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Lagrange multipliers – Dual variables

Solving:
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Dual SVM formulation –
the non-separable case
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Why did we learn about the dual 
SVM?
There are some quadratic programming 
algorithms that can solve the dual faster than the 
primal
But, more importantly, the “kernel trick”!!!

Another little detour…
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Reminder from last time: What if the 
data is not linearly separable?

Use features of features 
of features of features….

Feature space can get really large really quickly!
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Higher order polynomials
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m – input features
d – degree of polynomial

grows fast!
d = 6, m = 100
about 1.6 billion terms
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Dual formulation only depends on 
dot-products, not on w!
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Dot-product of polynomials
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Finally: the “kernel trick”!

Never represent features explicitly
Compute dot products in closed form

Constant-time high-dimensional dot-
products for many classes of features

Very interesting theory – Reproducing 
Kernel Hilbert Spaces

Not covered in detail in 10701/15781, 
more in 10702
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Polynomial kernels

All monomials of degree d in O(d) operations:

How about all monomials of degree up to d?
Solution 0: 

Better solution:
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Common kernels

Polynomials of degree d

Polynomials of degree up to d

Gaussian kernels

Sigmoid
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Overfitting?

Huge feature space with kernels, what about 
overfitting???

Maximizing margin leads to sparse set of support 
vectors 
Some interesting theory says that SVMs search for 
simple hypothesis with large margin
Often robust to overfitting
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What about at classification time

For a new input x, if we need to represent Φ(x), 
we are in trouble!
Recall classifier: sign(w.Φ(x)+b)
Using kernels we are cool!
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SVMs with kernels

Choose a set of features and kernel function
Solve dual problem to obtain support vectors αi

At classification time, compute:

Classify as
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Remember kernel regression

Remember kernel regression???
1. wi = exp(-D(xi, query)2 / Kw

2)
2. How to fit with the local points?

Predict the weighted average of the outputs:
predict = Σwiyi / Σwi
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SVMs v. Kernel Regression

SVMs Kernel Regression

or
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SVMs v. Kernel Regression

SVMs Kernel Regression

or

Differences:
SVMs:

Learn weights αi (and bandwidth)
Often sparse solution

KR:
Fixed “weights”, learn bandwidth
Solution may not be sparse
Much simpler to implement
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What’s the difference between 
SVMs and Logistic Regression?

High dimensional 
features with 
kernels

Loss function

NoYes!

Log-lossHinge loss

Logistic
Regression

SVMs
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Kernels in logistic regression

Define weights in terms of support vectors:

Derive simple gradient descent rule on αi
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What’s the difference between SVMs
and Logistic Regression? (Revisited)

Almost always no!Often yes!Solution sparse

Yes!Yes!High dimensional 
features with 
kernels

Real probabilities“Margin”Semantics of 
output

Loss function Log-lossHinge loss

Logistic
Regression

SVMs
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What you need to know

Dual SVM formulation
How it’s derived

The kernel trick
Derive polynomial kernel
Common kernels
Kernelized logistic regression
Differences between SVMs and logistic regression
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Announcements

Midterm:
Thursday Oct. 25th, Thursday 5-6:30pm, MM A14

All content up to, and including SVMs and Kernels
Not learning theory

Midterm review:
Tuesday, 5-6:30pm, location TBD

You should read midterms for Spring 2006 and 2007 before
the review session
Then, you can ask about some of the questions in these 
midterms
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PAC-learning, VC 
Dimension and 
Margin-based Bounds
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What now…

We have explored many ways of learning from 
data
But…

How good is our classifier, really?
How much data do I need to make it “good enough”?
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A simple setting…

Classification
m data points
Finite number of possible hypothesis (e.g., dec. trees 
of depth d)

A learner finds a hypothesis h that is consistent
with training data

Gets zero error in training – errortrain(h) = 0

What is the probability that h has more than ε
true error?

errortrue(h) ≥ ε

©2005-2007 Carlos Guestrin 26

How likely is a bad hypothesis to 
get m data points right?

Hypothesis h that is consistent with training data →
got m i.i.d. points right

h “bad” if it gets all this data right, but has high true error

Prob. h with errortrue(h) ≥ ε gets one data point right

Prob. h with errortrue(h) ≥ ε gets m data points right
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But there are many possible hypothesis 
that are consistent with training data
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How likely is learner to pick a bad 
hypothesis

Prob. h with errortrue(h) ≥ ε gets m data points right

There are k hypothesis consistent with data
How likely is learner to pick a bad one?
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Union bound

P(A or B or C or D or …)
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How likely is learner to pick a bad 
hypothesis

Prob. h with errortrue(h) ≥ ε gets m data points right

There are k hypothesis consistent with data
How likely is learner to pick a bad one?
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Review: Generalization error in 
finite hypothesis spaces [Haussler ’88]

Theorem: Hypothesis space H finite, dataset D
with m i.i.d. samples, 0 < ε < 1 : for any learned 
hypothesis h that is consistent on the training data:


