

Silly Example

Let events be "grades in a class"

 $w_1 = \text{Gets an A}$ $P(A) = \frac{1}{2}$ $w_2 = \text{Gets a } B$ $P(B) = \mu$ $P(C) = 2\mu$

 $w_4 = \text{Gets a } D$ $P(D) = \frac{1}{2} - 3\mu$

(Note $0 \le \mu \le 1/6$)

Assume we want to estimate $\underline{\mu}$ from data. In a given class there were

a A's b B's c C's d D's

What's the maximum likelihood estimate of μ given a,b,c,d ?

Ânië

©2005-2007 Carlos Guestrin

,

Trivial Statistics

FOR MAX LIKE
$$\mu$$
, SET $\frac{\partial \text{LogP}}{\partial \mu} = 0$

$$\frac{\partial \text{LogP}}{\partial \mu} = \frac{b}{\mu} + \frac{2c}{2\mu} - \frac{3d}{1/2 - 3\mu} = 0$$

$$\frac{\partial \text{LogP}}{\partial \mu} = \frac{b}{\mu} + \frac{2c}{2\mu} - \frac{3d}{1/2 - 3\mu} = 0$$
Gives max like $\mu = \frac{b + c}{6(b + c + d)}$

So if class got

	Α	В	C	ט		
	14	6	9	10		
$A_{\text{ov}} = 1$						

©2005-2007 Carlos Guestrin

Boring, but true!

Same Problem with Hidden Information

Someone tells us that

Number of High grades (A's + B's) = h

Number of C's

Number of D's = d REMEMBER

 $P(A) = \frac{1}{2}$

 $P(B) = \mu$

 $P(C) = 2\mu$

 $P(D) = \frac{1}{2} - 3\mu$

What is the max. like estimate of μ now?

We can answer this question circularly:

EXPECTATION

If we know the value of <u>u</u> we could compute the expected value of a and b

Since the ratio a:b should be the same as the ratio ½ : μ

$$\overline{a} = \frac{\frac{1}{2}}{\frac{1}{2} + \mu} h$$

$$\overline{a} = \frac{\frac{1}{2}}{\frac{1}{2} + \mu} h \qquad \overline{b} = \frac{\mu}{\frac{1}{2} + \mu} h$$

MAXIMIZATION

If we know the expected values of a and b we could compute the maximum likelihood value of µ

$$\mu = \frac{\widetilde{b} + c}{6(\widetilde{b} + c + d)}$$

©2005-2007 Carlos Guestrin

Back to Unsupervised Learning of GMMs – a simple case

A simple case:

We have unlabeled data $\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_m$ We know there are k classes We know $P(y_1) \ P(y_2) \ P(y_3) \ \dots \ P(y_k)$

We don't know $\mu_1 \mu_2 ... \mu_k$

We can write P(data | μ_1 μ_k)

$$= p(x_1...x_m|\mu_1...\mu_k)$$
$$= \prod_{k=0}^{m} p(x_k|\mu_k...\mu_k)$$

$$= \prod_{i=1}^{m} \sum_{k=1}^{k} p(x_i | \mu_i) P(y = 1)$$

$$\propto \prod_{j=1}^{m} \sum_{i=1}^{k} \exp \left(-\frac{1}{2\sigma^{2}} \|x_{j} - \mu_{i}\|^{2} \right) P(y = i)$$

©2005-2007 Carlos Guestri

7

EM for simple case of GMMs: The E-step

$$p(y = i | x_j, \mu_1...\mu_k) \propto \exp\left(-\frac{1}{2\sigma^2} ||x_j - \mu_i||^2\right) P(y = i)$$

©2005-2007 Carlos Guestrin

.

EM for simple case of GMMs: The M-step

 \square imagine k copies of each x_i , each with weight $P(y=i|x_i)$:

$$\mu_{i} = \frac{\sum_{j=1}^{m} P(y = i | x_{j}) x_{j}}{\sum_{j=1}^{m} P(y = i | x_{j})}$$

©2005-2007 Carlos Guestri

.

E.M. for GMMs

E-step

Compute "expected" classes of all datapoints for each class

$$p(y = i | x_j, \mu_1...\mu_k) \propto \exp\left(-\frac{1}{2\sigma^2} ||x_j - \mu_i||^2\right) P(y = i)$$

Just evaluate a Gaussian at

M-step

Compute Max. like μ given our data's class membership distributions

$$\mu_i = \frac{\sum_{j=1}^m P(y=i|x_j) x_j}{\sum_{j=1}^m P(y=i|x_j)}$$

©2005-2007 Carlos Guestrin

E.M. Convergence

- EM is coordinate ascent on an interesting potential function
- Coord. ascent for bounded pot. func. ! convergence to a local optimum guaranteed
- See Neal & Hinton reading on class webpage

This algorithm is REALLY USED. And in high dimensional state spaces, too.
 E.G. Vector Quantization for Speech Data

©2005-2007 Carlos Guestrin

11

E.M. for axis-aligned GMV

Iterate. On the *t*'th iteration let our estimates be $\lambda_t = \{\, \mu_1{}^{(t)},\, \mu_2{}^{(t)}\, \dots \, \mu_k{}^{(t)},\, \Sigma_1{}^{(t)},\, \Sigma_2{}^{(t)}\, \dots \, \Sigma_k{}^{(t)},\, p_1{}^{(t)},\, p_2{}^{(t)}\, \dots \, p_k{}^{(t)}\, \}$

 $\Sigma = \begin{bmatrix} 0 & \sigma^{2}_{2} & 0 & \cdots & 0 \\ 0 & 0 & \sigma^{2}_{3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \sigma^{2}_{m-1} \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$

E-step

Compute "expected" classes of all datapoints for each class

 $p_i^{(t)}$ is shorthand for estimate of P(y=i) on t'th iteration

$$P(y = i | x_j, \lambda_t) \propto p_i^{(t)} p(x_j | \mu_i^{(t)}, \Sigma_i^{(t)})$$
Just evaluate a Gaussian at x_j

M-step

Compute Max. like μ given our data's class membership distributions

$$\hat{\mathbf{I}}_{i}^{(t+1)} = \frac{\sum_{j} \mathbf{P}(y = i | x_{j}, \lambda_{t}) x_{j}}{\sum_{j} \mathbf{P}(y = i | x_{j}, \lambda_{t})}$$

$$p_i^{(t+1)} = \frac{\sum_{j} P(y = i | x_j, \lambda_t)}{m}$$
 m = #records

©2005-2007 Carlos Guestrin

E.M. for General GMMs

 $p_i^{(t)}$ is shorthand for estimate of P(y=i) on t'th iteration

Iterate. On the t'th iteration let our estimates be

$$\lambda_{t} = \{ \mu_{1}^{(t)}, \mu_{2}^{(t)} \dots \mu_{k}^{(t)}, \Sigma_{1}^{(t)}, \Sigma_{2}^{(t)} \dots \Sigma_{k}^{(t)}, \rho_{1}^{(t)}, \rho_{2}^{(t)} \dots \rho_{k}^{(t)} \}$$

E-step

Compute "expected" classes of all datapoints for each class

$$P(y = i | x_j, \lambda_t) \propto p_i^{(t)} p(x_j | \mu_i^{(t)}, \Sigma_i^{(t)})$$
Just evaluate a Gaussian at x_j

M-step

Compute Max. like μ given our data's class membership distributions

Gaussian Mixture Example: Start

Announcements

Project:

- □ Poster session: NSH Atrium, Friday 11/30, 2-5pm
 - Print your poster early!!!
 - □ SCS facilities has a poster printer, ask helpdesk
 - □ Students from outside SCS should check with their departments
 - □ It's OK to print separate pages
 - We'll provide pins, posterboard and an easel
 - □ Poster size: 32x40 inches
 - Invite your friends, there will be a prize for best poster, by popular vote

Last lecture:

☐ Thursday, 11/29, 5-6:20pm, Wean 7500

©2005-2007 Carlos Guestrin

The general learning problem with missing data

$$\ell(\theta : \mathcal{D}) = \log \prod_{j=1}^{m} P(\mathbf{x}_{j} \mid \theta)$$
$$= \sum_{j=1}^{m} \log P(\mathbf{x}_{j} \mid \theta)$$
$$= \sum_{j=1}^{m} \log \sum_{\mathbf{z}} P(\mathbf{x}_{j}, \mathbf{z} \mid \theta)$$

©2005-2007 Carlos Guestri

29

E-step

- x is observed, z is missing
- \blacksquare Compute probability of missing data given current choice of θ
 - \square Q(**z**|**x**_i) for each **x**_i
 - e.g., probability computed during classification step
 - corresponds to "classification step" in K-means

$$Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) = P(\mathbf{z} \mid \mathbf{x}_j, \theta^{(t)})$$

©2005-2007 Carlos Guestrin

Jensen's inequality

$$\ell(\theta: \mathcal{D}) = \sum_{j=1}^{m} \log \sum_{\mathbf{z}} P(\mathbf{z} \mid \mathbf{x}_{j}) P(\mathbf{x}_{j} \mid \theta)$$

■ Theorem: $\log \sum_{z} P(z) f(z) \ge \sum_{z} P(z) \log f(z)$

Applying Jensen's inequality Use: $\log \sum_{\mathbf{z}} P(\mathbf{z}) f(\mathbf{z}) \ge \sum_{\mathbf{z}} P(\mathbf{z}) \log f(\mathbf{z})$

$$\ell(\theta^{(t)}: \mathcal{D}) = \sum_{j=1}^{m} \log \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_{j}) \frac{P(\mathbf{z}, \mathbf{x}_{j} \mid \theta^{(t)})}{Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_{j})}$$

The M-step maximizes lower bound on weighted data

$$\ell(\theta^{(t)}: \mathcal{D}) \geq \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) \log P(\mathbf{z}, \mathbf{x}_j \mid \theta^{(t)}) + m.H(Q^{(t+1)})$$

- Corresponds to weighted dataset:
 - $= \langle \mathbf{x}_1, \mathbf{z} = 1 \rangle$ with weight $\mathbf{Q}^{(t+1)}(\mathbf{z} = 1 | \mathbf{x}_1)$
 - $\neg < \mathbf{x}_1, \mathbf{z} = 2 > \text{ with weight } Q^{(t+1)}(\mathbf{z} = 2 | \mathbf{x}_1)$
 - \square < \mathbf{x}_1 , \mathbf{z} =3> with weight Q^(t+1)(\mathbf{z} =3| \mathbf{x}_1)
 - $\neg < \mathbf{x}_2, \mathbf{z}=1>$ with weight $Q^{(t+1)}(\mathbf{z}=1|\mathbf{x}_2)$
 - $\neg < \mathbf{x}_2, \mathbf{z} = 2 > \text{ with weight } Q^{(t+1)}(\mathbf{z} = 2 | \mathbf{x}_2)$
 - \square < \mathbf{x}_2 , \mathbf{z} =3> with weight Q^(t+1)(\mathbf{z} =3| \mathbf{x}_2)
 - □ ...

©2005-2007 Carlos Guestri

33

The M-step

$$\ell(\boldsymbol{\theta}^{(t)}: \mathcal{D}) \geq \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) \log P(\mathbf{z}, \mathbf{x}_j \mid \boldsymbol{\theta}^{(t)}) + m.H(Q^{(t+1)})$$

Maximization step:

$$\theta^{(t+1)} \leftarrow \arg\max_{\theta} \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_{j}) \log P(\mathbf{z}, \mathbf{x}_{j} \mid \theta)$$

- Use expected counts instead of counts:
 - ☐ If learning requires Count(x,z)
 - \square Use $E_{Q(t+1)}[Count(\mathbf{x},\mathbf{z})]$

©2005-2007 Carlos Guestrin

Convergence of EM

Define potential function F(θ,Q):

$$\ell(\theta: \mathcal{D}) \geq F(\theta, Q) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_j) \log \frac{P(\mathbf{z}, \mathbf{x}_j \mid \theta)}{Q(\mathbf{z} \mid \mathbf{x}_j)}$$

- EM corresponds to coordinate ascent on F
 - ☐ Thus, maximizes lower bound on marginal log likelihood

©2005-2007 Carlos Guestrii

35

M-step is easy

$$\theta^{(t+1)} \leftarrow \arg\max_{\theta} \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) \log P(\mathbf{z}, \mathbf{x}_j \mid \theta)$$

Using potential function

$$F(\theta, Q^{(t+1)}) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) \log P(\mathbf{z}, \mathbf{x}_j \mid \theta) + m.H(Q^{(t+1)})$$

©2005-2007 Carlos Guestrin

E-step also doesn't decrease potential function 1

$$\ell(\theta^{(t)}: \mathcal{D}) \geq F(\theta^{(t)}, Q) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_j) \log \frac{P(\mathbf{z}, \mathbf{x}_j \mid \theta^{(t)})}{Q(\mathbf{z} \mid \mathbf{x}_j)}$$

©2005-2007 Carlos Guestri

37

KL-divergence

Measures distance between distributions

$$KL(Q||P) = \sum_{z} Q(z) \log \frac{Q(z)}{P(z)}$$

■ KL=zero if and only if Q=P

©2005-2007 Carlos Guestrin

E-step also doesn't decrease potential function 2

• Fixing θ to $\theta^{(t)}$:

$$\ell(\theta^{(t)}: \mathcal{D}) \ge F(\theta^{(t)}, Q) = \ell(\theta^{(t)}: \mathcal{D}) + \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_j) \log \frac{P(\mathbf{z} \mid \mathbf{x}_j, \theta^{(t)})}{Q(\mathbf{z} \mid \mathbf{x}_j)}$$
$$= \ell(\theta^{(t)}: \mathcal{D}) - m \sum_{j=1}^{m} KL\left(Q(\mathbf{z} \mid \mathbf{x}_j) || P(\mathbf{z} \mid \mathbf{x}_j, \theta^{(t)})\right)$$

E-step also doesn't decrease

- Fixing θ to θ^(t)
- Maximizing $F(\theta^{(t)}, Q)$ over $Q \rightarrow \text{set } Q$ to posterior probability:

$$Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) \leftarrow P(\mathbf{z} \mid \mathbf{x}_j, \theta^{(t)})$$

Note that

$$F(\theta^{(t)}, Q^{(t+1)}) = \ell(\theta^{(t)} : \mathcal{D})$$

EM is coordinate ascent

$$\ell(\theta: \mathcal{D}) \geq F(\theta, Q) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_j) \log \frac{P(\mathbf{z}, \mathbf{x}_j \mid \theta)}{Q(\mathbf{z} \mid \mathbf{x}_j)}$$

■ **M-step**: Fix Q, maximize F over θ (a lower bound on $\ell(\theta : \mathcal{D})$):

$$\ell(\theta:\mathcal{D}) \geq F(\theta, Q^{(t)}) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t)}(\mathbf{z} \mid \mathbf{x}_j) \log P(\mathbf{z}, \mathbf{x}_j \mid \theta) + m.H(Q^{(t)})$$

E-step: Fix θ, maximize F over Q:

$$\ell(\theta^{(t)}: \mathcal{D}) \ge F(\theta^{(t)}, Q) = \ell(\theta^{(t)}: \mathcal{D}) - m \sum_{j=1}^{m} KL\left(Q(\mathbf{z} \mid \mathbf{x}_{j}) || P(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)})\right)$$

□ "Realigns" F with likelihood:

$$F(\theta^{(t)}, Q^{(t+1)}) = \ell(\theta^{(t)} : \mathcal{D})$$

©2005-2007 Carlos Guestrin

44

What you should know

- K-means for clustering:
 - algorithm
 - □ converges because it's coordinate ascent
- EM for mixture of Gaussians:
 - ☐ How to "learn" maximum likelihood parameters (locally max. like.) in the case of unlabeled data
- Be happy with this kind of probabilistic analysis
- Remember, E.M. can get stuck in local minima, and empirically it <u>DOES</u>
- EM is coordinate ascent
- General case for EM

©2005-2007 Carlos Guestrin

Acknowledgements

- K-means & Gaussian mixture models presentation contains material from excellent tutorial by Andrew Moore:
 - □ http://www.autonlab.org/tutorials/
- K-means Applet:
 - □ http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial http://www.elet.polimi.it/upload/matteu
- Gaussian mixture models Applet:
 - □ http://www.neurosci.aist.go.jp/%7Eakaho/MixtureEM. html

©2005-2007 Carlos Guestria

43

Dimensionality Reduction

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

November 26th, 2007

©2005-2007 Carlos Guestrin

Dimensionality reduction

- Input data may have thousands or millions of dimensions!
 - □ e.g., text data has
- Dimensionality reduction: represent data with fewer dimensions
 - □ easier learning fewer parameters
 - □ visualization hard to visualize more than 3D or 4D
 - □ discover "intrinsic dimensionality" of data
 - high dimensional data that is truly lower dimensional

©2005-2007 Carlos Guestri

45

Feature selection

- Want to learn f:X→Y
 - \square X=< $X_1,...,X_n$ >
 - $\hfill\Box$ but some features are more important than others
- Approach: select subset of features to be used by learning algorithm
 - □ **Score** each feature (or sets of features)
 - □ Select set of features with best score

©2005-2007 Carlos Guestrin

Simple greedy **forward** feature selection algorithm

- Pick a dictionary of features
 - □ e.g., polynomials for linear regression
- Greedy heuristic:
 - □ Start from empty (or simple) set of features F₀ = Ø
 - □ Run learning algorithm for current set of features F_t
 - Obtain h₊
 - ☐ Select next best feature X_i
 - e.g., X_j that results in lowest cross-validation error learner when learning with $F_t \cup \{X_i\}$
 - $\square F_{t+1} \leftarrow F_t \cup \{X_i\}$
 - □ Recurse

©2005-2007 Carlos Guestrin

47

Simple greedy **backward** feature selection algorithm

- Pick a dictionary of features
 - □ e.g., polynomials for linear regression
- Greedy heuristic:
 - \square Start from all features $F_0 = F$
 - □ Run learning algorithm for current set of features F_t
 - Obtain h_t
 - ☐ Select **next worst feature X**;
 - e.g., X_j that results in lowest crossvalidation error learner when learning with F_t - {X_i}
 - $\Box F_{t+1} \leftarrow F_{t} \{X_{i}\}$
 - □ Recurse

©2005-2007 Carlos Guestrin

Impact of feature selection on classification of fMRI data [Pereira et al. '05]

Accuracy classifying category of word read by subject

		*								
	#voxels	mean	subjects							
			233B	329B	332B	424B	474B	496B	77B	86B
	50	0.735	0.783	0.817	0.55	0.783	0.75	0.8	0.65	0.75
	100	0.742	0.767	0.8	0.533	0.817	0.85	0.783	0.6	0.783
	200	0.737	0.783	0.783	0.517	0.817	0.883	0.75	0.583	0.783
	300	0.75	0.8	0.817	0.567	0.833	0.883	0.75	0.583	0.767
	400	0.742	0.8	0.783	0.583	0.85	0.833	0.75	0.583	0.75
	800	0.735	0.833	0.817	0.567	0.833	0.833	0.7	0.55	0.75
	1600	0.698	0.8	0.817	0.45	0.783	0.833	0.633	0.5	0.75
ľ	all (~ 2500)	0.638	0.767	0.767	0.25	0.75	0.833	0.567	0.433	0.733

Table 1: Average accuracy across all pairs of categories, restricting the procedure to use a certain number of voxels for each subject. The highlighted line corresponds to the best mean accuracy, obtained using 300 voxels.

Voxels scored by p-value of regression to predict voxel value from the task

©2005-2007 Carlos Guestrin

49

Lower dimensional projections

 Rather than picking a subset of the features, we can new features that are combinations of existing features

■ Let's see this in the unsupervised setting □ just **X**, but no Y

©2005-2007 Carlos Guestrin

Principal component analysis – basic idea

- Project n-dimensional data into k-dimensional space while preserving information:
 - $\hfill\Box$ e.g., project space of 10000 words into 3-dimensions
 - □ e.g., project 3-d into 2-d
- Choose projection with minimum reconstruction error

Linear projections, a review

- Project a point into a (lower dimensional) space:
 - \square point: $\mathbf{x} = (x_1, \dots, x_n)$
 - \square select a basis set of basis vectors $(\mathbf{u}_1,...,\mathbf{u}_k)$
 - we consider orthonormal basis:
 - □ **u**_i•**u**_i=1, and **u**_i•**u**_i=0 for i≠j
 - \square select a center \overline{x} , defines offset of space
 - □ **best coordinates** in lower dimensional space defined by dot-products: $(z_1,...,z_k)$, $z_i = (\mathbf{x}-\overline{\mathbf{x}}) \cdot \mathbf{u}_i$
 - minimum squared error

©2005-2007 Carlos Guestrin

53

PCA finds projection that minimizes reconstruction error

- Given m data points: $\mathbf{x}^i = (x_1^i, ..., x_n^i)$, i=1...m
- Will represent each point as a projection:

- PCA:
 - $\begin{tabular}{ll} \square Given $k{\le}n$, find $(\textbf{u}_1,...,\textbf{u}_k)$ \\ minimizing reconstruction error: \\ \end{tabular}$

$$error_k = \sum_{i=1}^m (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2$$

©2005-2007 Carlos Guestrin

E 4

Understanding the reconstruction error

$$\mathbf{x}^i = \bar{\mathbf{x}} + \sum_{j=1}^n z_j^i \mathbf{u}_j$$

 $\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j$ $z_j^i = (\mathbf{x}^i - \bar{\mathbf{x}}) \cdot \mathbf{u}_j$

□Given k≤n, find ($\mathbf{u}_1,...,\mathbf{u}_k$) minimizing reconstruction error:

$$error_k = \sum_{i=1}^m (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2$$

Rewriting error:

Reconstruction error and covariance matrix

$$error_k = \sum_{i=1}^m \sum_{j=k+1}^n [\mathbf{u}_j \cdot (\mathbf{x}^i - \bar{\mathbf{x}})]^2$$

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}^{i} - \bar{\mathbf{x}}) (\mathbf{x}^{i} - \bar{\mathbf{x}})^{T}$$

©2005-2007 Carlos Guestrin

Minimizing reconstruction error and eigen vectors

Minimizing reconstruction error equivalent to picking orthonormal basis (u₁,...,u_n) minimizing:

$$error_k = \sum_{j=k+1}^n \mathbf{u}_j^T \mathbf{\Sigma} \mathbf{u}_j$$

- Eigen vector:
- Minimizing reconstruction error equivalent to picking $(\mathbf{u}_{k+1},...,\mathbf{u}_n)$ to be eigen vectors with smallest eigen values

©2005-2007 Carlos Guestrin

57

Basic PCA algoritm

- Start from m by n data matrix X
- Recenter: subtract mean from each row of X

$$\square X_c \leftarrow X - \overline{X}$$

■ Compute covariance matrix:

$$\square \quad \Sigma \leftarrow 1/m \ \mathbf{X_c}^\mathsf{T} \ \mathbf{X_c}$$

- \blacksquare Find eigen vectors and values of Σ
- Principal components: k eigen vectors with highest eigen values

©2005-2007 Carlos Guestrin

Eigenfaces [Turk, Pentland '91]

Input images:

Principal components:

©2005-2007 Carlos Guestrii

61

Eigenfaces reconstruction

Each image corresponds to adding 8 principal components:

©2005-2007 Carlos Guestrin

Relationship to Gaussians

- PCA assumes data is Gaussian
 - \square x ~ N(\mathbf{x} ; Σ)
- Equivalent to weighted sum of simple Gaussians:

aussians:
$$\mathbf{x} = \bar{\mathbf{x}} + \sum_{j=1}^{n} z_j \mathbf{u}_j; \quad z_j \sim N(0; \sigma_j^2)$$

$$\mathbf{x} \approx \bar{\mathbf{x}} + \sum_{j=1}^{k} z_j \mathbf{u}_j + \varepsilon; \quad z_j \sim N(0; \sigma_j^2)$$

 $\hfill\Box$ $\ensuremath{\,\epsilon\mbox{-}N(0;\sigma^2)},\ \mbox{ where } \sigma^2 \mbox{ is defined by error}_k$

©2005-2007 Carlos Guestrin

Scaling up

- Covariance matrix can be really big!
 - $\hfill\Box$ Σ is n by n
 - $\hfill\Box$ 10000 features $\rightarrow |\Sigma|$
 - ☐ finding eigenvectors is very slow...
- Use singular value decomposition (SVD)
 - $\hfill \square$ finds to k eigenvectors
 - □ great implementations available, e.g., Matlab svd

©2005-2007 Carlos Guestrin

SVD

- Write X = W S V^T
 - □ **X** ← data matrix, one row per datapoint
 - \square **W** \leftarrow weight matrix, one row per datapoint coordinate of \mathbf{x}^i in eigenspace
 - □ **S** ← singular value matrix, diagonal matrix
 - in our setting each entry is eigenvalue λ_i
 - - in our setting each row is eigenvector v_i

©2005-2007 Carlos Guestri

65

PCA using SVD algoritm

- Start from m by n data matrix X
- Recenter: subtract mean from each row of X
 - $\square X_c \leftarrow X \overline{X}$
- Call SVD algorithm on X_c ask for k singular vectors
- **Principal components:** k singular vectors with highest singular values (rows of **V**^T)
 - □ Coefficients become:

©2005-2007 Carlos Guestrin

Using PCA for dimensionality reduction in classification

- \square X=< $X_1,...,X_n$ >
- □ but some features are more important than others
- Approach: Use PCA on X to select a few important features

PCA for classification can lead to problems...

Direction of maximum variation may be unrelated to "discriminative" directions:

- PCA often works very well, but sometimes must use more advanced methods
 - □ e.g., Fisher linear discriminant

©2005-2007 Carlos Guestrin

What you need to know

- Dimensionality reduction
 - □ why and when it's important
- Simple feature selection
- Principal component analysis
 - □ minimizing reconstruction error
 - □ relationship to covariance matrix and eigenvectors
 - □ using SVD
 - □ problems with PCA

©2005-2007 Carlos Guestrin