

What about continuous variables?

- Billionaire says: If I am measuring a continuous variable, what can you do for me?
- You say: Let me tell you about Gaussians...

$$P(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

2

Some properties of Gaussians

- affine transformation (multiplying by scalar and adding a constant)
 - $\square X \sim N(\mu, \sigma^2)$
 - \square Y = aX + b \rightarrow Y \sim $N(a\mu+b,a^2\sigma^2)$
- Sum of Gaussians
 - $\square X \sim N(\mu_X, \sigma^2_X)$
 - \square Y ~ $N(\mu_Y, \sigma^2_Y)$
 - \square Z = X+Y \rightarrow Z ~ $N(\mu_X + \mu_Y, \sigma^2_X + \sigma^2_Y)$

Learning a Gaussian

- Collect a bunch of data
 - □ Hopefully, i.i.d. samples
 - □ e.g., exam scores
- Learn parameters
 - □ Mean
 - □ Variance

$$P(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

MLE for Gaussian

• Prob. of i.i.d. samples $D=\{x_1,...,x_N\}$:

$$P(\mathcal{D} \mid \mu, \sigma) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}}$$

Log-likelihood of data:

$$\ln P(\mathcal{D} \mid \mu, \sigma) = \ln \left[\left(\frac{1}{\sigma \sqrt{2\pi}} \right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}} \right]$$
$$= -N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^N \frac{(x_i - \mu)^2}{2\sigma^2}$$

5

Your second learning algorithm: MLE for mean of a Gaussian

What's MLE for mean?

$$\frac{d}{d\mu} \ln P(\mathcal{D} \mid \mu, \sigma) = \frac{d}{d\mu} \left[-N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

6

MLE for variance

Again, set derivative to zero:

$$\frac{d}{d\sigma} \ln P(\mathcal{D} \mid \mu, \sigma) = \frac{d}{d\sigma} \left[-N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$
$$= \frac{d}{d\sigma} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{d}{d\sigma} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

-

Learning Gaussian parameters

MLE:

$$\hat{\mu}_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\hat{\sigma}_{MLE}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

- BTW. MLE for the variance of a Gaussian is biased
 - □ Expected result of estimation is **not** true parameter!
 - ☐ Unbiased variance estimator:

$$\hat{\sigma}_{unbiased}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

Bayesian learning of Gaussian parameters

- Conjugate priors
 - □ Mean: Gaussian prior
 - □ Variance: Wishart Distribution
- Prior for mean:

$$P(\mu \mid \eta, \lambda) = \frac{1}{\lambda \sqrt{2\pi}} e^{\frac{-(\mu - \eta)^2}{2\lambda^2}}$$

©Carlos Guestrin 2005-2007

MAP for mean of Gaussian

$$P(\mu \mid \eta, \lambda) = \frac{1}{\lambda \sqrt{2\pi}} e^{\frac{-(\mu - \eta)^2}{2\lambda^2}} \quad P(\mathcal{D} \mid \mu, \sigma) = \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}}$$
$$\frac{d}{d\mu} \left[\ln P(\mathcal{D} \mid \mu) P(\mu) \right] \quad = \quad \frac{d}{d\mu} \left[\ln P(\mathcal{D} \mid \mu) + \ln P(\mu) \right]$$

10

Prediction of continuous variables

- Billionaire says: Wait, that's not what I meant!
- You says: Chill out, dude.
- He says: I want to predict a continuous variable for continuous inputs: I want to predict salaries from GPA.
- You say: I can regress that...

11

The regression problem

- Instances: <x_i, t_i>
- Learn: Mapping from x to t(x)
- Hypothesis space:

$$H = \{h_1, \dots, h_K\}$$

☐ Given, basis functions☐ Find coeffs w={w₁,...,wk}

$$\underbrace{t(\mathbf{x})}_{\text{data}} \approx \widehat{f}(\mathbf{x}) = \sum_{i} w_{i} h_{i}(\mathbf{x})$$

- □ Why is this called linear regression???
 - model is linear in the parameters
- Precisely, minimize the residual squared error:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{j} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2$$

The regression problem in matrix notation

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{j} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2$$

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \underbrace{(\mathbf{H}\mathbf{w} - \mathbf{t})^T (\mathbf{H}\mathbf{w} - \mathbf{t})}_{\text{residual error}}$$

13

Regression solution = simple matrix operations

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \underbrace{(\mathbf{H}\mathbf{w} - \mathbf{t})^T (\mathbf{H}\mathbf{w} - \mathbf{t})}_{\text{residual error}}$$

solution:
$$\mathbf{w}^* = \underbrace{(\mathbf{H}^T \mathbf{H})^{-1}}_{\mathbf{A}^{-1}} \underbrace{\mathbf{H}^T \mathbf{t}}_{\mathbf{b}} = \mathbf{A}^{-1} \mathbf{b}$$

where
$$\mathbf{A} = \mathbf{H}^{\mathrm{T}}\mathbf{H} = \begin{bmatrix} \mathbf{b} \\ \mathbf{k} \\ \mathbf{k} \end{bmatrix}$$
 $\mathbf{b} = \mathbf{H}^{\mathrm{T}}\mathbf{t} = \begin{bmatrix} \mathbf{k} \\ \mathbf{k} \\ \mathbf{k} \end{bmatrix}$ where $\mathbf{A} = \mathbf{H}^{\mathrm{T}}\mathbf{H} = \begin{bmatrix} \mathbf{k} \\ \mathbf{k} \\ \mathbf{k} \\ \mathbf{k} \end{bmatrix}$

©Carlos Guestrin 2005-2007

14

But, why?

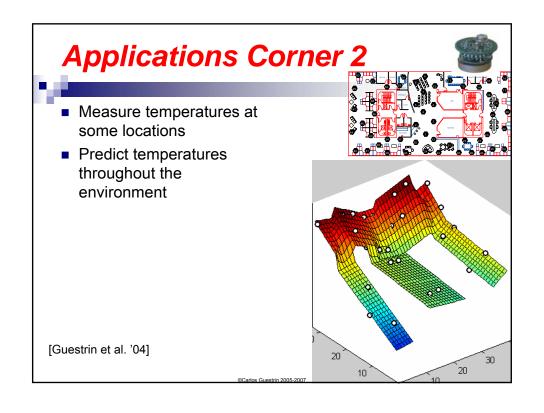
- You say: Gaussians, Dr. Gateson, Gaussians...
- Model: prediction is linear function plus Gaussian noise \Box t = Σ_i w_i h_i(**x**) + ϵ
- Learn w using MLE $P(t \mid \mathbf{x}, \mathbf{w}, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-\left[t \sum_{i} w_{i} h_{i}(\mathbf{x})\right]^{2}}{2\sigma^{2}}}$

Maximizing log-likelihood

Maximize: $\ln P(\mathcal{D} \mid \mathbf{w}, \sigma) = \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{\frac{-\left[t_j - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}{2\sigma^2}}$

Least-squares Linear Regression is MLE for Gaussians!!!

Applications Corner 1 Predict stock value over time from past values other relevant vars e.g., weather, demands, etc.



Applications Corner 3

- М
 - Predict when a sensor will fail
 - □ based several variables
 - age, chemical exposure, number of hours used,...

Carlos Guestrin 2005-200

Announcements 1

- Readings associated with each class
 - □ See course website for specific sections, extra links, and further details
 - □ Visit the website frequently
- Recitations
 - □ Thursdays, 5:00-6:20 in Wean Hall 5409
- Special recitation on Matlab
 - $\hfill \square$ Sept. 18 Tue. 4:30-5:50pm NSH 3002
- Carlos away on Monday Sept. 17th
 - $\hfill \square$ Prof. Eric Xing will teach the lecture

©Carlos Guestrin 2005-2007

0

19

Announcement 2

- First homework out later today!
 - □ Download from course website!
 - ☐ Start early!!! :)
 - □ Due Oct 3rd
- To expedite grading:
 - □ there are 4 questions
 - □ please hand in 4 stapled separate parts, one for each question

2005 2007

21

Bias-Variance tradeoff - Intuition

- lacktriangle Model too "simple" ightarrow does not fit the data well
 - □ A biased solution
- Model too complex → small changes to the data, solution changes a lot
 - ☐ A high-variance solution

22

(Squared) Bias of learner

- Given dataset D with m samples, learn function h(x)
- If you sample a different datasets, you will learn different h(x)
- **Expected hypothesis**: $E_D[h(x)]$
- Bias: difference between what you expect to learn and truth
 - □ Measures how well you expect to represent true solution
 - □ Decreases with more complex model

$$bias^2 = \int_x \{E_D[h(x)] - t(x)\}^2 p(x) dx$$

23

©Carios Guestini 2005-2007

Variance of learner

- Given a dataset D with m samples, you learn function h(x)
- If you sample a different datasets, you will learn different h(x)
- Variance: difference between what you expect to learn and what you learn from a from a particular dataset
 - ☐ Measures how sensitive learner is to specific dataset
 - □ Decreases with simpler model

$$\bar{h}(x) = E_D[h(x)]$$

$$variance = \int E_D[(h(x) - \bar{h}(x))^2]p(x)dx$$

24

Bias-Variance Tradeoff

- Choice of hypothesis class introduces learning bias
 - \square More complex class \rightarrow less bias
 - $\ \ \square \ More \ complex \ class \rightarrow more \ variance$

Bias-Variance decomposition of error

■ Consider simple regression problem f:X→T

$$t = f(x) = g(x) + \varepsilon$$
noise ~ N(0,\sigma)

deterministic

Collect some data, and learn a function h(x) What are sources of prediction error?

Guestrin 2005-2007

6

Sources of error 1 - noise

- What if we have perfect learner, infinite data?
 - \Box If our learning solution h(x) satisfies h(x)=g(x)
 - \square Still have remaining, <u>unavoidable error</u> of σ^2 due to noise ε

$$error(h) = \int_{x} \int_{t} (h(x) - t)^{2} p(f(x) = t|x) p(x) dt dx$$

27

©Carlos Guestrin 2005-2007

Sources of error 2 - Finite data

- What if we have imperfect learner, or only m training examples?
- What is our expected squared error per example?
 - □ Expectation taken over random training sets *D* of size m, drawn from distribution P(X,T)

$$E_D\left[\int_x \int_t \{h(x) - t\}^2 p(f(x) = t|x) p(x) dt dx\right]$$

28

Bias-Variance Decomposition of Error

Bishop Chapter 3

Assume target function: $t = f(x) = g(x) + \varepsilon$

Then expected sq error over fixed size training sets D drawn from P(X,T) can be expressed as sum of three components:

$$E_D\left[\int_x\int_t(h(x)-t)^2p(t|x)p(x)dtdx\right]$$

 $= unavoidableError + bias^2 + variance$

Where:

$$unavoidableError = \sigma^2$$

$$bias^2 = \int (E_D[h(x)] - g(x))^2 p(x) dx$$

$$\bar{h}(x) = E_D[h(x)]$$

variance =
$$\int E_D[(h(x) - \overline{h}(x))^2]p(x)dx$$

©Carlos Guestrin 2005-2007

What you need to know

- Gaussian estimation
 - □ MLE
 - □ Bayesian learning
 - □ MAP
- Regression
 - ☐ Basis function = features
 - □ Optimizing sum squared error
 - □ Relationship between regression and Gaussians
- Bias-Variance trade-off
- Play with Applet

30