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Example of a hidden Markov model 
(HMM)



Understanding the HMM Semantics

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

HMMs semantics: Details

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Just 3 distributions:



HMMs semantics: Joint distribution

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Learning HMMs from fully 
observable data is easy

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Learn 3 distributions:



Possible inference tasks in an 
HMM

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Marginal probability of a hidden variable:

Viterbi decoding – most likely trajectory for hidden vars:

Using variable elimination to 
compute P(Xi|o1:n)

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Variable elimination order?

Compute:

Example:



What if I want to compute P(Xi|o1:n) 
for each i?

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Variable elimination for each i?

Compute:

Variable elimination for each i, what’s the complexity?

Reusing computation
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Compute:



The forwards-backwards algorithm
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Initialization: 
For i = 2 to n

Generate a forwards factor by eliminating Xi-1

Initialization: 
For i = n-1 to 1

Generate a backwards factor by eliminating Xi+1

8 i, probability is: 

What you’ll implement 1: 
multiplication



What you’ll implement 2: 
marginalization

Higher-order HMMs

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Add dependencies further back in time !
better representation, harder to learn



What you need to know

Hidden Markov models (HMMs)
Very useful, very powerful!
Speech, OCR,…
Parameter sharing, only learn 3 distributions
Trick reduces inference from O(n2) to O(n)
Special case of BN
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Review
Bayesian Networks 

Compact representation for 
probability distributions
Exponential reduction in number of 
parameters

Fast probabilistic inference using 
variable elimination

Compute P(X|e)
Time exponential in tree-width, not 
number of variables

Today
Learn BN structure

Flu Allergy

Sinus

Headache Nose

Learning Bayes nets

x(1)

…
x(m)

Data

structure parameters

CPTs –
P(Xi| PaXi)



Learning the CPTs

x(1)

…
x(m)

Data For each discrete variable Xi

Information-theoretic interpretation 
of maximum likelihood 1

Given structure, log likelihood of data:

Flu Allergy

Sinus

Headache Nose



Information-theoretic interpretation 
of maximum likelihood 2

Given structure, log likelihood of data:

Flu Allergy

Sinus

Headache Nose

Information-theoretic interpretation 
of maximum likelihood 3

Given structure, log likelihood of data:

Flu Allergy

Sinus

Headache Nose



Decomposable score

Log data likelihood

Decomposable score:
Decomposes over families in BN (node and its parents)
Will lead to significant computational efficiency!!!
Score(G : D) = ∑i FamScore(Xi|PaXi : D)

How many trees are there?
Nonetheless – Efficient optimal algorithm finds best tree



Scoring a tree 1: equivalent trees

Scoring a tree 2: similar trees



Chow-Liu tree learning algorithm 1 

For each pair of variables Xi,Xj
Compute empirical distribution:

Compute mutual information:

Define a graph
Nodes X1,…,Xn

Edge (i,j) gets weight

Chow-Liu tree learning algorithm 2

Optimal tree BN
Compute maximum weight 
spanning tree
Directions in BN: pick any 
node as root, breadth-first-
search defines directions



Can we extend Chow-Liu 1

Tree augmented naïve Bayes (TAN) [Friedman 
et al. ’97] 

Naïve Bayes model overcounts, because 
correlation between features not considered
Same as Chow-Liu, but score edges with:

Can we extend Chow-Liu 2

(Approximately learning) models 
with tree-width up to k

[Chechetka & Guestrin ’07]
But, O(n2k+6)…



What you need to know about 
learning BN structures so far
Decomposable scores

Maximum likelihood
Information theoretic interpretation

Best tree (Chow-Liu)
Best TAN
Nearly best k-treewidth (in O(N2k+6))

Scoring general graphical models –
Model selection problem

Data

<x1
(1),…,xn

(1)>
…

<x1
(m),…,xn

(m)>

Flu Allergy

Sinus

Headache Nose

What’s the best structure?

The more edges, the fewer independence assumptions,
the higher the likelihood of the data, but will overfit…



Maximum likelihood overfits!

Information never hurts:

Adding a parent always increases score!!!

Bayesian score avoids overfitting

Given a structure, distribution over parameters

Difficult integral: use Bayes information criterion 
(BIC) approximation (equivalent as M! 1)

Note: regularize with MDL score
Best BN under BIC still NP-hard



Structure learning for general graphs

In a tree, a node only has one parent

Theorem:
The problem of learning a BN structure with at most d
parents is NP-hard for any (fixed) d¸2

Most structure learning approaches use heuristics
Exploit score decomposition
(Quickly) Describe two heuristics that exploit decomposition 
in different ways

Learn BN structure using local 
search

Starting from 
Chow-Liu tree

Local search,
possible moves:
• Add edge
• Delete edge
• Invert edge

Score using BIC



What you need to know about 
learning BNs
Learning BNs

Maximum likelihood or MAP learns parameters
Decomposable score
Best tree (Chow-Liu)
Best TAN
Other BNs, usually local search with BIC score


