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What about continuous variables?
" A
m Billionaire says: If | am measuring a continuous
variable, what can you do for me?

m You say: Let me tell you about Gaussians...
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Some properties of Gaussians
“ JEE
m affine transformation (multiplying by scalar and
adding a constant)
X ~ N(w,6?)
Y=aX+b—-Y~N b,a2c?
X 73 *,(7—; (apt ac):
72 -9,
= Sum of Gaussians (indspa o)
X ~ N(py,6%x)
Y ~ N(uy,6%y)

@ﬁy — Z~ N(uxtpy, 6%+c?y)
L .

Learning a Gaussian
= JEE
m Collect a bunch of data

Hopefully, i.i.d. samples

e€.g., exam scores
S

X = 11
[ 7

m Learn parameters _
Mean = ETX = 3k X

Variance - £y '}’\\L3
1 (-2
Pla | po) = o 2t
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MLE for Gaussian
* J
m Prob. of i.i.d. samples D={xy,...,X\}:
D:ff%‘ﬁ\’%l"“s 1 N N —($Z'—,U)2
P(D = 2052
(D p0) (J 7W> 1 e
?(D\M"Y) = T,\YP(DCil/A,cﬂ T dapprndence

m Log-likelihood of data:

1 \V N —Eew?

a\m-om INnP(D|po) = In {(ﬁ) il;lle 252 ]
N

Your second learning algorlthm

( x4
. oMLE for mean of a Gaussian
¥ = -2 (xi-p)
m What’s MLE for mean?
%mp(mu,a) = % —NlnoV2r ]
V)
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MLE for variance
"
m Again, set derivative to zero:

INnP(D | p,o) = | —NlInoV2r —
| i=1
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UMLE — NZ Ly

) 1 2
OMLE = NZ@%—HLE
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m \'I;W. MLE for the variance of a Gaussian is biased

Expected result of estimation is not true parameter!
Unbiased variance estimator:

2 1 X 5
Tunbiased — N _ 122(7% — 'uj
©Carlos Guestrin Zﬂﬂﬁ—m()




Bayesi ing of Gaussian
_ garameters

m Conjugate priors
Mean: Gaussian prior
Variance: Wishart Distribution,

m Prior for mean:
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Prediction of continuous variables
" A

m Billionaire says: Wait, that’s not what | meant!

m You says: Chill out, dude.

m He says: | want to predict a continuous variable
for continuous inputs: | want to predict s

from GPA. <38 95K
m You say: | can regress that... <e0, J2E>
<33 fooep
s
oo t\\/
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The regression problem P

x5 X3
" S g
= Instances: <x;, t> K<3 ? QLVD Cr,,w
S{/\éD()
m Learn: Mapplng from xto t(x) =k cos try)
m Hypothesis space: H = {h hic) $51 (2
7 Given, basis functions L TR ’
Find coeffs w={w,...,w,} @ %é(jf) =2 wz@@o
- data ‘\-&C""’\V&?
Why is this called linear regression??? N
= model is linear in the parameters — . ,V(“q)—
Luthigy

m Precisely, minimize the residual squared error: (/055 foackp..

w' = argngnz (t(xj) - Zwihi(xj))

K
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The regression problem in matrix
7">\‘KL O(U’\U\Jl"e

notation S e b

e 1
— |
w* = argmin(Hw — t)T (Hw — t)

"

residual error

l‘“...h;\' i
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Regression solution = simple matrix

. ogerations

w* = argmin(Hw —t)" (Hw — t)
- residual error )
solution: @: (H™H) 'H"t = A~'b
\ ,Y p
A-1

where A =H'H —{ ] b=H"t E]

kxk matrix k>< 1 vector
for k basis functions

14
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TN A Xha | X RG]
But, why? RN ”
i} I y ) 't’\/“('ﬂ-lb'z}
o
m Billionaire (again) says: Why sum squared error???
m You say: Gaussians, Dr. Gateson, Gaussians...

m Model; prediction is linear function plus Gaussian noise

t=24w; hi(x) + 8(_’_ T\j<0152)
)/\/
?(‘6 1\(. W, 6‘3 W
m Learn vli;ts]nq MLE ) 1 _[t_zé'wéihi(x)]Q
X, W,0) = e a
oV 27 15
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Maximizing log- |Ike|lh00d

= JEE /
o 1wy = ()" f
g \OV2T) =y
In \ __f[{;o Z. wih (7%31
X i 2
_ i Z (£} »Z}w: hi 0(‘)))

d:\

Least-squares Linear Regression is MLE for Gaussiansi#!
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Applications Corner 1
“ JEE
m Predict stock value over time from

past values

other relevant vars
= eg, weather, demands, etc.

17
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Applications Corner 2 i
B e L & e
" JEE = e
m Measure temperatures at
some locations

m Predict temperatures
throughout the
environment

: = . 0,
2 \“\}.““
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Applications Corner 3
= J
m Predict when a sensor will fail

based several variables
= age, chemical exposure, number of hours used,...
—

NIV

Sugor i |
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Announcements 1
" A
m Readings associated with each class
See course website for specific sections, extra links, and further

details— ——

Visit the website frequently

m Recitations
Thursdays, 5:00-6:20 in Wean Hall 5409
. —— .
m Special recitation on Matlab
Sept. 18 Tue. 4:30-5:50pm NSH 3002

m Carlos away on Monday Sept. 17th
P
Prof. Eric Xing will teach the IectureJ

20
©Carlos Guestrin 2005-200;

10



Announcement 2
= JEE
m First homework out later today!
Download from course website!

Start early!!! 1)
Due Oct 3r

m To expedite grading:
_expedite grading
there are 4 questions

please hand in 4 stapled separate parts, one for each
question
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Bias-Variance tradeoff — Intuition
"
= Model too “simple” — does not fit the data well

A biased solution ;7
A N

N\

m Model too complex — small changes to the data,
solution changes a lot

A high varlan olution

11



(Squared) Bias of learner
* JJE
Given dataset D with m samples,
learn function h(x)

If you sample a differen)t datasetsf'" )
you will learn different h(x) o=

. a/ar\ ‘»VV“j
Expected hypothe5|3' Eplh(x)]

Bias: difference between what you expect to learn and truth
Bl =s e DerWest
Measures how well you expect to represent true solution

Decreases with more complex model / A’S’}Lo Uvﬁ wil|
Vs 400

biCLSQ — /QU{ED[h(ZU)] —t7(_$)}2p(x)d$ be ﬂs{iﬂ{
Crtvagh N ot b
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Variance of learner
* JE
m Given a dataset D with m samples,
you learn function h(x)

m If you sample a different datasets,
you will learn different h(x)

m Variance: difference between what you expect to learn and
what you learn from a from a particular dataset
Measures how sensitive learner is to specific dataset
Decreases with simpler model

h(z) = Ep[h(z)]
variance = /ED[(h(x)—ﬁ(:c))z]p(:c)dx

l
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Bias-Variance Tradeoff
“ JEE
m Choice of hypothesis class introduces learning bias

¢ More %‘r‘ﬁzplezpalass — less bias

More complex class — more variance

25

Bias—Variance decomposition of error

" JE
m Consider simple regression problem fx-@
t=f(x) Fgx) +e  h
.

L
c—-ﬂ

deterministic 3K

Collect some data, and learn a function h(x)
What are sources of prediction error? @; (x) — L)&\

26
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Sources of error 1 — noise
" J
= What if we have perfect leamer, infinite data?

If our learning solution h(x) satisfies _h(x)=g(x
Still have remaining, unavoidable error of

o due to nois¢’s )

error(h) = | [ (h(@)=1)?p(f(2) = tla)p(2)dtda

3(“/@ —  9d4€ -
L_//—\_/ Vﬁ,;?é
R
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Sources of error 2 — Finite data
" A
m What if we have imperfect learner, or only>g1
training examples?

m What is our expected squared error per example?

Expectation taken over random training sets D of size m, drawn
from distribution P(X,T)

Ep| [ [th@ - 0124 (@) = ta)p(a)dida

28
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Bias-Variance Decomposition of Error
Bishop Chapter 3 Assume target function: t = f(x) = g(x) + ¢
“ JEE
Then expected sq error over fixed size training sets D drawn
from P(X,T) can be expressed as sum of three components:

ol 7 [/x /t(h(a:) - t)Qp(t|$)p($)dtdx]

= uwnavoidable Error + bias? + variance

Where: 5 i\/\z i
unavoidable Error = o2 ‘\AJP°+"§ iﬁid of b,

2

hz) = Ep[h(2)]

9

bias? = [(Eplh(a)] - g(2))%p(x)dw 4]

variance = /ED[(h(as) — h(z))3]p(z)dx
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What you need to know
= JEE
m Gaussian estimation
MLE

Bayesian learning
MAP

m Regression
Basis function m
Optimizing sum squared error

Relationship between regression and Gaussians
m Bias-Variance trade-off

= Play with Applet

CN»?L st &;J@&\
( Aan?k J(Qﬁ"{ ]
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