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K-means

1. Ask user how many
clusters they’d like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it’s
closest to.

4. Each Center finds
the centroid of the
points it owns…

5. …and jumps there

6. …Repeat until
terminated!
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K-means

 Randomly initialize k centers
  µ(0) = µ1

(0),…, µk
(0)

 Classify: Assign each point j∈{1,…m} to nearest
center:


 Recenter: µi becomes centroid of its point:


 Equivalent to µi ← average of its points!
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Does K-means converge??? Part 2

 Optimize potential function:

 Fix C, optimize µ



5

Coordinate descent algorithms

 Want: mina minb F(a,b)
 Coordinate descent:

 fix a, minimize b
 fix b, minimize a
 repeat

 Converges!!!
 if F is bounded
 to a (often good) local optimum

 as we saw in applet (play with it!)

 K-means is a coordinate descent algorithm!
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(One) bad case for k-means

 Clusters may overlap
 Some clusters may be

“wider” than others
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Gaussian Bayes Classifier
Reminder
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Predicting wealth from age
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Predicting wealth from age
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Learning modelyear ,
mpg  ---> maker
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General: O(m2)
parameters
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Aligned: O(m)
parameters
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Aligned: O(m)
parameters
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Spherical: O(1)
cov parameters
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Spherical: O(1)
cov parameters
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Next…   back to Density Estimation

What if we want to do density estimation with
multimodal or clumpy data?
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But we don’t see class labels!!!

 MLE:
 argmax ∏j P(yj,xj)

 But we don’t know yj’s!!!
 Maximize marginal likelihood:

 argmax ∏j P(xj) = argmax ∏j ∑i=1
k P(yj=i,xj)
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Special case: spherical Gaussians
and hard assignments

 If P(X|Y=i) is spherical, with same σ for all classes:

 If each xj belongs to one class C(j) (hard assignment), marginal likelihood:

 Same as K-means!!!
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The GMM assumption

• There are k components

• Component i has an associated
mean vector µi

µ1

µ2

µ3
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The GMM assumption

• There are k components

• Component i has an associated
mean vector µi

• Each component generates data
from a Gaussian with mean µi and
covariance matrix σ2I

Each data point is generated
according to the following recipe:

µ1

µ2

µ3
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The GMM assumption
•  There are k components

•  Component i has an
associated mean vector µi

•  Each component generates
data from a Gaussian with
mean µi and covariance matrix
σ2I

Each data point is generated
according to the following
recipe:

1. Pick a component at random:
Choose component i with
probability P(y=i)

µ2

22

The GMM assumption
•  There are k

components

•  Component i has an
associated mean vector µi

•  Each component generates
data from a Gaussian with
mean µi and covariance matrix
σ2I

Each data point is generated
according to the following
recipe:

1. Pick a component at random:
Choose component i with
probability P(y=i)

2. Datapoint ~ N(µi, σ2I )

µ2

x
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The General GMM assumption

µ1

µ2

µ3

• There are k
components

•  Component i has an
associated mean vector µi

•  Each component generates
data from a Gaussian with
mean µi and covariance matrix
Σi

Each data point is generated
according to the following
recipe:

1. Pick a component at random:
Choose component i with
probability P(y=i)

2. Datapoint ~ N(µi, Σi )
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Unsupervised Learning:
not as hard as it looks

and sometimes in between

Sometimes impossible

Sometimes easy
IN CASE YOU’RE
WONDERING WHAT
THESE DIAGRAMS
ARE, THEY SHOW 2-d
UNLABELED DATA (X
VECTORS)
DISTRIBUTED IN 2-d
SPACE. THE TOP
ONE HAS THREE
VERY CLEAR
GAUSSIAN CENTERS
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Marginal likelihood for general case

 Marginal likelihood:
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Special case 2: spherical
Gaussians and soft assignments

 If P(X|Y=i) is spherical, with same σ for all classes:

 Uncertain about class of each xj (soft assignment), marginal
likelihood:
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Unsupervised Learning:
Mediumly Good News
We now have a procedure s.t. if you give me a guess at µ1, µ2 .. µk,

I can tell you the prob of the unlabeled data given those µ‘s.

Suppose x‘s are 1-dimensional.

There are two classes; w1 and w2

P(y1) = 1/3     P(y2) = 2/3     σ = 1 .

There are 25 unlabeled datapoints
x1 =  0.608
x2 = -1.590
x3 = 0.235
x4 = 3.949
       :
x25 = -0.712

(From Duda and Hart)

28

Duda & Hart’s Example
We can graph the

prob. dist. function
of data given our
µ1 and µ2
estimates.

We can also graph the
true function from
which the data was
randomly generated.

• They are close.  Good.
• The 2nd solution tries to put the “2/3” hump where the “1/3” hump should go,

and vice versa.
• In this example unsupervised is almost as good as supervised.  If the x1 ..

x25 are given the class which was used to learn them, then the results are
(µ1=-2.176, µ2=1.684).  Unsupervised got (µ1=-2.13, µ2=1.668).
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Graph of
log P(x1, x2 .. x25 | µ1, µ2 )

against µ1 (→) and µ2 (↑)

Max likelihood = (µ1 =-2.13, µ2 =1.668)

Local minimum, but very close to global at (µ1 =2.085, µ2 =-1.257)*

     * corresponds to switching y1 with y2.

Duda & Hart’s Example

µ1

µ2
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Finding the max likelihood µ1,µ2..µk

We can compute  P( data | µ1,µ2..µk)
How do we find the µi‘s which give max. likelihood?

 The normal max likelihood trick:
Set   ∂    log Prob (….) = 0

                  ∂ µi

and solve for µi‘s.
# Here you get non-linear non-analytically-solvable equations

 Use gradient descent
Often slow but doable

 Use a much faster, cuter, and recently very popular method…
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Announcements

 HW5 out later today…
 Due December 5th by 3pm to Monica Hopes, Wean 4619

 Project:
 Poster session: NSH Atrium, Friday 11/30, 2-5pm

 Print your poster early!!!
 SCS facilities has a poster printer, ask helpdesk
 Students from outside SCS should check with their departments
 It’s OK to print separate pages

 We’ll provide pins, posterboard and an easel
 Poster size: 32x40 inches

 Invite your friends, there will be a prize for best poster, by popular vote

 Last lecture:
 Thursday, 11/29, 5-6:20pm, Wean 7500
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Expectation
Maximalization
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The E.M. Algorithm

 We’ll get back to unsupervised learning soon
 But now we’ll look at an even simpler case with hidden

information
 The EM algorithm

 Can do trivial things, such as the contents of the next few slides
 An excellent way of doing our unsupervised learning problem, as

we’ll see
 Many, many other uses, including learning BNs with hidden data

DETOUR
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Silly Example
Let events be “grades in a class”

w1 = Gets an A P(A) = ½
w2 = Gets a   B P(B) = µ
w3 = Gets a   C P(C) = 2µ
w4 = Gets a   D P(D) = ½-3µ

(Note  0 ≤ µ ≤1/6)
Assume we want to estimate µ from data.  In a given class there were

a   A’s
b   B’s
c   C’s
d   D’s

What’s the maximum likelihood estimate of µ given a,b,c,d ?
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Trivial Statistics
P(A) = ½    P(B) = µ    P(C) = 2µ    P(D) = ½-3µ
P( a,b,c,d | µ) = K(½)a(µ)b(2µ)c(½-3µ)d

log P( a,b,c,d | µ) = log K + alog ½ + blog µ + clog 2µ + dlog (½-3µ)

! 

FOR MAX LIKE µ,  SET 
"LogP

"µ
= 0

"LogP

"µ
=
b

µ
+

2c

2µ
#

3d

1/2 # 3µ
= 0

Gives max like µ =  
b + c

6 b + c + d( )

So if class got

Max like µ =
1

10

109614

DCBA

Boring, but true!
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Same Problem with Hidden Information

Someone tells us that
Number of High grades (A’s + B’s) = h
Number of C’s                              = c
Number of D’s                              = d

What is the max. like estimate of µ now?

REMEMBER

P(A) = ½

P(B) = µ

P(C) = 2µ

P(D) = ½-3µ
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Same Problem with Hidden Information

Someone tells us that
Number of High grades (A’s + B’s) = h
Number of C’s                              = c
Number of D’s                              = d

What is the max. like estimate of µ now?

We can answer this question circularly:

! 

µ  =  
b + c

6 b + c + d( )

MAXIMIZATION

If we know the expected values of a and b
we could compute the maximum likelihood
value of µ

REMEMBER

P(A) = ½

P(B) = µ

P(C) = 2µ

P(D) = ½-3µ

! 

a =
1

2

1
2

+ µ
h        b =

µ

1
2

+ µ
h

EXPECTATION If we know the value of µ we could compute the
expected value of a and b

Since the ratio a:b should be the same as the ratio ½ : µ
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E.M. for our Trivial Problem

We begin with a guess for µ
We iterate between EXPECTATION and MAXIMALIZATION to improve our estimates
of  µ and a and b.

Define    µ(t)  the estimate of µ on the t’th iteration
               b(t)  the estimate of b on t’th iteration

REMEMBER

P(A) = ½

P(B) = µ

P(C) = 2µ

P(D) = ½-3µ

! 

µ(0) =  initial guess

b
(t ) =   

µ(t )
h

1
2

+ µ( t )
= " b | µ( t )[ ]

µ(t+1) =
b

(t ) + c

6 b(t ) + c + d( )
=  max like est. of µ given b( t )

E-step

M-step

Continue iterating until converged.
Good news:  Converging to local optimum is assured.
Bad news:  I said “local” optimum.
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E.M. Convergence
 Convergence proof based on fact that Prob(data | µ) must increase or remain

same between each iteration [NOT OBVIOUS]

 But it can never exceed 1    [OBVIOUS]

So it must therefore converge   [OBVIOUS]

3.1870.09486

3.1870.09485

3.1870.09484

3.1850.09473

3.1580.09372

2.8570.08331

000

b(t)µ(t)tIn our example,
suppose we had

h = 20
c = 10
d = 10

         µ(0) = 0

Convergence is generally linear: error
decreases by a constant factor each time
step.

40

Back to Unsupervised Learning of
GMMs – a simple case

A simple case:
We have unlabeled data x1 x2 … xm
We know there are k classes
We know P(y1) P(y2) P(y3) … P(yk)
We don’t know µ1 µ2 .. µk

We can write P( data | µ1…. µk)

! 

= p x1...xm µ1...µk( )

= p x j µ1...µk( )
j=1

m

"

= p x j µi( )P y = i( )
i=1

k

#
j=1

m

"

$  exp %
1

2& 2
x j %µi

2' 

( 
) 

* 

+ 
, P y = i( )

i=1

k

#
j=1

m

"



41

EM for simple case of GMMs: The
E-step

 If we know µ1,…,µk      →  easily compute prob.
point xj belongs to class y=i
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EM for simple case of GMMs: The
M-step

 If we know prob. point xj belongs to class y=i
 → MLE for µi is weighted average

 imagine k copies of each xj, each with weight P(y=i|xj):

! 

µi =  
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E.M. for GMMs

E-step
Compute “expected” classes of all datapoints for each class

M-step
Compute Max. like µ given our data’s class membership distributions

Just evaluate
a Gaussian at
xj
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E.M. Convergence

 This algorithm is REALLY USED.  And in high dimensional state spaces, too.
E.G. Vector Quantization for Speech Data

• EM is coordinate
ascent on an
interesting potential
function

• Coord. ascent for
bounded pot. func. !
convergence to a
local optimum
guaranteed

• See Neal & Hinton
reading on class
webpage
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E.M. for axis-aligned GMMs
Iterate.  On the t’th iteration let our estimates be
λt = { µ1

(t), µ2
(t) … µk

(t), Σ1
(t), Σ2
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(t), p1
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(t) }
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E.M. for General GMMs
Iterate.  On the t’th iteration let our estimates be

λt = { µ1
(t), µ2

(t) … µk
(t), Σ1

(t), Σ2
(t) … Σk

(t), p1
(t), p2

(t) … pk
(t) }

E-step
Compute “expected” classes of all datapoints for each class
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M-step
Compute Max. like µ given our data’s class membership distributions
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Gaussian Mixture Example: Start

48

After first iteration
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After 2nd iteration
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After 3rd iteration
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After 4th iteration
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After 5th iteration
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After 6th iteration
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After 20th iteration



55

Some Bio Assay data

56

GMM clustering of the assay data
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Resulting
Density
Estimator
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Three
classes of
assay
(each learned with
it’s own mixture
model)
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Resulting
Bayes
Classifier
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Resulting Bayes
Classifier, using
posterior
probabilities to
alert about
ambiguity and
anomalousness

Yellow means
anomalous

Cyan means
ambiguous
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The general learning problem with
missing data

 Marginal likelihood – x is observed, z is missing:
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E-step

 x is observed, z is missing
 Compute probability of missing data given current choice of θ

 Q(z|xj) for each xj

 e.g., probability computed during classification step
 corresponds to “classification step” in K-means
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Jensen’s inequality

 Theorem: log ∑z P(z) f(z)  ≥  ∑z P(z) log f(z)
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Applying Jensen’s inequality
 Use:  log ∑z P(z) f(z) ≥ ∑z P(z) log f(z)
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The M-step maximizes lower bound on
weighted data

 Lower bound from Jensen’s:

 Corresponds to weighted dataset:
 <x1,z=1> with weight Q(t+1)(z=1|x1)
 <x1,z=2> with weight Q(t+1)(z=2|x1)
 <x1,z=3> with weight Q(t+1)(z=3|x1)
 <x2,z=1> with weight Q(t+1)(z=1|x2)
 <x2,z=2> with weight Q(t+1)(z=2|x2)
 <x2,z=3> with weight Q(t+1)(z=3|x2)
 …
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The M-step

 Maximization step:

 Use expected counts instead of counts:
 If learning requires Count(x,z)
 Use EQ(t+1)[Count(x,z)]
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Convergence of EM

 Define potential function F(θ,Q):

 EM corresponds to coordinate ascent on F
 Thus, maximizes lower bound on marginal log likelihood
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M-step is easy

 Using potential function
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E-step also doesn’t decrease
potential function 1
 Fixing θ to θ(t):
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KL-divergence

 Measures distance between distributions

 KL=zero if and only if Q=P
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E-step also doesn’t decrease
potential function 2

 Fixing θ to θ(t):
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E-step also doesn’t decrease
potential function 3

 Fixing θ to θ(t)

 Maximizing F(θ(t),Q) over Q → set Q to posterior probability:

 Note that
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EM is coordinate ascent

 M-step: Fix Q, maximize F over θ (a lower bound on            ):

 E-step: Fix θ, maximize F over Q:

 “Realigns” F with likelihood:
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What you should know

 K-means for clustering:
 algorithm
 converges because it’s coordinate ascent

 EM for mixture of Gaussians:
 How to “learn” maximum likelihood parameters (locally max. like.) in

the case of unlabeled data

 Be happy with this kind of probabilistic analysis
 Remember, E.M. can get stuck in local minima, and

empirically it DOES
 EM is coordinate ascent
 General case for EM
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Acknowledgements

 K-means & Gaussian mixture models
presentation contains material from excellent
tutorial by Andrew Moore:
 http://www.autonlab.org/tutorials/

 K-means Applet:
 http://www.elet.polimi.it/upload/matteucc/Clustering/tu

torial_html/AppletKM.html
 Gaussian mixture models Applet:

 http://www.neurosci.aist.go.jp/%7Eakaho/MixtureEM.
html


