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1-Nearest Neighbor
* JE

Four things make a memory based learner:

1. Adi i
uclidian (and many more)
@ear y neighbors to look at?

3. A weighting function (optional)
Unused

4. How to fit with the local points?
Just predict the same output as the nearest neighbor.
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Consistency of 1-NN
" JE

Consider an estimator_f,, trained on n examples
e.g., 1-NN, neural nets, regression,... o
Estimator is consistent if true error goes to zero as
amount of data increases
e.g., for no noise data, consistent if:

Jim_ MSE(fn) =0

Regression is not consistent!
Representation bias

1-NN is consistent (under some mild fineprint)

What about variance???
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1-NN overfits?
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k-Nearest Neighbor
* JE

Four things make a memory based learner:

1. Adistanc i
uclidian (and many more

2. How many nearby neighbors to look at?

1. A weighting function (optional)
Unused

2. How to fit with the local points?
Just predict the average output among the k nearest neighbors.
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k-Nearest Neighbor (here k=9)
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K-nearest neighbor for function fitting smoothes away noise, but there are
clear deficiencies.
What can we do about all the discontinuities that k-NN gives us?
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Weighted k-NNs
"
m Neighbors are not all the same [an 0‘“7[‘)

° n {4 ( ;
) 'day (3‘% :.j: ? T (3
N _fk-"”'x( ‘d\%)

e

\

g

, X EME,) }
e Z Y
/ Avrmm\ize 157& o
(4
s Conyx CO'*“LJ'(’l«)"{l
~

©2005-2007 Carlos Guestrin 7

1994 Vork Por high ¢ [tern Ajsfana Annchon

Kernel regressmn“z‘:;«iiﬁ%
. H Dl )
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Four things make a memory based Iearzer' o)
a1 _ D, )

1. Adista i e N o 3{
uclidian (and many more) Lim b = € K

2. How-manynearby neighbors to look at? ! A
o
A weighting function (optional) caled
3. weig b .
w, = exp(-D(x;, query)? / K2 Adewich
Nearby points to the query are weighted strongly, far points
weakly. The K, parameter is the Kernel Width. Very
important.
4. How to fit with the local points?

Predict the weighted average of the outputs:
predict = Zwy, / Zw, /fyj“ Wi (j;

Vé% = T
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Weighting functions
“ JEE
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Typically optimize K, (Our examples use Gaussian)
. . -_
using gradient descent
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Kernel regression predictions
" JEE

K,,=10 Ky=20 K,,=80
bis L\/ 7
ver T ¢

Increasing the kernel width K, means further away points get an
opportunity to influence you.

As K, o0, the prediction tends to the global average.
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Kernel regression on our test cases

‘:1 K busing|. |
fe s .
KW=1/32 of x-axis width. KW=1/32 of x-axis width. KW=1/16 axis width.
= [ o
)/\/Alip{kkoh

Choosing a good K, is important. Not just for Kernel Regression, but
for all the locally weighted learners we're about to see.
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Kernel regression can look bad

[ ]
KW = Best. KW = Best. KW = Best.

Time to try something more powerful...
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Locally weighted regression

Kernel ion:

Take a very very conservative function approximator

called AVERAGING. Locally weight it.
Locally weighted regression:

Take a conservative function approximator called

LINEAR REGRESSION. Locally weight it.

\ \,746'(!5 'FW‘& !
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Locally weighted regression
"
Four things make a memory based learner:
A distance metric
= How neighbors to look at?
Il of them

[ A weighting function (optional)
%ﬁeﬁ
wi = exp(-D(xi, query)? / Kw?)
= How to fit with the local points?

General weighted regression:
wght

p=argminy w’(y —p"x,) _
p k=1 T i ﬁ; l;(

©2005-2007 Carlos Guestrin

14




.. i oSt Ganls
L refion Bty

How LWR works TN R

4 I‘TL‘
Lﬁear regress%ion Locally weighted regression
= Same parameters for = Solve weighted linear regression
all queries for each query
A o A T —1 T
B=(X"X)'X"Y @=((WX) WX) (WX)' WY
- w, 0 0 0
Lot VQIisin = L0 w00
LW LR I only use o0 o
C'%%Mmfizé'i.fwm" 0 0 9™

Another view of LWR
= JEE

kernel too wide — includes nonlinear region
kernel just right
kernel toa narrow — excludes same of linear region

Image from Cohn, D.A., Ghahramani, Z., and Jotsiagngvbboil 89hds Asitisgrikearning with Statistical Models", JAIR Volume 4, pages 18-145.
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KW = 1/16 of x-axis
width.

LWR on our test cases

s |

KW = 1/32 of x-axis
width.

7 Cruath

KW = 1/8 of x-axis width.
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Locall ighted polynomial regression
" J
K.ernel Regression Coshd Wy Linear Regression LW Quadrati .sion

Kernel width K, at optimal
level.

KW = 1/100 x-axis

Kernel width K, at optimal

level.

KW = 1/40 x-axis

Gl

can increase without introducing bias.
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Kernel width K, at optimal
level.

KW = 1/15 x-axis

Local quadratic regression is easy: just add quadratic terms to the
WXJTWX matrix. As the regression degree increases, the kernel width
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Curse of dimensionality for
Instance-based learning
" NN

m Must store and retreve all data!
Most real work done during testing
For every test sample, must search through all dataset — very slow!
We'll see fast methods for dealing with large datasets> FD-fees

—Tress

—\/_\
m Instance-based learning often poor with noisy or irrelevant
features
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Curse of the irrelevant feature
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What you need to know about T oy

Instance-based Iearnlng ; N
" SRR Dk

mk-NN ) .
Slmplest Iearnmg algorithm
With sufficient data, very hard to beat “strawman” approach
Picking k?

m Kernel regression

Set k to n (humber of data points) and optimize weights by
gradient descent

Smoother than k-NN
m Locally weighted regression

Generalizes kernel regression, not just local average

m Curse of dimensionality

Must remember (very large) dataset for prediction

Irrelevant features often Killers for instance-based approg¢hes

Acknowledgment
" A
m This lecture contains some material from
Andrew Moore’s excellent collection of ML
tutorials:
http://www.cs.cmu.edu/~awm/tutorials
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Support Vector
Machines
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Linear classifiers — Which line is better?

/
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Pick the one with the largest margin!

“confidence” = (W.xj —+ b) Y;
WX t5<p '
. |
max mia X
= Wb 'l-'ft,.y\'s
=y 7
-@XV&L)%‘/: b]v fj),cL J’)[«\'\L
IA/L\y\IL h’"ﬁ
nesss ’P""f
has hi hest
ConBlentt

W.X = Zj w) x0)
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¥, 20\
Maximize the margin = ¥>°'%%;
ok min (‘“’IH533;
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maximize, wp ¥
<w.xj + b) y; =7, Vj € Dataset
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But there are a many planes...

I,A/Lxc\,"’ FVF !

nLw p[c«\x
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Review: Normal to a plane
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Normalized margin — Canonical

. hxaerglaneﬁ
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margin 2”

Normalized margin — Canonical

_ hxgerglanes
xT =x— + A\w
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Margin maximization using

. 1
_ canonical hyperplanes = aw
maximize, v, v i<t
(w.xj + b) y; >, Vj € Dataset
. [
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Support vector machines (SVMs)

minimizey,, w.w
ﬁw.xj + b) y; > 1, Vj

@ e m Solve efficiently by quadratic
+ - programming (QP)
o+ c < Well-studied solution algorithms
C( - e
+ - W
X * - (olnhnm Hyperplane defined by support
é,e"’{ DDW“" vectors
che
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