ™¢
aporastelly 5 amafl 1R

J

Y yesald cbont h Consistid 101 7%/“‘”‘ /(mLc\
(wt& Joo o il snchy
if h makes zero errors in training data, may make@
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Limitations of Haussler ‘88 bound
= R P (erTOr e () > €) < |Hl|e ™

m Consistent classifier
—

m Size of hypothesis space

—

e
I (]
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What if our classifier does not have
zero error on the training data?
" JENEEES

m A learner with zero training errors may make
mistakes in test set

m What about a learner with error, ,;,(h) in training set?

/(//r(b/fhﬂ\\m(h\ ;6

ne [o hﬁm/ RSSnms
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Simpler question: What's the
_ exgected error of a hypothesis?

m The error of a hypothesis is like estimating the
parameter of a coin!  A«f=

VLRV RS e O T

m Chernoff bound: for mi.i.d. coin flips, x4,..., X
where x; € {0,1}. For O<e<1:

vt 1
&%\rm“)’fp 0 — —Z:cz > 6) < e_2m€2
m .

{ 1

V\ﬁw&

@\T’KCE :]f Z\ZE
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Using Chernoff bound to estimate

_ .errorof a sinlgle hypothesis

P/(Q — lzmz > 6) S e—2m62
G~ L\DP[AJ&S?S ,q

O e ercrqtm&(@ - Ex(iﬁﬂ‘@c\jﬂ@l )

~2mE

(\)(Q)’(‘w’{_ﬁu(}\\ '_‘*Q—P""af{yn,"\(‘\’) 7(_6,) S C
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But we are comparing many

. gaypothesis: Union bound

Cpvg = Lrrocdmr
For each hypothesis h;:
P (errortrue(hi) - errortram(hi) > e) < €_2m62
What if | am comparing two hypothesis, h,and h,?
bedh,? hy or [“\1, 7
brrov ) a O\t) ; e (A?/)B / WWJ}_ WML(‘\D ’ Zprogwal?_}/

(he) ?5)

?(%(h() -K,rbh(kJ?ﬁ V' Cre (hy) — Lirain
< Plepli)-tafulpe) & P (e i) ez

~2m et

274
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Generalization bound for |H]

. gaypothesis

m Theorem: Hypothesis space H finite, dataset D
with mi.i.d. samples, 0 < ¢ <1 : for any learned
hypothesis h:

P (errorirye(h) — errorqin(h) > ¢) < |H|€_2m€2\<‘0ﬁ
S I

ho lds

e ' AY’s )
6; HH—\ w-r}i\ 'j:»rz)é. !’d_—

1 //ﬂ
]V\H”H + Inky
(W”D”,{—w_(t\\ - eror_hﬂ_.m U\) é -
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PAC bound and Bias-Variance
tradeoff ~* ...

2
P (errortrue(h) - errortraz’n(h) > 5) S |I_]|8_2m‘E

“Iewrbage “38
2rz0r, (L) coc N

or, after moving some terms around,
with probability at least 1-8: 1
- In|H| 4+ In 3
2m

SMAH g (my% ) Ly Conecst

L\/‘é’:vt\\jrrortrue(h) < errofirgin(h) +

complet
fueh M”}‘é’ﬁ%‘

/H’/?Sé?c/

Simple lonrag Sl 54 cang,

- S InlH] g,
m Important: PAC bound holds for all h,
but doesn’t guarantee that algorithm finds best h!!!
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What about the size of the

. gapothesis sPace?

1 1
>—|In|H In—
m_262(—L-|+ 5)

m How large is the hypothesis space?

N
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Boolean formu
|r\ari

1 1
> —|In|H In —
m_2€2< [H + 5)

H? any Lo leen boroms e i Al C_dn')v\c“‘\o-\_j' oF [ 1ol
X, A=<FXe A X7 for aach
o Lo .. e &{) an n 7(3/\)(5’/17)/(7. X‘;:BCAAZ‘_)
\o_oo/oc-_r\| T s i - nef Fnckuoc
R T T
REILE T
I\ [ 0. [ = nln3
N A BN EAN
o ? viall
Fovar o (Ul b]ﬁ
ik ﬁvj\/bjh U.an, ©2005:2007 Carlos Guestrin 19

as with n binary features

#/& e

Number of decision trees of depth k
S m > 5o (i 410 5)

Recursive solution % ~4
Given n attributes /\7L3 x/
H, = Number of decision trees of depth k "‘b - *
ﬁ;=2 i P
H.., = (#choices of root attribute) *

(# possible left subtrees) *

(# possible right subtrees)

41|¢,+(:n* kH
) H, * H \V\JHlf(ZL‘D ((H%Lr\%l

Write L, = log, H,
LO = 1 <«
L.q =log, n+ 2L,

So L, = (21)(1+log, n) +1
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PAC bound for decision trees of

depth k A
. glepth K /MT
ANRT

In2 1
mzﬁ(@— l)(l-{—loggn)-l—l—f—lng) A .

2]

m Bad!l!
Number of points is exponential in depth!

m But, for m data points, decision tree can’t get too big...

no mon  fhan M s

Number of leaves never more than number data pojnts

©2005-2007 Carlos Gues

Number of decision trees with k leaves
= S m > 2—12("* IHI+'H§)

H, = Number of decision trees with k leaves
H, =2

k
Hypy1=n) HiHpy1_,
i=1

Loose bound: Reminder:

Hy, = nF 1k + 1)21 IDTs depth k| = 2+ (2n)2" 1

ht o bl
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PAC bound for decision trees with k
leaves — Bias-Variance revisited
JEm

In|[H|+In}

H; = nk—1 (k+ 1)2k -1 errorirue(h) < errory.qiy,(h) + o

/‘ Nunke of Feharngg

(k—l)lﬂ’r‘LL+(2k—l)|n(k—|—l)—|—ln%

errortrue(h) < errortrain(h) +

2m
S(sma-]-lxihj 7 i
=
P
70 <1
k= olm
Announcements

m Midterm:
Thursday Oct. 25th, Thursday 5-6:20pm, MM A14

= All content up to, and including SVMs and Kernels
Not learning theory
m| any book, class notes, your printouts of class materials tha
are on the class website, including my annotated slides an
relevant readings, and Andrew Moore’s tutorials. You cannot
use materials broughtby-etherstudents————

m Calculators are not necessary.
= No laptops, PDAs or cellphones.
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What did we learn from decision trees?
" S

m Bias-Variance tradeoff formalized

(k—1)Inn+ (2k— 1) In(k+ 1) +Ini

2m

errortTue(h) S errortrain(h) +J

m  Moral of the story:
Complexit¥ of learning not measured in terms of size hypothesis space,
but in‘ maximum number of points that allows consistent classification
Complexity m — no bias, lots of variance
\_—
Lower than m — some bias, less variance

e————
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What about continuo othesis
i} sgaces?
In|H|+ In%
errortrue(h) < errortrain(h) + k l 2|+ n L
m

m Continuous hypothesis space:

IH| = =

Infinite variance???

m|As with decision trees, only care about the
maximum number of points that can be
classified exactly!
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How many points can a linear

_ boundar¥ classify exactly? (1-D)

& @ (an Ao : - Ceentd
i T 4 i—_j — Ay 3
_& —
+ p— —
-
&
s
- | + - ¢+
SMV%U
N
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How many points can a linear

. boundar¥ classify exactly? (2-D)

CAn dd 3 ¢
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How many points can a linear

_ boundar¥ classify exactly? (d-D)

can ds  AdHI
Polndg

l'\ﬂW m‘\J\Kj Y)&“Mﬂ"h(ﬂler.}

'\ A N l ;"\L‘\“ C [QS)',,QLV ; Y

& Ld,<]n'\)"‘S‘lb"\.; 7
A f

\/\)o{_? [/\/',Ii

[=)

A+
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PAC bound using VC dimension
* e1, //,w
= Number of training points that can be Q‘*’"""’

classified exactly is VC dlmensmn!!!fm7 L Contirman
Measures relevant size of hypothesis space, as

with decision trees with k leaves
e e

VC(H) (In22%~ 4+ 1) +1In%
errortrue(h) < errort'rain(h)+ 2 ( VC(H) ) ]

m

only &QFZKA on UC(H—S
not on ]("”
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Shattering a set of points
“ JEE
Definition: a dichotomy of a set S is a

partition of S into two disjoint subsets.

Definition: a set of instances S is shattered
by hypothesis space H if and only if for every
dichotomy of S there exists some hypothesis
in H consistent with this dichotomy.

©2005-2007 Carlos Guestrin

31

VC dimension
» SN

Definition: The Vapnik-Chervonenkis
dimension, VC(H), of hypothesis space H
defined over instance space X is the size of
the largest finite subset of X shattered by H.
If arbitrarily large finite sets of X can be
shattered by H, then VC(H) = oc.

©2005-2007 Carlos Guestrin
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PAC bound using VC dimension
“ JEE
m Number of training points that can be
classified exactly is VC dimension!!!

Measures relevant size of hypothesis space, as
with decision trees with k leaves

Bound for infinite dimension hypothesis spaces:
VC(H) (ln veen + 1) +In%

m

errortrue(h) S errortrain(h)‘FJ
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Examples of VC dimension

[veurn (in2m 4+ 1) +in?
" .. .. 1)< ertor i+ o (" + 1) 10

m Linear classifiers:
VC(H) = d+1, for d features plus constant term b

m Neural networks
VC(H) = #parameters

Local minima means NNs will probably not find best
parameters

m 1-Nearest neighbor?

©2005-2007 Carlos Guestrin 34
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Another VC dim. example -

. Whatcanwe shatter?

m What's the VC dim. of decision stumps in 2d?

35

Another VC dim. example -

. What can t we shatter?

m What's the VC dim. of decision stumps in 2d?

36
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What you need to know
* JJdE
m Finite hypothesis space
Derive results
Counting number of hypothesis
Mistakes on Training data
m Complexity of the classifier depends on number of
points that can be classified exactly
Finite case — decision trees
Infinite case — VC dimension
m Bias-Variance tradeoff in learning theory

m Remember: will your algorithm find best classifier?
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Big Picture

Machine Learning — 10701/15781
Carlos Guestrin
Carnegie Mellon University

October 24th 2007
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What you have learned thus far

“ JEE

Learning is function approximation \
Point estimation
Regression
Naive Bayes
Logistic regression v
Bias-Variance tradeoff \
Neural nets -
Decision trees
Cross validation >. -
Boosting %
Instance-based learning -
SVMs
Kernel trick
PAC learning
VC dimension

Mistake
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Review material in terms of...
" I
m Types of learning problems

m Hypothesis spaces
w herd Pm& (e "ﬁfﬂsﬁ

= Loss functions

m Optimization algorithms
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This is a very incomplete view!!!

BIG PICTURE

(a few points of comparison)
“ JEE

Boosting
N a.l.Ve Cl, exp-loss
Bayes
DE, LL
- CcL
Logistc ~ — — SVMs
regression;, EC? Mo
DE, LL tﬁ\?{.
Instance-based
Learning
,Cl,Reg
Neural
Nets v
DE,Cl,Reg,RMS Decision
trees
DE,Cl,Reg
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learning

task

loss
function

DE

density estimation

Cl

Classification

Reg

Regression

LL

Log-loss/MLE

Mrg

Margin-based

RMS

Squared error

SVM

regression

Reg, Mrg

kernel

regression
Reg, RMS

linear

regression

Reg, RMS
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