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Gaussians
Linear Regression
Bias-Variance Tradeoff
Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

September 12th, 2007

Readings listed in class website
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What about continuous variables?

Billionaire says: If I am measuring a continuous 
variable, what can you do for me?
You say: Let me tell you about Gaussians…
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Some properties of Gaussians

affine transformation (multiplying by scalar and 
adding a constant)

X ~ N(µ,σ2)
Y = aX + b → Y ~ N(aµ+b,a2σ2)

Sum of Gaussians
X ~ N(µX,σ2

X)
Y ~ N(µY,σ2

Y)
Z = X+Y → Z ~ N(µX+µY, σ2

X+σ2
Y)

4
©Carlos Guestrin 2005-2007

Learning a Gaussian

Collect a bunch of data
Hopefully, i.i.d. samples
e.g., exam scores

Learn parameters
Mean
Variance
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MLE for Gaussian

Prob. of i.i.d. samples D={x1,…,xN}:

Log-likelihood of data:
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Your second learning algorithm:
MLE for mean of a Gaussian
What’s MLE for mean?
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MLE for variance

Again, set derivative to zero:
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Learning Gaussian parameters

MLE:

BTW. MLE for the variance of a Gaussian is biased
Expected result of estimation is not true parameter! 
Unbiased variance estimator:
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Bayesian learning of Gaussian 
parameters
Conjugate priors

Mean: Gaussian prior
Variance: Wishart Distribution

Prior for mean:
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MAP for mean of Gaussian
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Prediction of continuous variables

Billionaire says: Wait, that’s not what I meant!     
You says: Chill out, dude.
He says: I want to predict a continuous variable 
for continuous inputs: I want to predict salaries 
from GPA.
You say: I can regress that…
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The regression problem
Instances: <xj, tj>
Learn: Mapping from x to t(x)
Hypothesis space:

Given, basis functions
Find coeffs w={w1,…,wk}

Why is this called linear regression???
model is linear in the parameters

Precisely, minimize the residual squared error:
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The regression problem in matrix 
notation

N
 sensors

K basis functions

N
 sensors

measurementsweights

K basis func
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Regression solution = simple matrix 
operations

where

k×k matrix 
for k basis functions 

k×1 vector
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Billionaire (again) says: Why sum squared error???
You say: Gaussians, Dr. Gateson, Gaussians…

Model: prediction is linear function plus Gaussian noise
t = ∑i wi hi(x) + ε

Learn w using MLE

But, why?
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Maximizing log-likelihood

Maximize:

Least-squares Linear Regression is MLE for Gaussians!!!
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Applications Corner 1

Predict stock value over time from
past values
other relevant vars

e.g., weather, demands, etc.
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Applications Corner 2

Measure temperatures at 
some locations
Predict temperatures 
throughout the 
environment
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Applications Corner 3

Predict when a sensor will fail
based several variables

age, chemical exposure, number of hours used,…
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Announcements 1

Readings associated with each class
See course website for specific sections, extra links, and further 
details
Visit the website frequently

Recitations 
Thursdays, 5:00-6:20 in Wean Hall 5409

Special recitation on Matlab
Sept. 18 Tue. 4:30-5:50pm NSH 3002

Carlos away on Monday Sept. 17th
Prof. Eric Xing will teach the lecture
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Announcement 2

First homework out later today!
Download from course website!
Start early!!! :)
Due Oct 3rd

To expedite grading:
there are 4 questions
please hand in 4 stapled separate parts, one for each 
question
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Bias-Variance tradeoff – Intuition 

Model too “simple” → does not fit the data well
A biased solution

Model too complex → small changes to the data, 
solution changes a lot

A high-variance solution
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(Squared) Bias of learner

Given dataset D with m samples, 
learn function h(x)
If you sample a different datasets, 
you will learn different h(x)
Expected hypothesis: ED[h(x)]

Bias: difference between what you expect to learn and truth
Measures how well you expect to represent true solution
Decreases with more complex model 
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Variance of learner

Given a dataset D with m samples, 
you learn function h(x)
If you sample a different datasets, 
you will learn different h(x)
Variance: difference between what you expect to learn and 
what you learn from a from a particular dataset 

Measures how sensitive learner is to specific dataset
Decreases with simpler model
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Bias-Variance Tradeoff

Choice of hypothesis class introduces learning bias
More complex class → less bias
More complex class → more variance

26
©Carlos Guestrin 2005-2007

Bias–Variance decomposition of error

Consider simple regression problem f:X T 
t = f(x) = g(x) + ε

Collect some data, and learn a function h(x)
What are sources of prediction error?

noise ~ N(0,σ)

deterministic
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Sources of error 1 – noise 

What if we have perfect learner, infinite data?
If our learning solution h(x) satisfies h(x)=g(x)
Still have remaining, unavoidable error of                          
σ2 due to noise ε
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Sources of error 2 – Finite data

What if we have imperfect learner, or only m 
training examples?
What is our expected squared error per example?

Expectation taken over random training sets D of size m, drawn 
from distribution P(X,T)
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Bias-Variance Decomposition of Error
Assume target function: t = f(x) = g(x) + ε

Then expected sq error over fixed size training sets D drawn 
from P(X,T) can be expressed as sum of three components:

Where:

Bishop Chapter 3
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What you need to know

Gaussian estimation
MLE
Bayesian learning
MAP

Regression
Basis function = features
Optimizing sum squared error
Relationship between regression and Gaussians

Bias-Variance trade-off
Play with Applet


