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Silly Example
Let events be “grades in a class”

w1 = Gets an A P(A) = ½
w2 = Gets a   B P(B) = µ
w3 = Gets a   C P(C) = 2µ
w4 = Gets a   D P(D) = ½-3µ

(Note  0 ≤ µ ≤1/6)
Assume we want to estimate µ from data.  In a given class there were

a   A’s
b   B’s
c   C’s
d   D’s

What’s the maximum likelihood estimate of µ given a,b,c,d ?
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Trivial Statistics
P(A) = ½    P(B) = µ    P(C) = 2µ    P(D) = ½-3µ
P( a,b,c,d | µ) = K(½)a(µ)b(2µ)c(½-3µ)d

log P( a,b,c,d | µ) = log K + alog ½ + blog µ + clog 2µ + dlog (½-3µ)

! 

FOR MAX LIKE µ,  SET 
"LogP

"µ
= 0

"LogP

"µ
=
b

µ
+

2c

2µ
#

3d

1/2 # 3µ
= 0

Gives max like µ =  
b + c

6 b + c + d( )

So if class got

Max like µ =
1

10

109614

DCBA

Boring, but true!
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Same Problem with Hidden Information

Someone tells us that
Number of High grades (A’s + B’s) = h
Number of C’s                              = c
Number of D’s                              = d

What is the max. like estimate of µ now?

We can answer this question circularly:

! 

µ  =  
b + c

6 b + c + d( )

MAXIMIZATION

If we know the expected values of a and b
we could compute the maximum likelihood
value of µ

REMEMBER

P(A) = ½

P(B) = µ

P(C) = 2µ

P(D) = ½-3µ

! 

a =
1

2

1
2

+ µ
h        b =

µ

1
2

+ µ
h

EXPECTATION If we know the value of µ we could compute the
expected value of a and b

Since the ratio a:b should be the same as the ratio ½ : µ
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E.M. for our Trivial Problem

We begin with a guess for µ
We iterate between EXPECTATION and MAXIMALIZATION to improve our estimates
of  µ and a and b.

Define    µ(t)  the estimate of µ on the t’th iteration
               b(t)  the estimate of b on t’th iteration

REMEMBER

P(A) = ½

P(B) = µ

P(C) = 2µ

P(D) = ½-3µ

! 

µ(0) =  initial guess

b
(t ) =   

µ(t )
h

1
2

+ µ( t )
= " b | µ( t )[ ]

µ(t+1) =
b

(t ) + c

6 b(t ) + c + d( )
=  max like est. of µ given b( t )

E-step

M-step

Continue iterating until converged.
Good news:  Converging to local optimum is assured.
Bad news:  I said “local” optimum.
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E.M. Convergence
 Convergence proof based on fact that Prob(data | µ) must increase or remain

same between each iteration [NOT OBVIOUS]

 But it can never exceed 1    [OBVIOUS]

So it must therefore converge   [OBVIOUS]

3.1870.09486

3.1870.09485

3.1870.09484

3.1850.09473

3.1580.09372

2.8570.08331

000

b(t)µ(t)tIn our example,
suppose we had

h = 20
c = 10
d = 10

         µ(0) = 0

Convergence is generally linear: error
decreases by a constant factor each time
step.



7©2005-2007 Carlos Guestrin

Back to Unsupervised Learning of
GMMs – a simple case

A simple case:
We have unlabeled data x1 x2 … xm
We know there are k classes
We know P(y1) P(y2) P(y3) … P(yk)
We don’t know µ1 µ2 .. µk

We can write P( data | µ1…. µk)

! 

= p x1...xm µ1...µk( )

= p x j µ1...µk( )
j=1

m

"

= p x j µi( )P y = i( )
i=1

k

#
j=1

m

"

$  exp %
1

2& 2
x j %µi

2' 

( 
) 

* 

+ 
, P y = i( )

i=1

k

#
j=1

m

"
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EM for simple case of GMMs: The
E-step

 If we know µ1,…,µk      →  easily compute prob.
point xj belongs to class y=i

! 

p y = i x j ,µ1...µk( )"exp #
1

2$ 2
x j #µi

2% 

& 
' 

( 

) 
* P y = i( )
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EM for simple case of GMMs: The
M-step

 If we know prob. point xj belongs to class y=i
 → MLE for µi is weighted average

 imagine k copies of each xj, each with weight P(y=i|xj):

! 

µi =  

P y = i x j( )
j=1

m

" x j

P y = i x j( )
j=1

m

"
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E.M. for GMMs

E-step
Compute “expected” classes of all datapoints for each class

M-step
Compute Max. like µ given our data’s class membership distributions

Just evaluate
a Gaussian at
xj

! 

p y = i x j ,µ1...µk( )"exp #
1

2$ 2
x j #µi

2% 

& 
' 

( 

) 
* P y = i( )

! 

µi =  

P y = i x j( )
j=1

m

" x j

P y = i x j( )
j=1

m

"
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E.M. Convergence

 This algorithm is REALLY USED.  And in high dimensional state spaces, too.
E.G. Vector Quantization for Speech Data

• EM is coordinate
ascent on an
interesting potential
function

• Coord. ascent for
bounded pot. func. !
convergence to a
local optimum
guaranteed

• See Neal & Hinton
reading on class
webpage
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E.M. for axis-aligned GMMs
Iterate.  On the t’th iteration let our estimates be
λt = { µ1

(t), µ2
(t) … µk

(t), Σ1
(t), Σ2

(t) … Σk
(t), p1

(t), p2
(t) … pk

(t) }

E-step
Compute “expected” classes of all datapoints for each class

( ) ( ))()()(
,p,P

t

i

t

ij

t

itj
xpxiy !"= µ#

pi
(t) is shorthand for

estimate of P(y=i)
on t’th iteration

M-step
Compute Max. like µ given our data’s class membership distributions

( )

( )

( )!

!

=

=

=
+

j

tj

j

j

tj

t

i
xiy

xxiy

"

"

,P

 ,P

ì
1

( )

m

xiy

p
j

tj

t

i

! =

=
+

",P
)1(

m = #records

Just evaluate
a Gaussian at
xj

  

! 

" =

# 2
1 0 0 L 0 0

0 # 2
2 0 L 0 0

0 0 # 2
3 L 0 0

M M M O M M

0 0 0 L # 2
m$1 0

0 0 0 L 0 # 2
m

% 

& 

' 
' 
' 
' 
' 
' 
' 

( 

) 

* 
* 
* 
* 
* 
* 
* 

pi
(t) is shorthand for

estimate of P(y=i)
on t’th iteration
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E.M. for General GMMs
Iterate.  On the t’th iteration let our estimates be

λt = { µ1
(t), µ2

(t) … µk
(t), Σ1

(t), Σ2
(t) … Σk

(t), p1
(t), p2

(t) … pk
(t) }

E-step
Compute “expected” classes of all datapoints for each class

( ) ( ))()()(
,p,P

t

i

t

ij

t

itj
xpxiy !"= µ#

pi
(t) is shorthand for

estimate of P(y=i)
on t’th iteration

M-step
Compute Max. like µ given our data’s class membership distributions

( )

( )

( )!

!

=

=

=
+

j

tj

j

j

tj

t

i
xiy

xxiy

"

"

,P

 ,P

ì
1 ( )

( ) ( )[ ] ( )[ ]

( ) ,P

 ,P
11

1

!

!

=

""=

=#

++

+

j

tj

Tt

ij

t

ij

j

tj

t

i
xiy

xxxiy

$

µµ$

( )

m

xiy

p
j

tj

t

i

! =

=
+

",P
)1(

m = #records

Just evaluate
a Gaussian at
xj

14©2005-2007 Carlos Guestrin

Gaussian Mixture Example: Start
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After first iteration
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After 2nd iteration
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After 3rd iteration
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After 4th iteration
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After 5th iteration
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After 6th iteration
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After 20th iteration
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Some Bio Assay data
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GMM clustering of the assay data
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Resulting
Density
Estimator
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Three
classes of
assay
(each learned with
it’s own mixture
model)
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Resulting
Bayes
Classifier
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Resulting Bayes
Classifier, using
posterior
probabilities to
alert about
ambiguity and
anomalousness

Yellow means
anomalous

Cyan means
ambiguous
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Announcements

 Project:
 Poster session: NSH Atrium, Friday 11/30, 2-5pm

 Print your poster early!!!
 SCS facilities has a poster printer, ask helpdesk
 Students from outside SCS should check with their

departments
 It’s OK to print separate pages

 We’ll provide pins, posterboard and an easel
 Poster size: 32x40 inches

 Invite your friends, there will be a prize for best poster, by popular
vote

 Last lecture:
 Thursday, 11/29, 5-6:20pm, Wean 7500
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The general learning problem with
missing data

 Marginal likelihood – x is observed, z is missing:
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E-step

 x is observed, z is missing
 Compute probability of missing data given current choice of θ

 Q(z|xj) for each xj

 e.g., probability computed during classification step
 corresponds to “classification step” in K-means
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Jensen’s inequality

 Theorem: log ∑z P(z) f(z)  ≥  ∑z P(z) log f(z)

32©2005-2007 Carlos Guestrin

Applying Jensen’s inequality
 Use:  log ∑z P(z) f(z) ≥ ∑z P(z) log f(z)
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The M-step maximizes lower bound on
weighted data

 Lower bound from Jensen’s:

 Corresponds to weighted dataset:
 <x1,z=1> with weight Q(t+1)(z=1|x1)
 <x1,z=2> with weight Q(t+1)(z=2|x1)
 <x1,z=3> with weight Q(t+1)(z=3|x1)
 <x2,z=1> with weight Q(t+1)(z=1|x2)
 <x2,z=2> with weight Q(t+1)(z=2|x2)
 <x2,z=3> with weight Q(t+1)(z=3|x2)
 …
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The M-step

 Maximization step:

 Use expected counts instead of counts:
 If learning requires Count(x,z)
 Use EQ(t+1)[Count(x,z)]
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Convergence of EM

 Define potential function F(θ,Q):

 EM corresponds to coordinate ascent on F
 Thus, maximizes lower bound on marginal log likelihood
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M-step is easy

 Using potential function
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E-step also doesn’t decrease
potential function 1
 Fixing θ to θ(t):

38©2005-2007 Carlos Guestrin

KL-divergence

 Measures distance between distributions

 KL=zero if and only if Q=P
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E-step also doesn’t decrease
potential function 2

 Fixing θ to θ(t):
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E-step also doesn’t decrease
potential function 3

 Fixing θ to θ(t)

 Maximizing F(θ(t),Q) over Q → set Q to posterior probability:

 Note that
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EM is coordinate ascent

 M-step: Fix Q, maximize F over θ (a lower bound on            ):

 E-step: Fix θ, maximize F over Q:

 “Realigns” F with likelihood:
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What you should know

 K-means for clustering:
 algorithm
 converges because it’s coordinate ascent

 EM for mixture of Gaussians:
 How to “learn” maximum likelihood parameters (locally max. like.) in

the case of unlabeled data

 Be happy with this kind of probabilistic analysis
 Remember, E.M. can get stuck in local minima, and

empirically it DOES
 EM is coordinate ascent
 General case for EM
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Acknowledgements

 K-means & Gaussian mixture models
presentation contains material from excellent
tutorial by Andrew Moore:
 http://www.autonlab.org/tutorials/

 K-means Applet:
 http://www.elet.polimi.it/upload/matteucc/Clustering/tu

torial_html/AppletKM.html
 Gaussian mixture models Applet:

 http://www.neurosci.aist.go.jp/%7Eakaho/MixtureEM.
html
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Dimensionality
Reduction
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Dimensionality reduction

 Input data may have thousands or millions of
dimensions!
 e.g., text data has

 Dimensionality reduction: represent data with
fewer dimensions
 easier learning – fewer parameters
 visualization – hard to visualize more than 3D or 4D
 discover “intrinsic dimensionality” of data

 high dimensional data that is truly lower dimensional
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Feature selection

 Want to learn f:X→Y
 X=<X1,…,Xn>
 but some features are more important than others

 Approach: select subset of features to be used
by learning algorithm
 Score each feature (or sets of features)
 Select set of features with best score



47©2005-2007 Carlos Guestrin

Simple greedy forward feature selection
algorithm
 Pick a dictionary of features

 e.g., polynomials for linear regression
 Greedy heuristic:

 Start from empty (or simple) set of
features F0 = ∅

 Run learning algorithm for current set
of features Ft

 Obtain ht

 Select next best feature Xi
 e.g., Xj that results in lowest cross-

validation error learner when learning with
Ft ∪ {Xj}

 Ft+1 ← Ft ∪ {Xi}
 Recurse
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Simple greedy backward feature
selection algorithm
 Pick a dictionary of features

 e.g., polynomials for linear regression
 Greedy heuristic:

 Start from all features F0 = F
 Run learning algorithm for current set

of features Ft
 Obtain ht

 Select next worst feature Xi
 e.g., Xj that results in lowest cross-

validation error learner when learning with
Ft  - {Xj}

 Ft+1 ← Ft  - {Xi}
 Recurse
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Impact of feature selection on
classification of fMRI data [Pereira et al. ’05]
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Lower dimensional projections

 Rather than picking a subset of the features, we
can new features that are combinations of
existing features

 Let’s see this in the unsupervised setting
 just X, but no Y
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Linear projection and reconstruction

x1

x2

project into
1-dimension z1

reconstruction:
only know z1, 

what was (x1,x2)
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Principal component analysis –
basic idea
 Project n-dimensional data into k-dimensional

space while preserving information:
 e.g., project space of 10000 words into 3-dimensions
 e.g., project 3-d into 2-d

 Choose projection with minimum reconstruction
error



53©2005-2007 Carlos Guestrin

Linear projections, a review

 Project a point into a (lower dimensional) space:
 point: x = (x1,…,xn)
 select a basis – set of basis vectors – (u1,…,uk)

 we consider orthonormal basis:
 ui•ui=1, and ui•uj=0 for i≠j

 select a center – x, defines offset of space
 best coordinates in lower dimensional space defined

by dot-products: (z1,…,zk), zi = (x-x)•ui
 minimum squared error
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PCA finds projection that minimizes
reconstruction error
 Given m data points: xi = (x1

i,…,xn
i), i=1…m

 Will represent each point as a projection:

       where:                           and

 PCA:
 Given k·n, find (u1,…,uk)
    minimizing reconstruction error:

x1

x2
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Understanding the reconstruction
error

 Note that xi can be represented
exactly by n-dimensional projection:

 Rewriting error:

Given k·n, find (u1,…,uk)
    minimizing reconstruction error:
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Reconstruction error and
covariance matrix
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Minimizing reconstruction error and
eigen vectors

 Minimizing reconstruction error equivalent to picking
orthonormal basis (u1,…,un) minimizing:

 Eigen vector:

 Minimizing  reconstruction error equivalent to picking
(uk+1,…,un) to be eigen vectors with smallest eigen values
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Basic PCA algoritm

 Start from m by n data matrix X
 Recenter: subtract mean from each row of X

 Xc ← X – X
 Compute covariance matrix:

  Σ ← 1/m Xc
T Xc

 Find eigen vectors and values of Σ
 Principal components: k eigen vectors with

highest eigen values
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PCA example
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PCA example – reconstruction

only used first principal component
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Eigenfaces [Turk, Pentland ’91]

 Input images:  Principal components:
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Eigenfaces reconstruction

 Each image corresponds to adding 8 principal
components:
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Relationship to Gaussians
 PCA assumes data is Gaussian

 x ~ N(x;Σ)
 Equivalent to weighted sum of simple

Gaussians:

 Selecting top k principal components
equivalent to lower dimensional Gaussian
approximation:

  ε~N(0;σ2),  where σ2 is defined by errork

x1

x2
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Scaling up

 Covariance matrix can be really big!
  Σ is n by n
 10000 features ! |Σ|
 finding eigenvectors is very slow…

 Use singular value decomposition (SVD)
 finds to k eigenvectors
 great implementations available, e.g., Matlab svd
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SVD
 Write X = W S VT

 X ← data matrix, one row per datapoint
 W ← weight matrix, one row per datapoint – coordinate of xi in eigenspace
 S ← singular value matrix, diagonal matrix

 in our setting each entry is eigenvalue λj

 VT ← singular vector matrix
 in our setting each row is eigenvector vj
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PCA using SVD algoritm

 Start from m by n data matrix X
 Recenter: subtract mean from each row of X

 Xc ← X – X
 Call SVD algorithm on Xc – ask for k singular vectors
 Principal components: k singular vectors with highest

singular values (rows of VT)
 Coefficients become:
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Using PCA for dimensionality
reduction in classification

 Want to learn f:X→Y
 X=<X1,…,Xn>
 but some features are more important than others

 Approach: Use PCA on X to select a few
important features
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PCA for classification can lead to
problems…

 Direction of maximum variation may be unrelated to “discriminative”
directions:

 PCA often works very well, but sometimes must use more advanced
methods
 e.g., Fisher linear discriminant
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What you need to know

 Dimensionality reduction
 why and when it’s important

 Simple feature selection
 Principal component analysis

 minimizing reconstruction error
 relationship to covariance matrix and eigenvectors
 using SVD
 problems with PCA


