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Silly Example

Let events be “grades in a class”

w, = Gets an A
w,=Getsa B
w;=Getsa C
w,=Getsa D

P(A) =%
P(B) =u
P(C) = 2u
P(D) = %-3u
(Note 0<p<1/6)

Assume we want to estimate y from data. In a given class there were

a A’s
b B’s
c C’s
d D’s

What's the maximum likelihood estimate of y given a,b,c,d ?

N
e
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Trivial Statistics
5 - .

Pw PB)=p P(C)=2y P(D)="-3u
P(a.b,c.d | 1) = K(%2)*(4)*(21)°(“2-3u)
log P(a,b,c,d|p)=lo i“élc;g Y2 + blog p + clog 2y + dlog (/2-3u)
FOR MAX LIKE u, SET 5 =
oLogP _ 2 + 2_c B 3d @
ou u 2u 1/2-3u

i /I’k/ b+c
Gives max-iike u =

6(b+c+d)

So if class got

1
Max like u=—
H 10
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Same Problem with Hidden Information

S B
Someone tells us that REMEMBER
Number of High grades (A’'s + B's) = h P(A) =%
Number of C’s =c PB)=p
Number of D’s =d P(C)=2u

P(D) = %-3u

What is the max. like estimate of y now?

We can answer this question circularly:

‘ e If we know the value of y we could compute the
expected value of a and b 1
’E&UAA |S' the ratio a:b should be th the ratio % : i>’— A h Z— H h
Ince the ratio a:b shoul e (ne same as the ratio 72 u a= 1 - 1
(&4 A +Uu A +Uu
MAXIMIZATION
If we know the expected values of @ and b b+

we could compute the maximum likelihood u = brced
value of p (b+c+d)
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E.M. for our Trivial Problem
2 o

We begin with a guess for p

REMEMBER
P(A) = %
P(B)=p
P(C) = 2
P(D) = %-3u

We iterate between EXPECTATION and MAXIMALIZATION to improve our estimates
of pandaandb.

Define u® the estimate of y on the t'th iteration \
b® the estimate of b on t'th iteration e e
b bonthfelon |y parer S M

u'” = initial guess &/

t (t)h t
b = %Mﬂx‘” - E[b | >]
) b +c
o= 6([9(’) +c+ d)

= max like est. of u given _b_(’)

==
Continue iterating until converged.

Good news: Converging to local optimum is assured.
Bad news: | said “local” optimums o caros cuestin

E.M. Convergence

= Convergence proof based on fact that Prob(data | p) must increase or remain

same between each iteration ot osvious)
e DeWes B
m Butit can never exceed 1 (osvious]
So it must therefore converge iosvious

In our example, t u®
suppose we had olo
h =20
c=10 1| 0.0833
d=10 2 |0.0937
“(0) =0 3 10.0947
is/generally linear: error 4 10.0948
decreases by a constant factor each time/\ 5 | 0.0948
step.
6 | 0.0948
—
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b®

2.857
3.158
3.185
3.187

3.187
3.187

4]
[4)




Back to Unsupervised Learning of
GMMs — a simple case

A simple case:
We have unlabeled data x4 x, ... x,
We know there are k classes

We know P(y,) P(y2) P(ys) ... P(yi)
We don’t know py Yy .. Mg

We can write P( data | py.... Hy)
—P(xl m‘nu'l nuk)

[Ts
s
TS ( ol ,-—uf\r)mw)

Jj=1

oty
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EM for simple case of GMMs: The

E-step
-
m If we know u,,...,w, — easily compute prob.

point x; belongs to class y=i

(y l‘x.,y,l...uk)ocexp( 21 Hx —uH) (y=1i)
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EM for simple case of GMMs: The

M-step
-
= |f we know prob. point x; belongs to class y=i

— MLE for u, is weighted average
imagine k copies of each x;, each with weight P(y=i[x;):

iP(y=i‘xj)xj

Zp(y”xf)
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E.M. for GMMs
E o

Compute “expected” classes of all datapoints for each class Just evaluate

a Gaussian at
X:
p(v =i\x,-,m-~uk)°ce><p(—ﬁ\\xj —uin)P(y=i) :

M-step
Compute Max. like p given our data’s class membership distributions
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E.M. Convergence

EM is coordinate
ascent on an :
interesting potential

function

Coord. ascent for
bounded pot. func. !
convergence to a
local optimum
guaranteed

See Neal & Hinton
reading on class
webpage

m  This algorithm is REALLY USED. And in high dimensional state spaces, too.

E.G. Vector Quantization for Speech Data
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O’2| 0
E.M. for axis-aligned GI\/II\/ 0 o
0 0
lterate. On the t'th iteration let our estimates be B :
Ac={ 0, 0 ., Z'1(1‘)! Zzw Zk(t)! P, p ¥ ... p ¥} 0 o
0

0 0 0
0 0 0

o’ 0 0
0 ua 0
0 0 o

E-step
Compute “expected” classes of all datapoints for each class

p{¥ is shorthand for
estimate of P(y=i)
on t'th iteration

Just evaluate
a Gaussian at

%

(t) 2 (l)

P(y =i‘xj, t)@( pl(t)

M-step

Compute Max. like p given our data’s class membership distributions

) _ EP(V_I‘X” Ak
i EP(y—l‘xj, ,

i

)

(1+1) 2
b = m = #records
m
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E.M. for General GMMs

lterate. On the t'th iteration let our estimates be
A= {0, p0 o0, X0, 3.0 20 p.0 po. Ip,

pi? is shorthand for
estimate of P(y=i)
on t'th iteration

E-step
Compute “expected” classes of all datapoints for each class

P(V = i‘xj,)»t )O‘ pi(t)p(i‘j

M-step
Compute Max. like p given our data’s class membership distributions

EP(y=ixj,Af )x/ " EP(y:ixj,)\,t]Ecj_‘ui(HI)I(j_‘ui(tH)]
= DI
; Sel=ix,.2,) ; Sel=ix.2)
7 J

. EP(y =i‘xj,)nl)
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Just evaluate
a Gaussian at

%

|
®) 5 ®)
weLE

i .(t+1)

Gaussian Mixture Example: Star
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After first iteration

15

After 2nd iteration
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After 3rd iteration

|
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After 4th iteration
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After 5th iteration
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After 6th iteration
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After 20th iteration
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Some Bio Assay data
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GMM clustering of the assay data
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Resulting
Density
Estimator
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Three
classes of
assay

(each learned with
it's own mixture
model)

Compound =
IL-1
TNF

none
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Resulting
Bayes
Classifier

Compound =
IL-1

TNF
none
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Compound =
IL-1
TNF
none

Resulting Bayes
Classifier, using
posterior
probabilities to
alert about
ambiguity and
anomalousness

Yellow means
anomalous

Cyan means
ambiguous
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Announcements
3 -
m Project:
Poster session: NSH Atrium, Friday 11/30, 2-5pm
m Print your poster early!!!

SCS facilities has a poster printer, ask helpdesk

Students from outside SCS should check with their
departments

It's OK to print separate pages
= We’'ll provide pins, posterboard and an easel
Poster size: 32x40 inches

= Invite your friends, there will be a prize for best poster, by popular
vote

m Last lecture:
Thursday, 11/29, 5-6:20pm, Wean 7500
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The general learning problem with
missing data

3 -
m Marginal likelihood — x is observed, z is missing:
06 :D) = log [[ P(x;j]6)
j=1

= ) logP(x;|0)
j=1

= Y log) P(xj,z]|0)
~ 04

<
Il
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E-step
- -

m X is observed, z is missing
m Compute probability of missing data given current choice of 6
Q(z|x;) for each x,
= e.g., probability computed during classification step
= corresponds to “classification step” in K-means

QUt(z|x;) = P(z|x;,60)
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Jensen'’s inequality
-

|
€0:D) = Y log) P(z|x;)P(x;]|6)
j=1 z

m Theorem: log Y, P(z) f(z) = Y, P(z) log f(z)

31

-
m Use: log Y, P(z) f(z) =2 Y, P(z) log f(z)

m P(z,x; | O(t))
0@ D) = Y 1og> QU V(g | xj) r T2
j=1 z | ’ Q(t+1)(z | X])

Applying Jensen’s inequality

32




The M-step maximizes lower bound on
weighted data

m Lower bound from Jensen’s:

(00:D) = 3 Y QU (] x) 109 Plax; [ 00) +m.H(QUHD)

]:1 VA

m Corresponds to weighted dataset:
<x4,z=1> with weight Qt*)(z=1|x,)
<x4,z=2> with weight Qt*)(z=2|x,)
<x4,2=3> with weight Qt*")(z=3|x,)
<x,,z=1> with weight Qt*)(z=1|x,)
<x,,z=2> with weight Qt*)(z=2|x,)
<x,,z=3> with weight Qt*)(z=3|x,)

©2005-2007 Carlos Guestrin 33
The M-step
3 B
é(é(t) D) > i ZQ(tJrl)(Z | x;) log P(z,x; | 9(15)) + ,rn“H(Q(t‘Fl))

j=1z
m Maximization step:

o+  arg m@aij:1 EZ:Q(H'D(Z | x;j) log P(z,x; | 0)

m Use expected counts instead of counts:
If learning requires Count(x,z)
Use Eq.q)[Count(x,2z)]
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Convergence of EM

-
m Define potential function F(6,Q):
(D) > FO.Q =3 YQ0| x)log eXi 19
=4 Qz | x;)

m EM corresponds to coordinate ascent on F
Thus, maximizes lower bound on marginal log likelihood
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M-step is easy
-

U+  arg max Z ZQ(t+1)(Z | x;) log P(z,%; | 0)
j=1 %

m Using potential function

F(0,QUtY)y = iZQ““)(uxj)IogP(z,xj\9)+m.H<Q<L+1>)

j=1 z
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E-step also doesn’t decrease

potential function 1
- I

m Fixing 6 to 6():

m z,x; | 0
00 D)y > FW,Q) = 3 Y Q@ | %)) |ng
j=1 % Q(z | x;j)
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KL-divergence

B
m Measures distance between distributions
Q(z)
KL(Q||IP) = ZQ(Z) log == ()

m KL=zero if and only if Q=P
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E-step also doesn’t decrease
potential function 2

-
m Fixing 6 to 6®:
00 D) > (M, Q) = 26 D)+ i 3 Q(z ] x;) log M
j=1 2 Q(z | x4)
= ¢(0®:D) —m i KL(Qz | x))||P(z] x;,00))
j=1
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E-step also doesn’t decrease

potential function 3

- —
(0 D)= F(0V,Q) = (0 D) —m Y KL(Qz|x)IIP(z]x;,0"))
j=1

m Fixing 6 to 60
= Maximizing F(6®,Q) over Q — set Q to posterior probability:

QWD (z|x;) — P(z|x;,00)

= Note that

F(@(t)’Q(H-l)) — g(g(t) )
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EM is coordinate ascent

P(z,x; |
(0:D) = F(6,Q) = Z > Q2| x))log |.9
] 1 2z Q( | j)

m M-step: Fix Q, maximize F over 6 (a lower bound ons(¢ : D) ):

0o:D) > F(0,QW) = i S QW (z | x;) log P(z,x; | 0) +m.H(QWM)
j=1 2

m E-step: Fix 6, maximize F over Q:

0@ D) > FOW,Q) = (6™ :D)—m fj KL(Qz | x))|IP(z]x;,01))
j=1

“Realigns” F with likelihood:
F(G(t), Q(H-l)) — g(g(t) )
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What you should know
B

m K-means for clustering:
algorithm
converges because it's coordinate ascent

m EM for mixture of Gaussians:

How to “learn” maximum likelihood parameters (locally max. like.) in
the case of unlabeled data

m Be happy with this kind of probabilistic analysis

m Remember, E.M. can get stuck in local minima, and
empirically it DOES

m EM is coordinate ascent
m General case for EM
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Acknowledgements
. B
m K-means & Gaussian mixture models
presentation contains material from excellent
tutorial by Andrew Moore:
http://www.autonlab.org/tutorials/

m K-means Applet:
http://www.elet.polimi.it/upload/matteucc/Clustering/tu
torial_html/AppletKM.html

m Gaussian mixture models Applet:

http://www.neurosci.aist.go.jp/%7Eakaho/MixtureEM.
html
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Dimensionality
Reduction

Machine Learning — 10701/15781
Carlos Guestrin
Carnegie Mellon University

November 26th, 2007

©2005-2007 Carlos Guestrin 44




Dimensionality reduction

-
m |nput data may have thousands or millions of
dimensions!
e.g., text data has
m Dimensionality reduction: represent data with
fewer dimensions
easier learning — fewer parameters
visualization — hard to visualize more than 3D or 4D

discover “intrinsic dimensionality” of data
= high dimensional data that is truly lower dimensional

©2005-2007 Carlos Guestrin 45

Feature selection

B
m Want to learn f:X—=Y

X=<X4,...,.X >
but some features are more important than others

m Approach: select subset of features to be used
by learning algorithm
Score each feature (or sets of features)
Select set of features with best score
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Simple greedy forward feature selection
algorithm
- -
m Pick a dictionary of features

e.g., polynomials for linear regression
m Greedy heuristic:

Start from empty (or simple) set of
features F, = &

Run learning algorithm for current set
of features F,

= Obtain h,
Select next best feature X;

= eg., X that results in lowest cross-
validation error learner when learning with
F U {X;}

Fiip <= FLU{X}
Recurse
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Simple greedy backward feature

selection algorithm
- L

m Pick a dictionary of features
e.g., polynomials for linear regression

m Greedy heuristic:
Start from all features F, = F

Run learning algorithm for current set
of features F,

= Obtain h,
Select next worst feature X;

= eg., X that results in lowest cross-
validation error learner when learning with
Fi - {X}
Freg < Fi - {Xi}

Recurse
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Impact of feature selection on

classification of fMRI data pereira et a. 05
B

Accuracy classifying
category of word read

by subject
]
#voxels mean | subjects
2338 329B 332B 424B 474B 4968 7B 868
50 0.735 0.783 0.817 0.55 0.783 0.75 0.8 0.65 0.75
100 0.742 0.767 0.8 0.533 0.817 0.85 0.783 0.6 0.783
200 0.737 0.783 0.783 0.517 0.817 0.883 0.75 0.583 0.783
300 0.75 0.8 0.817 0.567 0.833 0.883 0.75 0.583 0.767
400 0.742 0.8 0.783 0.583 0.85 0.833 0.75 0.583 0.75
800 0.735 0.833 0.817  0.567  0.833  0.833 0.7 0.55 0.75
1600 0.698 0.8 0.817 0.45 0.783 0.833  0.633 0.5 0.75
all (~2500) 0.638 0.767 0.767 0.25 0.75 0.833  0.567 0.433 0.733

Table 1: Average accuracy across all pairs of categories, restricting the procedure to
use a certain number of voxels for each subject. The highlighted line corresponds to the
best mean accuracy, obtained using 300 voxels.

Voxels scored by p-value of regression to predict voxel value from the task
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Lower dimensional projections

-
m Rather than picking a subset of the features, we
can new features that are combinations of
existing features

m Let’s see this in the unsupervised setting
just X, butno Y
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Linear projection and reconstruction

X2

project into
1-dimension

X1

reconstruction:
only know z4,
what was (x4,x
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Principal component analysis —
_ basic idea
-
m Project n-dimensional data into k-dimensional
space while preserving information:
e.g., project space of 10000 words into 3-dimensions
e.g., project 3-d into 2-d

m Choose projection with minimum reconstruction
error
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Linear projections, a review
B

m Project a point into a (lower dimensional) space:
point: X = (X,,...,X,)
select a basis — set of basis vectors — (uy,...,u,)
= we consider orthonormal basis:
ueu=1, and u;eu;=0 for ix]
select a center — x, defines offset of space

best coordinates in lower dimensional space defined
by dot-products: (z,,...,z,), z; = (X-X)*u,
= minimum squared error
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PCA finds projection that minimizes

reconstruction error
I

m Given m data points: x' = (x,...,x,/), i=1...m
m Will represent each point as a projection:

m

=%+ 2y where:i:inl and zj; = (x'—X)-u,
j=1 mi=1
m PCA: X2
Given k<n, find (u,,...,u,) o °

minimizing reconstruction error:

m . .
error, = Y _(x' — %2
=1
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Understanding the reconstruction

error

m Note that x' can be represented
exactly by n-dimensional projection:

i = i
X' =X+ szu]
Jj=1

P i
X'=x+4+ Z Z;u,
J=1 I
- % <
25 =(x'—X) u;
Given k<n, find (uy,...,uy)
minimizing reconstruction error:

m

errory, = Z (x! — 292
=1

m Rewriting error:

Reconstruction error and
covariance matrix
B
m n ) :lm Xi—)_( Xi—)_(T
ework:i;j:zk;rl[uj‘(Xl_i)]Q = mi;.( ) )

©2005-2007 Carlos Guestrin
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Minimizing reconstruction error and

eigen vectors
I

m Minimizing reconstruction error equivalent to picking
orthonormal basis (uy,...,u,) minimizing:

errory = Z u;-FZuj
. j=k+1
m Eigen vector:

m Minimizing reconstruction error equivalent to picking
(U.q,.--,u,) to be eigen vectors with smallest eigen values
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Basic PCA algoritm
3 -
m Start from m by n data matrix X
m Recenter: subtract mean from each row of X
X, < X-X
m Compute covariance matrix:
S« 1/m X X,
m Find eigen vectors and values of X

m Principal components: k eigen vectors with
highest eigen values
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PCA example
B

k
S = i
X=X+ g ZjU;
Jj=1

—lolx| 1o x|
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I e eigenvector
1 1
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o 1 2 3 4 &5 8 7 @ @9 ot 2 3 4 5 85 T 8 3

PCA example — reconstruction
-

k
~i - i only used first principal component
Ki=%4 Y y princip P
Jj=1
1= 1ol
Fie Edi Wiew Incert Teok Decktop Window Help ~ fl: Cdb Wiew Insert Toos Deshiop Window Celp ~
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Eigenfaces [turk, Pentland '91]

m |nput images: m Principal components:

88§§
1
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Eigenfaces reconstruction

- -

m Each image corresponds to adding 8 principal
components:
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Relationship to Gaussians

. T
m PCA assumes data is Gaussian
x ~ N(X;Z) o ° o
m Equivalent to weighted sum of simple °
Gaussians: o o
o
x:)_(+ZZjUj; ZJNN(O,UJQ) °
Jj=1 o
m Selecting top k principal components .
1

equivalent to lower dimensional Gaussian
approximation:

k
X%)_(-l-z,zjuj—l-e; ZJNN(O,O'JQ)
Jj=1

e~N(0;02), where o2 is defined by error,
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Scaling up
3 -
m Covariance matrix can be really big!
Zisnbyn
10000 features — |Z|
finding eigenvectors is very slow...

m Use singular value decomposition (SVD)

finds to k eigenvectors
great implementations available, e.g., Matlab svd
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SVD

3 -
m Write X=WSVT
X < data matrix, one row per datapoint
W < weight matrix, one row per datapoint — coordinate of xi in eigenspace
S < singular value matrix, diagonal matrix
= in our setting each entry is eigenvalue A,
VT < singular vector matrix
= in our setting each row is eigenvector v,
©2005-2007 Carlos Guestrin 65
. -
m Start from m by n data matrix X
m Recenter: subtract mean from each row of X
X, < X=X
m Call SVD algorithm on X, — ask for k singular vectors
m Principal components: k singular vectors with highest

singular values (rows of VT)
Coefficients become:
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Using PCA for dimensionality
reduction in classification
m Want to learn f:X—=Y

X=<X4,...,.X >
but some features are more important than others

m Approach: Use PCA on X to select a few
important features
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PCA for classification can lead to

problems...
I

m Direction of maximum variation may be unrelated to “discriminative”
directions:

m PCA often works very well, but sometimes must use more advanced
methods
e.g., Fisher linear discriminant
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What you need to know

-

m Dimensionality reduction

why and when it's important
m Simple feature selection
m Principal component analysis

minimizing reconstruction error

relationship to covariance matrix and eigenvectors

using SVD

problems with PCA
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