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Dual SVM formulation —

_ the non-segarable case
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Why did we learn about the dual
SVM?

|
] T; are some quadratic programming

algorithms that can solve the dual faster than the
primal

, more importantly, the “kernel trick™!!! 7

Another little detouir...
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Reminder from last time: What if the
data is not linearly separable?
" AN

Use features of features

.t _of features of features....
L+t . P):R"—F
+ + . * - ) :

Feature space can get really large really quickly!

Higher order polynomials
"

num. terms =<

d+m-1)\_ (d+m—1)!
d  di(m —1)!

m — input features
d — degree of polynomial

d=4

1 d=3

number of monomial terms

1 d=2

grows fast!

number of input dimensions d=6,m=100
about 1.6 billion terms
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Dual formulation only depends on

_ dot-Eroducts, not on w!
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Dot-product of polynomials

" JJ
d(u) - ¢(v) = polynomials of degree d
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Finally: the “kernel trick”
" S

o 1
maximizes ;0 — 5 24 5 a0y K (X4, %)

K(x;,x;) = ®(x;) - P(x;)

>iouy; =0

C>a; >0 w =) ay;P(x;)
:

m Never represent features explicitly

Compute dot products in closed form b=
=y — W.P(x
m Constant-time high-dimensional dot- Yk ( k)
products for many classes of features

for any k where C > a3 >0

m Very interesting theory — Reproducing
Kernel Hilbert Spaces
Not covered in detail in 10701/15781,
more in 10702
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Polynomial kernels
"

m All monomials of degree d in O(d) operations:
d(u)-d(v) = (u-v)? = polynomials of degree d

m How about all monomials of degree up to d?
Solution 0:

Better solution:
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Common kernels
"
= Polynomials of degreed K (u,v) = (u-v)?
= Polynomials of degree up tod K (u,v) = (u-v + 1)4
202

u-—v
m Gaussian kernels K (u,v) = exp <_u>

m Sigmoid K (u,v) = tanh(nu-v 4+ v)
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Overfitting?

"
m Huge feature space with kernels, what about
overfitting???
Maximizing margin leads to sparse set of support
vectors

Some interesting theory says that SVMs search for
simple hypothesis with large margin

Often robust to overfitting
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What about at classification time
* JdE
m For a new input x, if we need to represent ®(x),
we are in trouble!
m Recall classifier: sign(w.®(x)+b)
m Using kernels we are cool!

W= > oy P(x;)
K(u,v) = ®(u) - d(v) i

b=y — w.P(xg)

for any k where C > a3 >0

©2005-2007 Carlos Guestrin 13

SVMs with kernels
"
m Choose a set of features and kernel function
m Solve dual problem to obtain support vectors a;
m At classification time, compute:

w-d(x) = Z oy K (X, %;)

]

b=y — Y oy (Xp, %;) m sign (w - ®(x) +0)

1
for any k where C' > aj, >0
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Remember kernel regression
"

Remember kernel regression???
1. w; =exp(-D(x;, query)?/K,?)
2. How to fit with the local points?

Predict the weighted average of the outputs:
predict = Zw,y;/ Zw;
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SVMs v. Kernel Regression
" J

SVMs Kernel Regression
sign (w - ®(x) + b) S K (xx)
or o ( > K(x. %)) )

sign (Z oy K(x,%x;) + b)
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SVMs v. Kernel Regression

"
SVMs Kernel Regression
sign (w - ®(x) + b) . (Zi yiK(x,xi))
or J > K(X. Xq‘)

sign|| Differences:

m SVMs:
Learn weights o, (and bandwidth)
Often sparse solution

m KR:
Fixed “weights”, learn bandwidth
Solution may not be sparse
Much simpler to implement
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What's the difference between
SVMs and Logistic Regression?
" SRR

SVMs Logistic
Regression

Loss function

High dimensional
features with
kernels
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Kernels in logistic regression
"

1
P(Y=1|zw) =

14 e~ (WP(x)+b)

m Define weights in terms of support vectors:
w=> a;®(x;)
i

1
1+ e—(Zi a;P(x;) P(x)+b)
1
1 4 ¢~ (i @ik (x.x;)+b)

PY=1|z,w) =

m Derive simple gradient descent rule on o,
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What's the difference between SVMs

_ and Logistic Regression? (Revisited)

SVMs Logistic
Regression
Loss function Hinge loss Log-loss
High dimensional Yes! Yes!

features with
kernels
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What you need to know
* JdE
m Dual SVM formulation
How it’s derived
m The kernel trick
m Derive polynomial kernel
m Common kernels
m Kernelized logistic regression
m Differences between SVMs and logistic regression
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Announcements
" A

m Midterm:
Thursday Oct. 25th, Thursday 5-6:30pm, MM A14

= All content up to, and including SVMs and Kernels
Not learning theory

m Midterm review:

Tuesday, 5-6:30pm, location TBD

= You should read midterms for Spring 2006 and 2007 before
the review session

= Then, you can ask about some of the questions in these
midterms
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PAC-learning, VC
Dimension and
Margin-based Bounds
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What now...
* J
m We have explored many ways of learning from
data
m But...

How good is our classifier, really?
How much data do | need to make it “good enough”?
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A simple setting...
"
m Classification

m data points

Finite number of possible hypothesis (e.g., dec. trees
of depth d)

m A learner finds a hypothesis h that is consistent
with training data
Gets zero error in training — error,;,(h) =0
m What is the probability that h has more than ¢
true error?
error, .(h) 2 ¢
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How likely is a bad hypothesis to

_ ﬁet m data points right?

m Hypothesis h that is consistent with training data —
got m i.i.d. points right
h “bad” if it gets all this data right, but has high true error
m Prob. h with error, .(h) 2 ¢ gets one data point right

m Prob. h with error,, (h) 2 ¢ gets m data points right
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But there are many possible hypothesis

that are consistent with training data
" JEE
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How likely is learner to pick a bad

_ hxgothesis

m Prob. h with error,, (h) 2 ¢ gets m data points right

m There are k hypothesis consistent with data
How likely is learner to pick a bad one?
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Union bound
“
m PAorBorCorDor...)
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How likely is learner to pick a bad

_ hxgothesis

m Prob. h with error,, (h) 2 ¢ gets m data points right

m There are k hypothesis consistent with data
How likely is learner to pick a bad one?
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Review: Generalization error in

_ finite hxgothesis sSpaces [Haussler '88]

m Theorem: Hypothesis space H finite, dataset D
with m i.i.d. samples, 0 <¢ <1 : for any learned
hypothesis h that is consistent on the training data:

P(erroryye(h) > ¢€) < |Hle™™¢
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Using a PAC bound
*
m Typically, 2 use cases: P(erroryye(h) > ¢€) < [Hle™™¢
1: Pick € and 9, give you m
2: Pick m and 6, give you ¢
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Review: Generalization error in

_ finite hxgothesis sSpaces [Haussler '88]

m Theorem: Hypothesis space H finite, dataset D
with m i.i.d. samples, 0 <¢ <1 : for any learned
hypothesis h that is consistent on the training data:

P(erroryye(h) > ¢€) < |Hle™™¢

Even if h makes zero errors in training data, may make errors in test
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Limitations of Haussler ‘88 bound
= JEE P(errorymye(h) > ¢€) < |H|e™ ™
m Consistent classifier

m Size of hypothesis space
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What if our classifier does not have
zero error on the training data?
" SR

m A learner with zero training errors may make
mistakes in test set

m What about a learner with error,._,,(h) in training set?

©2005-2007 Carlos Guestrin 35

Simpler question: What's the
_ exgected error of a hypothesis?

m The error of a hypothesis is like estimating the
parameter of a coin!

m Chernoff bound: for mi.i.d. coin flips, X4,..., X,
where x; € {0,1}. For O<e<1:

1 2
P (9——2@ > 6) < egm2me
m <=
1
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Using Chernoff bound to estimate
error of a single hypothesis
" S

1
P (02% > 6) < ¢—2me?
m =
(3
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But we are comparing many

_ hxgothesis: Union bound

For each hypothesis h;:
P (errortrue(hi) - errortrain(hi) > 6) < C_Qme

What if | am comparing two hypothesis, h, and h,?

2
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Generalization bound for |H|

_ hxgothesis

m Theorem: Hypothesis space H finite, dataset D
with m i.i.d. samples, 0 <¢ <1 : for any learned
hypothesis h:

2
P (errortrue(h) - errort'rain(h) > 6) S |I_I|€_2m6
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PAC bound and Bias-Variance
tradeoff
" SN

2
P (errortrue(h) - errort'rain(h) > 6) S |I_I|€_2m6

or, after moving some terms around,
with probability at least 1-6: 1
$ In|H|+ In 5

errofrye(h) < errory.qin(h) +
2m

m Important: PAC bound holds for all h,
but doesn’t guarantee that algorithm finds best h!!!
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What about the size of the

_ hxgothesis space?

> 1 <|n|H|+|n1>
m [ J—
— 2¢e2 1)

m How large is the hypothesis space?
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Boolean formulas with n binary features

"
1

m >
— 2¢2

<In |H| + In%)
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Number of decision trees of depth k
* E— mz 5o (i 40 )

Recursive solution
Given n attributes
H, = Number of decision trees of depth k
H, =2
H,.1 = (#¥choices of root attribute) *
(# possible left subtrees) *
(# possible right subtrees)
=n*H,*H,

Write L, = log, Hy

Lo=1

L =logy n+ 2L,

So L, = (21)(1+log, n) +1
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PAC bound for decision trees of

. depth k

In2 k 1
ng(@ —1>(1+Ioggn)+1+|n3)

m Bad!!!
Number of points is exponential in depth!

m But, for m data points, decision tree can’t get too big...

Number of leaves never more than number data points
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Number of decision trees with k leaves

1 1
" m 2 5z (i1 +n )

H, = Number of decision trees with k leaves

H, =2

k
Hyp1=mn) HiHpi1_,
=1
Loose bound: Reminder:
Hyp = nF Yk + 1)2k1 IDTs depth k| = 2 (2n)2" 1
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PAC bound for decision trees with k
leaves — Bias-Variance revisited
" SN

1

(k—1)Inn+ (2k—1)In(k+ 1) +In}

2m

errortrue(h) < errortrain(h)+

©2005-2007 Carlos Guestrin 46

23



What did we learn from decision trees?
" N

m Bias-Variance tradeoff formalized

(k—1)Inn+ (2k — 1) In(k+1) +In 1

errortrue(h) < errort'rain(h)+$

m Moral of the story:
Complexity of learning not measured in terms of size hypothesis space,
but in maximum number of points that allows consistent classification
Complexity m — no bias, lots of variance
Lower than m — some bias, less variance

2m
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