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Lagrange multipliers — Dual variables
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Dual SVM formulation —

_ the non-separable case
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Why did we learn about the dual
SVM?

|
m T;e are some quadratic programming

algorithms that can solve the dual faster than the

rtantly, the “kernel trick™!!!
Another little detour.).
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Reminder from last time: What if the

_ . data is not Iinear%k/ separable?
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Feature space can get really large r ickly!

Higher order polynomials
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Dual formulation only depends on
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Dot-product of polynomials
" O
d(u) - (v) = polynomials of degree d

Cp(u\. (p(\/) ( Lj (UL u:(m i,

IVI+(41VL =~ V
21 <P((") -¢((/) A AVGRNAVA Lo
(MU@ ARAZ Vi {-AIMLV‘VZ-{-/{AL

Wy VE
‘ Mt v,
-A’\L}M VLVI

= U'\\V\\l’r (,uL \/Z)’L

A MV MV = U’\tVr'UA,v,YZ
©2005-2007 Carlos Guestrin : ( M\} YZ 8

N




Finally: the “kernel trick™
"
maximizeq Yooy — %Zl,j OéZ'Oéij'yjK(Xz', Xj)

ekl R xg)= b(xp) - d(xy)= (1)
e oYy = 0
¢ '\‘} 1 X Yg

C>aq; >0 w =) oy P(x;)
m Never represent features explicitly ¢

Compute dot products in closed form b= Y — WCD(Xk:)

m “ Constant-time’high-dimensional dot-
products for many classes of features for any k where C > o}, >0

m | Very interesting theory — Reproducing
Kernel Hilbert Spaces

Not covered in detail in 10701/15781,
more in 10702
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Polynomial kernels

" JEE
m All monomials of degree d in O(d) operations:
P(n)-P(v) = (’u~_v)d = polynomials of degree d

m How about all monomials of degree up to d?
Solution 0: () V) = 5 (v
ic0

Better solution: . | <
(V\u\' i (L/\\/>1+(UV\ e(Vu) oz (wy £1)
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Common kernels
" J

= Polynomials of degreed K (u,v) = (u-v)?

= Polynomials of degree up to d K (1,v) = (u-v + 1)4
@QU\) 3 1651l A;munsions

SQCMLVM{- ZK()onzq}{A[ -
m Gaussian kernels K (u,v) = exp (_“272”
g
( — AL bandoiph
¢ W 2 ik X?wnsioy\c,/
m Sigmoid K (u,v) = tanh(nu-v +v) —
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Qverfitting?
" JEE
m Huge feature space with kernels, what about
overfitting???

Maximizing margin leads to/sparse set of support
v@rs

Some interesting theory says that SVMs search for
simple hypothesis with large margin

Often robust to overfitting
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What about at classification time
"
m For a new input x, if we need to represent ®(x),
we are in trouble! o

m Recall classifier: sign(w.®(x)+b)
m Using kernels we are cool!
J w =) oy P(x;)
K(u, V) = CD(u) d(v) L )
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SVMs with kernels
= JEE
m Choose a set of features and kernel function

m Solve dual problem to obtain support vectors o,
m At classification time, compute:

/H&’f“ Case X
w-D(x) =) oy K(x,%;)
7

b=yr — > oy K (xg,%;) m sign (w - ®(x) +b)

—_—_

7
for any k where C > qa;, > 0
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Remember kernel regression
* JEE
(—ewnS i an bjh&
/ )

Remember kernel regression???
1. w;=exp(-D(x; query)?/K,?)
2. How to fit with the local points?
Predict the weighted average of the outputs:
predict = Zwy, / Zw, K (X, ¥7)
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SVMs v. Kernel Regression
" JE

SVMs Kernel Regression
S'lgn (W . CD(X) + b) Sign (Z'L yiK(X7Xz)>
or > K(x,x5)
sign (Z oy K (x, %) + b)
4
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SVMs v. Kernel Regression
" JE

SVMs Kernel Regression
szgn (W ) CD(X) + b) Z,y,]{(x X‘)
or Sign ( ;f: }&’(X ;{3 )

stgn

Differences:

m SVMs:
Learn weig/htigg\(and bandwidth)
Often sparse solution

m KR: 1 ek W
Fixed “weights”, learn bandwidth
Solution may not be sparse

Much si implement
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What’s the difference between

_ . SVMs and Logistic Regression?

SVMs Logistic
Regression
Loss function Hinge loss Log-loss

A

High dimensional Yes! No
features with achnl
kernels 2 e
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Kernels in logistic regression

" JEE
1 /fchws A L;jé A

1+ —(w-B()+b)

P(Y=1|z,w) =

m Define weights in terms of support vectors:

W = Z Oziq)(XZ')

PY=1|z,w) = 1+ e (00 (%) (x)+b)

— 1 ‘UQQ
T 14 e (CieaKGexi)+b) Same (T2

. . . V
m Derive simple gradien nt rule on o
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What’s the difference between SVMs

SVMs Logistic
Regression
Loss function Hinge loss Log-loss )
o -———\/ \
High dimensional Yes! Yes! \l
features with L
- ‘Vi
kernels (Vf.?%;?;,},& is asappt\e
Solution sparse Often yes! Almost always no!
g 20 | FoEiger s (ses Do
Semantics of “Margin” Real probabilities
output s “ (onkidoncs’ p(Y=l|x) =o-6x
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_ and Logistic Regression? (Revisited)
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What you need to know

Dual SVM formulation
How it's derived

m The kernel trick
SRR R
m Derive polynomial kernel

m Common kernels

m Kernelized logistic regression
m Differences between SVMs and logistic regression
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Announcements

I
% Kl S olutions
= Midterm:
Thursday Oct. 25th, Thursday 5-6:30pm, MM A14

= All content up to, and including SVMs and Kernels
Not Iearnlng theory h
® 51 o le—pnp
m opts L»aL ahg , any orv#v\wc.és\“ n s
. — )
m Midterm review: efe,

Tuesday, 5-6:30pm, location F8D vt ﬂ-07

= You should read midterms for Spring 2006 and 50@7 before
the review session =

» Then, you can ask about some of the questions in these
midterms
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PAC-learning, VC

Carlos Guestrin
Carnegie Mellon University

October 22nd. 2007
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What now...
" JE
m We have explored many ways of learning from
data
m But...

How gaod-is-our classifier, really?

How much data do | need to make it “good enough”?
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A simple setting...
" S
m Classification
1.data polnts

Einite number of possible hypothesis (e.g., dec. trees
of depth d)

m A learner finds a hypothesis h that is consistent
with training data

Gets zero error in training
m What is the probability that h has @
true error?
error, o(h)2e &G
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How likely is a bad hypothesis to

. gdetm data Eoints right?

m Hypothesis_h that is consistent with training data —
got mi.i.d. points right
h "bad? if it gets all this data right, but has high true error

m Prob. h with error, (h) 2 € gets one data point right
Pl WAt s poind vight) € [-€

m Prob. h with error, .(h) 2 ¢ gets m data points right
P hey Gufs m A peicts w'y\%\ < ([-¢”

Q)(fbr\uﬂ\a@ S M“v{l (C‘.,S m et c‘%ﬁ)
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But there are many possible hypothesis
that are consistent with training data
JE

’QC.rNI/‘ P,’gks
(/\/ ov S’j— 8 o

€rvo k-,.f’%L ([\')
Fhe ‘1,;729‘,4

©2005-2007 Carlos Guestrin 27

How likely is learner to pick a bad

. gaypothesis

m Prob. h with error, () 2 ¢ gets m data points right
Plhud comitent with Ak (1-€]7

m There are k hypothesis consistent with data
How likely is learner to pick a bad one?
?(3 W Ahetis bedk  and Comgishat with A<=

- % AL M Agc.....,%
- ?(L\\ L;kd,(ansfdm% v L]'L QM( cosgisishot V.~ )
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Union bound
" JEE
m P(AorBorCorDor...)< P(#) + P(R) + (Dt
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How likely is learner to pick a bad

. gaypothesis

m Prob. h with error,,.(h) 2 ¢ gets m data points right
?(L\M ,Cahs'/gfl,‘»}-) < (1"6) m

m There are k hypothesis consistent with data

How likely is learner to pick a bad one?

P bk K comsitht i dek ) < (1-E)7
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Review: Generalization error in

finite hxgothesis spaces [Haussler '88]

m Theorem: Hypothesis space H flnltegmdau’gams&eg D

with m i.i.d. samples, 0 <eg < 1= <for any learned
hypothesis h that is consistent on the training data:

, P(errorgrye(h) > €) < |H|e ™
vy
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byps | drciess (Xfwﬂfo%

<
m

©2005-2007 Carlos Guestrin 31

16



