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Silly Example
Let events be “grades in a class”

w1 = Gets an A P(A) = ½
w2 = Gets a   B P(B) = µ
w3 = Gets a   C P(C) = 2µ
w4 = Gets a   D P(D) = ½-3µ

(Note  0 ≤ µ ≤1/6)
Assume we want to estimate µ from data.  In a given class there were

a   A’s
b   B’s
c   C’s
d   D’s

What’s the maximum likelihood estimate of µ given a,b,c,d ?
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Trivial Statistics
P(A) = ½ P(B) = µ P(C) = 2µ P(D) = ½-3µ
P( a,b,c,d | µ) = K(½)a(µ)b(2µ)c(½-3µ)d

log P( a,b,c,d | µ) = log K + alog ½ + blog µ + clog 2µ + dlog (½-3µ)

FOR MAX LIKE µ,  SET ∂LogP
∂µ

= 0

∂LogP
∂µ

=
b
µ

+
2c
2µ

−
3d

1 /2 − 3µ
= 0

Gives max like µ  =  b + c
6 b + c + d( )

So if class got

Max like µ =
1

10

109614

DCBA

Boring, but true!
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Same Problem with Hidden Information

Someone tells us that
Number of High grades (A’s + B’s) = h
Number of C’s                              = c
Number of D’s                              = d

What is the max. like estimate of µ now?

We can answer this question circularly:

µ  =  b + c
6 b + c + d( )

MAXIMIZATION

If we know the expected values of a and b
we could compute the maximum likelihood 
value of µ

REMEMBER

P(A) = ½

P(B) = µ

P(C) = 2µ

P(D) = ½-3µ

a =
1

2
1

2 + µ
h        b =

µ
1

2 + µ
h

EXPECTATION If we know the value of µ we could compute the 
expected value of a and b

Since the ratio a:b should be the same as the ratio ½ : µ
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E.M. for our Trivial Problem

We begin with a guess for µ
We iterate between EXPECTATION and MAXIMALIZATION to improve our estimates 
of  µ and a and b.

Define    µ(t) the estimate of µ on the t’th iteration
b(t) the estimate of b on t’th iteration

REMEMBER

P(A) = ½

P(B) = µ

P(C) = 2µ

P(D) = ½-3µ

µ(0) =  initial guess

b(t ) =   µ(t )h
1

2 + µ( t )
= Ε b | µ( t )[ ]

µ(t +1) =
b(t ) + c

6 b(t ) + c + d( )
=  max like est. of µ given b( t )

E-step

M-step

Continue iterating until converged.
Good news:  Converging to local optimum is assured.
Bad news:  I said “local” optimum.
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E.M. Convergence
Convergence proof based on fact that Prob(data | µ) must increase or remain 
same between each iteration [NOT OBVIOUS]

But it can never exceed 1    [OBVIOUS]

So it must therefore converge   [OBVIOUS]

3.1870.09486

3.1870.09485

3.1870.09484

3.1850.09473

3.1580.09372

2.8570.08331

000

b(t)µ(t)tIn our example, 
suppose we had

h = 20
c = 10
d = 10

µ(0) = 0

Convergence is generally linear: error 
decreases by a constant factor each time 
step.
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Back to Unsupervised Learning of 
GMMs – a simple case

A simple case:
We have unlabeled data x1 x2 … xm
We know there are k classes
We know P(y1) P(y2) P(y3) … P(yk)
We don’t know µ1 µ2 .. µk

We can write P( data | µ1…. µk) 

= p x1...xm µ1...µk( )

= p x j µ1...µk( )
j=1

m

∏

= p x j µi( )P y = i( )
i=1

k

∑
j=1

m

∏

∝  exp −
1

2σ 2 x j − µi

2⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ P y = i( )

i=1

k

∑
j=1

m

∏
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EM for simple case of GMMs: The 
E-step

If we know µ1,…,µk      → easily compute prob. 
point xj belongs to class y=i

p y = i x j ,µ1...µk( )∝exp −
1

2σ 2 x j − µi

2⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ P y = i( )
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EM for simple case of GMMs: The 
M-step

If we know prob. point xj belongs to class y=i 
→ MLE for µi is weighted average

imagine k copies of each xj, each with weight P(y=i|xj):

µi =  
P y = i x j( )

j=1

m

∑ x j

P y = i x j( )
j=1

m

∑
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E.M. for GMMs

E-step
Compute “expected” classes of all datapoints for each class

M-step
Compute Max. like µ given our data’s class membership distributions

Just evaluate 
a Gaussian at 
xj

p y = i x j ,µ1...µk( )∝exp −
1

2σ 2 x j − µi

2⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ P y = i( )

µi =  
P y = i x j( )

j=1

m

∑ x j

P y = i x j( )
j=1

m

∑
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E.M. Convergence

This algorithm is REALLY USED.  And in high dimensional state spaces, too.  
E.G. Vector Quantization for Speech Data

• EM is coordinate 
ascent on an 
interesting potential 
function

• Coord. ascent for 
bounded pot. func. !
convergence to a 
local optimum 
guaranteed

• See Neal & Hinton 
reading on class 
webpage

12©2005-2007 Carlos Guestrin

E.M. for axis-aligned GMMs
Iterate.  On the t’th iteration let our estimates be

λt = { µ1
(t), µ2

(t) … µk
(t), Σ1

(t), Σ2
(t) … Σk

(t), p1
(t), p2

(t) … pk
(t) }

E-step
Compute “expected” classes of all datapoints for each class

( ) ( ))()()( ,p,P t
i

t
ij

t
itj xpxiy Σ∝= µλ

pi
(t) is shorthand for 

estimate of P(y=i)
on t’th iteration

M-step  
Compute Max. like µ given our data’s class membership distributions

( )
( )

( )∑
∑

=

=
=+

j
tj

j
j

tj
t

i xiy

xxiy

λ

λ

,P

 ,P
µ 1

( )
m

xiy
p j

tj
t

i

∑ =
=+

λ,P
)1(

m = #records

Just evaluate 
a Gaussian at 
xj

 

Σ =

σ 2
1 0 0 L 0 0

0 σ 2
2 0 L 0 0

0 0 σ 2
3 L 0 0

M M M O M M

0 0 0 L σ 2
m−1 0

0 0 0 L 0 σ 2
m

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

pi
(t) is shorthand for 

estimate of P(y=i) on 
t’th iteration
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E.M. for General GMMs
Iterate.  On the t’th iteration let our estimates be

λt = { µ1
(t), µ2

(t) … µk
(t), Σ1

(t), Σ2
(t) … Σk

(t), p1
(t), p2

(t) … pk
(t) }

E-step
Compute “expected” classes of all datapoints for each class

( ) ( ))()()( ,p,P t
i

t
ij

t
itj xpxiy Σ∝= µλ

pi
(t) is shorthand for 

estimate of P(y=i)
on t’th iteration

M-step  
Compute Max. like µ given our data’s class membership distributions

( )
( )

( )∑
∑

=

=
=+

j
tj

j
j

tj
t

i xiy

xxiy

λ

λ

,P

 ,P
µ 1 ( )

( ) ( )[ ] ( )[ ]
( ) ,P

 ,P 11

1

∑
∑

=

−−=
=Σ

++

+

j
tj

Tt
ij

t
ij

j
tj

t
i xiy

xxxiy

λ

µµλ

( )
m

xiy
p j

tj
t

i

∑ =
=+

λ,P
)1(

m = #records

Just evaluate 
a Gaussian at 
xj
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Gaussian Mixture Example: Start
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After first iteration
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After 2nd iteration
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After 3rd iteration
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After 4th iteration
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After 5th iteration
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After 6th iteration
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After 20th iteration
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Some Bio Assay data
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GMM clustering of the assay data
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Resulting 
Density 
Estimator
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Three 
classes of 
assay
(each learned with 
it’s own mixture 
model)
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Resulting 
Bayes 
Classifier
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Resulting Bayes 
Classifier, using 
posterior 
probabilities to 
alert about 
ambiguity and 
anomalousness

Yellow means 
anomalous

Cyan means 
ambiguous
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Announcements

Project:
Poster session: NSH Atrium, Friday 11/30, 2-5pm

Print your poster early!!! 
SCS facilities has a poster printer, ask helpdesk
Students from outside SCS should check with their 
departments
It’s OK to print separate pages

We’ll provide pins, posterboard and an easel
Poster size: 32x40 inches 

Invite your friends, there will be a prize for best poster, by popular 
vote

Last lecture:
Thursday, 11/29, 5-6:20pm, Wean 7500
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The general learning problem with 
missing data

Marginal likelihood – x is observed, z is missing:
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E-step

x is observed, z is missing
Compute probability of missing data given current choice of θ

Q(z|xj) for each xj
e.g., probability computed during classification step
corresponds to “classification step” in K-means
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Jensen’s inequality 

Theorem: log ∑z P(z) f(z)  ≥ ∑z P(z) log f(z) 
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Applying Jensen’s inequality

Use:  log ∑z P(z) f(z) ≥ ∑z P(z) log f(z) 
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The M-step maximizes lower bound on 
weighted data

Lower bound from Jensen’s:

Corresponds to weighted dataset:
<x1,z=1> with weight Q(t+1)(z=1|x1)
<x1,z=2> with weight Q(t+1)(z=2|x1)
<x1,z=3> with weight Q(t+1)(z=3|x1)
<x2,z=1> with weight Q(t+1)(z=1|x2)
<x2,z=2> with weight Q(t+1)(z=2|x2)
<x2,z=3> with weight Q(t+1)(z=3|x2)
…
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The M-step

Maximization step:

Use expected counts instead of counts:
If learning requires Count(x,z)
Use EQ(t+1)[Count(x,z)]
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Convergence of EM

Define potential function F(θ,Q):

EM corresponds to coordinate ascent on F
Thus, maximizes lower bound on marginal log likelihood
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M-step is easy

Using potential function
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E-step also doesn’t decrease 
potential function 1

Fixing θ to θ(t):
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KL-divergence

Measures distance between distributions

KL=zero if and only if Q=P
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E-step also doesn’t decrease 
potential function 2
Fixing θ to θ(t):
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E-step also doesn’t decrease 
potential function 3

Fixing θ to θ(t)

Maximizing F(θ(t),Q) over Q → set Q to posterior probability:

Note that
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EM is coordinate ascent

M-step: Fix Q, maximize F over θ (a lower bound on            ):

E-step: Fix θ, maximize F over Q:

“Realigns” F with likelihood:
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What you should know

K-means for clustering:
algorithm
converges because it’s coordinate ascent

EM for mixture of Gaussians:
How to “learn” maximum likelihood parameters (locally max. like.) in 
the case of unlabeled data

Be happy with this kind of probabilistic analysis
Remember, E.M. can get stuck in local minima, and 
empirically it DOES
EM is coordinate ascent
General case for EM
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Acknowledgements

K-means & Gaussian mixture models 
presentation contains material from excellent 
tutorial by Andrew Moore:

http://www.autonlab.org/tutorials/
K-means Applet:

http://www.elet.polimi.it/upload/matteucc/Clustering/tu
torial_html/AppletKM.html

Gaussian mixture models Applet:
http://www.neurosci.aist.go.jp/%7Eakaho/MixtureEM.
html
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Dimensionality 
Reduction
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Dimensionality reduction

Input data may have thousands or millions of 
dimensions!

e.g., text data has 
Dimensionality reduction: represent data with 
fewer dimensions

easier learning – fewer parameters
visualization – hard to visualize more than 3D or 4D
discover “intrinsic dimensionality” of data

high dimensional data that is truly lower dimensional 
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Feature selection

Want to learn f:X→Y
X=<X1,…,Xn>
but some features are more important than others

Approach: select subset of features to be used 
by learning algorithm

Score each feature (or sets of features)
Select set of features with best score
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Simple greedy forward feature selection 
algorithm

Pick a dictionary of features
e.g., polynomials for linear regression

Greedy heuristic:
Start from empty (or simple) set of 
features F0 = ∅
Run learning algorithm for current set 
of features Ft

Obtain ht

Select next best feature Xi
e.g., Xj that results in lowest cross-
validation error learner when learning with 
Ft ∪ {Xj}

Ft+1 ← Ft ∪ {Xi}
Recurse
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Simple greedy backward feature 
selection algorithm

Pick a dictionary of features
e.g., polynomials for linear regression

Greedy heuristic:
Start from all features F0 = F
Run learning algorithm for current set 
of features Ft

Obtain ht

Select next worst feature Xi
e.g., Xj that results in lowest cross-
validation error learner when learning with 
Ft - {Xj}

Ft+1 ← Ft  - {Xi}
Recurse
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Impact of feature selection on 
classification of fMRI data [Pereira et al. ’05] 
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Lower dimensional projections

Rather than picking a subset of the features, we 
can new features that are combinations of 
existing features

Let’s see this in the unsupervised setting 
just X, but no Y
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Linear projection and reconstruction

x1

x2

project into
1-dimension z1

reconstruction:
only know z1, 

what was (x1,x2)
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Principal component analysis –
basic idea

Project n-dimensional data into k-dimensional 
space while preserving information:

e.g., project space of 10000 words into 3-dimensions
e.g., project 3-d into 2-d

Choose projection with minimum reconstruction 
error
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Linear projections, a review

Project a point into a (lower dimensional) space:
point: x = (x1,…,xn) 
select a basis – set of basis vectors – (u1,…,uk)

we consider orthonormal basis: 
ui•ui=1, and ui•uj=0 for i≠j

select a center – x, defines offset of space 
best coordinates in lower dimensional space defined 
by dot-products: (z1,…,zk), zi = (x-x)•ui

minimum squared error


