

Silly Example

Let events be "grades in a class
$\mathrm{w}_{1}=$ Gets an A
$\mathrm{w}_{2}=$ Gets a B
$w_{3}=$ Gets a \underline{C}
$\mathrm{w}_{4}=$ Gets a D

Assume we want to estipratefrem data. In a given class there were

What's the maximum likelinood estimate of μ given a, b, c, d ?

$$
\hat{\mu}_{\text {MLE }}
$$

Trivial Statistics

$$
P(A)=1 / 2 \quad P(B)=\mu \quad P(C)=2 \mu \quad P(D)=1 / 2-3 \mu
$$

$$
P(a, b, c, d \mid \mu)=K\left(\frac{1}{2}\right)^{a}(\mu)^{b}(2 \mu)^{c}(1 / 2-3 \mu)^{d}
$$

$$
\log P(a, b, c, d \mid \mu)=\log K^{2}+a l \log 1 / 2+b \log \mu+c \log 2 \mu+d \log (1 / 2-3 \mu)
$$

$$
\text { FOR MAX LIKE } \mu \text {, SET } \frac{\partial \operatorname{LogP}}{\partial \mu}=0
$$

$$
\frac{\partial \log P}{\partial \mu}=\frac{b}{\mu}+\frac{2 c}{2 \mu}-\frac{3 d}{1 / 2-3 \mu}=0
$$

Gives max like $\mu=\frac{b+c}{6(b+c+d)}$
So if class got
Max lik $\mu=\frac{1}{10}$

A	B	C	D
14	6	9	10

Same Problem with Hidden Information

Someone tells us that
Number of High grades (A's + B's) $=\underline{h}$
Number of C's $=c$
Number of D's $=d$
What is the max. like estimate of μ now?

$$
\begin{aligned}
& \text { REMEMBER } \\
& P(A)=1 / 2 \\
& P(B)=\mu \\
& P(C)=2 \mu \\
& P(D)=1 / 2-3 \mu \\
& \hline
\end{aligned}
$$

We can answer this question circularly:

EXPECTATION

If we know the value of mpe could compute the expected value ffa and b

$$
\bar{a}=\frac{1 / 2}{1 / 2+\mu} h \quad \bar{b}=\frac{\mu}{1 / 2+\mu} h
$$

MAXIMIZATION

If we know the expected values of \bar{a} and \bar{b} we could compute the maximum likelihood value of μ

$$
\left\lvert\, \hat{\mu}=\frac{\vec{b}+c}{6(\vec{b}+c+d)}\right.
$$

E.M. for our Trivial Problem

REMEMBER
$P(A)=1 / 2$
$P(B)=\mu$
$P(C)=2 \mu$
$P(D)=1 / 2-3 \mu$

We begin with a guess for μ
We iterate between EXPECTATION and MAXIMALIZATION to improve our estimates of μ and a and b.

Define $\mu^{(t)}$ the estimate of μ on the t'th iteration
$\underline{b}^{(t)}$ the estimate of b on lath $^{\prime}$ iteration
 $\mu^{(0)}=$ initial guess

$$
\begin{aligned}
& \underline{\underline{\mu}}^{(0)}=\text { initial guess } \\
& b^{(t)}=\frac{\mu^{(t)} b}{1 / 2+\mu^{(t)}}=\mathrm{E}\left[b \mid \mu^{(t)}\right]
\end{aligned}
$$

max like est. of $\mu \mathrm{g}$ ven $b^{(t)}$

Continue iterating until converged.

Good news: Converging to local optimum is assured.

Bad news: I said "local" optimußbe-2007 Carlos Guestin

E.M. Convergence

- Convergence proof based on fact that $\operatorname{Prob}($ data $\mid \mu$) must increase or remain same between each iteration [not obvious]
- But it can never exceed 1 [obvious]

So it must therefore converge [obvious]

In our example,
suppose we had
$h=20$
$c=10$
d $=10$
$\mu^{(0)}=\underline{0}$
Convergence is generally linear: error decreases by a constant factor each time step. \qquad

$\left(\right.$| t | $\mu^{(\mathrm{t})}$ | |
| :---: | :--- | :--- |
| 0 | 0 | |
| 1 | $\underline{0.0833}$ | 1 |
| 2 | $\underline{0.0937}$ | 1 |
| 3 | $\underline{0.0947}$ | 1 |
| 4 | 0.0948 | \prime |
| 5 | 0.0948 | \vdots |
| 6 | 0.0948 | i |

$\frac{2.857}{3.158}$
3.185
3.187
3.187
3.187

EM for simple case of GMMs: The
E-step expectide value of hidenvars

- If we know $\mu_{1}, \ldots, \mu_{\mathrm{k}} \rightarrow$ easily compute prob.
point x_{j} belongs to class $y=i$
Bayes Rube

$$
\underbrace{\mathrm{p}\left(y=\mid x_{j}, \mu_{1} \ldots \mu_{k}\right) x \exp \left(-\frac{1}{2 \sigma^{\sigma}} \| x_{j}-\left.\mu_{i}\right|^{2}\right) \mathrm{P}(y=i)})
$$

for each point j

$$
\begin{aligned}
& P\left(y=1 \mid x_{j}, \mu_{1} \ldots \mu_{k}\right)=0.7 \\
& P\left(y=2 \mid x_{j}, \mu_{1} \ldots \mu_{k}\right)=0.2 \\
& P\left(y=3 \mid x_{j}, \mu_{1} \ldots \mu_{k}\right)=0.1
\end{aligned}
$$

EM for simple case of GMMs: The M-step

- If we know prob. point x_{j} belongs to class $y=i$
\rightarrow MLE for μ_{i} is weighted average
\square imagine k copies of each x_{j}, each with weight $P\left(y=i \mid x_{j}\right)$:

E.M. for GMMs

E-step
each
Compute "expected" classes of datapoint for each class

$$
\mathrm{p}\left(y=i \mid x_{j}, \mu_{1} \ldots \mu_{k}\right) \propto \exp \left(-\frac{1}{2 \sigma^{2}}\left\|x_{j}-\mu_{i}\right\|^{2}\right) \mathrm{P}(y=i)
$$

Just evaluate a Gaussian at x_{j}

M-step
Compute Max. like $\boldsymbol{\mu}$ given our data's class membership distributions
$\mu_{i}=\frac{\sum_{j=1}^{m} P\left(y=i \mid x_{j}\right) x_{j}}{\sum_{j=1}^{m} P\left(y=i \mid x_{j}\right)}$

- This algorithm is REALLY USED. And in high dimensional state spaces, too. E.G. Vector Quantization for Speech Data

E.M. for axis-aligned GMN

Iterate. On the t 'th iteration let our estimates be

Compute Max. like μ given our data's class membership distributions $-\frac{m-i}{m}$

E.M. for General GMMs

Iterate. On the t 'th iteration let our estimates be

$$
\lambda_{t}=\left\{\mu_{1}^{(t)}, \mu_{2}^{(t)} \ldots \mu_{k}^{(t)}, \sum_{1}^{(t)}, \sum_{2}^{(t)} \ldots \Sigma_{k}^{(t)}, p_{1}^{(t)}, p_{2}{ }^{(t)} \ldots p_{k}^{(t)}\right\}
$$

E-step
Compute "expected" classes of all datapoints for each class

Compute Max. like μ given our data's class membership distributions

$$
\mu_{i}^{(t+1)}=\frac{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right) x_{j}}{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right)} \quad \Sigma_{i}^{(t+1)}=\frac{\left.\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right)\left[x_{j}-\mu_{i}^{(t+1)}\right] x_{j}-\mu_{i}^{(t+1)}\right]^{\mathrm{T}}}{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right)}
$$

$$
p_{i}^{(t+1)}=\frac{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right)}{m}=m=\text { \#records }
$$

Gaussian Mixture Example: Start

After first iteration

$\square-\square \square$

After 2nd iteration

After 3rd iteration

 ■-

After 4th iteration

After 6th iteration

Some Bio Assay data

GMM clustering of the assay data

The general learning problem with missing data

- Marginal likelihood $-\mathbf{x}$ is observed, \mathbf{z} is missing:

$$
\begin{aligned}
& \text { wait locex } \\
& \text { to max } \stackrel{i i d}{=} \log \prod_{j=1}^{m} P\left(\mathbf{x}_{j} \mid \theta\right) \\
&=\frac{\sum_{j=1}^{m} \log P\left(\mathbf{x}_{j} \mid \theta\right)}{} \\
&=\sum_{j=1}^{m} \log \sum_{\mathbf{z}} P\left(\mathbf{x}_{j}, \mathbf{z} \mid \theta\right)
\end{aligned}
$$

E-step

- \mathbf{x} is observed, \mathbf{z} is missing
- Compute probability of missing data given current choice of θ
$\square \underline{Q}\left(\underline{z} \mid \mathbf{x}_{\mathbf{j}}\right)$ for each \mathbf{x}_{j}
- e.g., probability computed during classification step
- corresponds to "classification step" in K-means
$\underline{Q^{(t+1)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right)=P\left(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)}\right)}$

Jensen's inequality

$$
\underline{\ell(\theta: \mathcal{D}})=\sum_{j=1}^{m} \log \sum_{\underline{z}} P\left(\mathbf{z} \mid \mathbf{x}_{j}\right) P\left(\mathbf{x}_{j} \mid \theta\right)
$$

- Theorem: $\log \sum_{z} P(z) f(z) \geq \sum_{z} P(z) \log f(z)$

Applying Jensen's inequality $\log \frac{4}{b}$ $=\log a-\log b$

- Use: $\log \sum_{\mathbf{z}} P(\mathbf{z}) f(\mathbf{z}) \geq \sum_{\mathbf{z}} P(\mathbf{z}) \log f(\mathbf{z})$ $\ell\left(\theta^{(t)}: \mathcal{D}\right)=\sum_{j=1}^{m} \log \sum_{\mathbf{z}} Q^{(t+1)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \frac{P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta^{(t)}\right)}{Q^{(t+1)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right)}$
$\geq \sum_{j=1}^{m} \sum_{z} Q^{(f+1)}\left(z \mid x_{j}\right) \log \frac{P\left(z, x_{j}| |^{(t)}\right)}{Q^{(++1)}\left(z \mid x_{j}\right)}$
$=\sum_{j=1}^{m} \sum Q^{(t+1)}\left(z-x_{j}\right) \log P\left(z, x_{j} \mid \theta^{(t)}\right)$
$-\sum_{j=1}^{m} \underbrace{\sum_{z} Q^{(t+1)}\left(z \mid x_{j}\right) \log Q^{(t+1)}\left(z \mid x_{j}\right)}_{-H\left(Q^{(t+1)} \mid x_{j}\right)}$

The M-step maximizes lower bound on weighted data
 - Lower bound from Jensen's:
 wat it to max $\ell\left(\theta^{(t)}: \mathcal{D}\right)$$\sum_{\text {I don't Know }}^{m} \sum_{\text {, }}^{\sum_{\mathbf{z}} Q^{(t+1)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right)} \underbrace{\log P\left(\mathbf{z}, \mathbf{x}_{j}\right.}$ but I introduce $|z|$ data points with eight $Q^{(t+1)}\left(z \mid x_{j}\right)$

- Corresponds to weighted dataset:

```
<x},\mathbf{z=1>}\mathrm{ with weight Q }\mp@subsup{Q}{}{(t+1)}(z=1|\mp@subsup{x}{1}{}
<x},\mp@code{z=2> with weight Q Q }\mp@subsup{}{(t+1)}{(z=2|\mp@subsup{x}{1}{})
<x},\mathbf{z=3>}\mathrm{ with weight Q Q (t+1)}(\mathbf{z}=3|\mp@subsup{\mathbf{x}}{1}{}
<x
<x},\mathbf{z}=2> with weight Q Q (t+1)(z=2|x ( )
<x},\mp@code{z=3> with weight Q }\mp@subsup{Q}{}{(t+1)}(z=3|\mp@subsup{x}{2}{}
```

\square.

Maximization step:

$$
\stackrel{\theta^{(t+1)}}{=} \leftarrow \underline{\theta} \arg \max _{\theta} \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta\right)
$$

IMLE w. weighted cate

- Use expected counts instead of counts:

If learning requires Count (\mathbf{x}, \mathbf{z}) Use $\mathrm{E}_{\mathrm{Q}(\mathrm{t}+1)}[$ Count $(\mathbf{x}, \mathbf{z})]$

Convergence of EM

- Define potential function $F(\theta, Q)$:
- EM corresponds to coordinate ascent on F

Thus, maximizes lower bound on marginal log likelihood

M-step is easy

$$
\theta^{(t+1)} \leftarrow \arg \max _{\theta} \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta\right)
$$

- Using potential function constant

 potential function $\left.1 \quad Q^{(t+1)}(z \mid x)<P(z \mid x), \theta^{(t)}\right)$Fixing θ to $\theta^{(t)}$:

$$
\begin{aligned}
& \ell\left(\theta^{(t)}: \mathcal{D}\right) \geq F\left(\theta^{(t)}, Q\right)=\sum_{j=1}^{m} \sum_{\mathbf{z}} Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log \frac{P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta^{(t)}\right)}{Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right)} \\
& \stackrel{\text { chain vance }}{=} \sum_{j=1}^{n} \sum_{z} Q\left(z \mid x_{j}\right) \log \frac{P\left(z \mid x_{j} \theta^{(t)}\right) \cdot P\left(x_{j} \mid \theta^{(t)}\right)}{Q\left(z \mid x_{j}\right)=1}
\end{aligned}
$$

KL-divergence

- Measures distance between distributions
$\underline{\underline{K L(Q \| P}})=\sum_{z} Q(z) \log \frac{Q(z)}{P(z)}$
- KL=zero if and only if $Q=P$

E-step also doesn't decrease potential function 2

-KL

Fixing θ to $\theta^{(t)}$:

$$
\begin{aligned}
& \ell\left(\theta^{(t)}: \mathcal{D}\right) \geq F\left(\theta^{(t)}, Q\right)=\ell\left(\theta^{(t)}: \mathcal{D}\right)+\sum_{j=1}^{m} \sum_{\mathbf{z}} Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log \frac{P\left(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)}\right)}{Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right)} \\
& \begin{array}{l}
=\ell\left(\theta^{(t)}: \mathcal{D}\right)-\underbrace{\sum_{j=1}^{m} K L\left(Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \| P\left(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)}\right)\right)}_{\text {as small as possible }} \\
\text { the }
\end{array} \\
& \text { maximitl the } \\
& \text { right side, } \\
& \text { we know that } \\
& \rightarrow \text { by setting } \\
& K((Q \| P) \geqslant 0 \\
& Q\left(z \mid x_{j}\right)=P\left(z \mid x_{i j}, \theta^{(t)}\right) \\
& =0 \Leftrightarrow P=Q
\end{aligned}
$$

E-step also doesn't decrease potential function 3

$\left.\begin{array}{l}\ell\left(\theta^{(t)}: \mathcal{D}\right) \geq F\left(\theta^{(t)}, Q\right)=\ell\left(\theta^{(t)}: \mathcal{D}\right) \text { - 缶 } \sum_{j=1}^{m} K L\left(Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right)\right. \\ \text { - Fixing } \theta \text { to } \theta^{(t)} \\ \text { - Maximizing } \mathrm{F}\left(\theta^{(t)}, \mathrm{Q}\right)\end{array}\right)$ over $\mathrm{Q} \rightarrow$ set Q to posterior probability:

- Note that

$$
Q^{(t+1)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \leftarrow P\left(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)}\right)
$$

EM is coordinate ascent

$\ell(\theta: \mathcal{D}) \geq F(\theta, Q)=\sum_{j=1}^{m} \sum_{\mathbf{z}} Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log \frac{P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta\right)}{Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right)}$

- M-step: Fix Q , maximize F over θ (a lower bound on $\ell(\theta: \mathcal{D})$):
$\ell(\theta: \mathcal{D}) \geq F\left(\theta, Q^{(t)}\right)=\sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta\right)+m \cdot H\left(Q^{(t)}\right)$
- E-step: Fix θ, maximize F over Q:
$\ell\left(\theta^{(t)}: \mathcal{D}\right) \geq F\left(\theta^{(t)}, Q\right)=\ell\left(\theta^{(t)}: \mathcal{D}\right)-\psi \sum_{j=1}^{m} K L\left(Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \| P\left(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)}\right)\right)$
"Realigns" F with likelihood:

$$
F\left(\theta^{(t)}, Q^{(t+1)}\right)=\ell\left(\theta^{(t)}: \mathcal{D}\right)
$$

What you should know

K-means for clustering:
\square algorithm
\square converges because it's coordinate ascent

- EM for mixture of Gaussians:

How to "learn" maximum likelihood parameters (locally max. like.) in the case of unlabeled data

- Be happy with this kind of probabilistic analysis

Remember, E.M. can get stuck in local minima, and empirically it DOES

- EM is coordinate ascent
- General case for EM

Acknowledgements

- K-means \& Gaussian mixture models presentation contains material from excellent tutorial by Andrew Moore:
\square http://www.autonlab.org/tutorials/
- K-means Applet:
\square http://www.elet.polimi.it/upload/matteucc/Clustering/tu torial html/AppletKM.html
- Gaussian mixture models Applet:
\square http://www.neurosci.aist.go.jp/\~akaho/MixtureEM. html

Dimensionality reduction

- Input data may have thousands or millions of dimensions!
e.g., text data has
- Dimensionality reduction: represent data with fewer dimensions
easier learning - fewer parametersvisualization - hard to visualize more than 3D or 4D
discover "intrinsic dimensionality" of data
- high dimensional data that is truly lower dimensional

Feature selection

- Want to learn $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$
$\square X=<X_{1}, \ldots, X_{n} \geqslant 40 \mathrm{~K}$
\square but some features are more important than others
- Approach: select subset of features to be used by learning algorithm
\square Score each feature (or sets of features)
Select set of features with best score

Simple greedy forward feature selection algorithm

- Pick a dictionary of features
e.g., polynomials for linear regression

Greedy heuristic:
\square Start from empty (or simple) set of features $F_{0}=\varnothing$
Run learning algorithm for current set of features F_{t}

- Obtain h_{t}

Select next best feature X_{i}

- e.g., X_{j} that results in lowest crossvalidation error learner when learning with $F_{t} \cup\left\{\mathrm{X}_{\mathrm{j}}\right\}$
$\square F_{t+1} \leftarrow F_{t} \cup\left\{X_{i}\right\}$Recurse

Simple greedy backward feature selection algorithm

Pick a dictionary of features
\square e.g., polynomials for linear regression

- Greedy heuristic:
\square Start from all features $F_{0}=F$
\square Run learning algorithm for current set
of features F_{t}
- Obtain h_{t}
\square Select next worst feature X_{i}
- e.g., $\overline{X_{j}}$ that results in lowest crossvalidation error learner when learning with $F_{t}-\left\{\mathrm{X}_{\mathrm{j}}\right\}$
$\square F_{t+1} \leftarrow F_{t}-\left\{X_{i}\right\}$
\square Recurse
Impact of feature selection on classification of fMRI data [Pereria etal: 05]

Accuracy classifying category of word read by subject									
\#voxels	$\underset{\text { meant }}{\downarrow}$	subjects $233 B$	329B	332B	424B	474B	496B	77B	86B
50	0.735	0.783	0.817	0.55	0.783	0.75	0.8	0.65	0.75
100	0.742	0.767	0.8	0.533	0.817	0.85	0.783	0.6	0.783
200	0.737	0.783	0.783	0.517	0.817	0.883	0.75	0.583	0.783
300	0.75	0.8	0.817	0.567	0.833	0.888	0.75	0.583	0.767
400	0.742	0.8	0.783	0.583	0.85	0.833	0.75	0.583	0.75
800	0.735	0.833	0.817	0.567	0.833	0.833	0.7	0.55	0.75
1600	0.698	0.8	0.817	0.45	0.783	0.833	0.633	0.5	0.75
all (~ 2500)	-0.638	0.767	0.767	0.25	0.75	0.833	0.567	0.433	0.733

Table 1: Average accuracy across all pairs of categories, restricting the procedure to use a certain number of voxels for each subject. The highlighted liue correxponds to the best mean accuracy, olstained using 300 vorels.

Voxels scored by p-value of regression to predict voxel value from the task

Lower dimensional projections

Rather than picking a subset of the features, we can new features that are combinations of existing features

$$
\begin{aligned}
& \text { e.9., feature } \\
& \text { selection: } \\
& \text { use } x_{1}, x_{7}, x_{11}
\end{aligned}
$$

$$
\begin{aligned}
& \text { low. dim. proj. } \\
& \begin{aligned}
\tilde{x}= & =0.1 x_{1}+0.7 x_{2} \\
& -0.35 x_{3} \ldots
\end{aligned}
\end{aligned}
$$

- Let's see this in the unsupervised setting just X, but no Y

Principal component analysis basic idea

- Project n -dimensional data into k -dimensional space while preserving information:
\square e.g., project space of 10000 words into 3-dimensionse.g., project 3-d into 2-d

Choose projection with minimum reconstruction error

- Project a point into a (lower dimensional) space:
point: $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$
select a basis - set of basis vectors - ($\left.\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$
- we consider orthonormal basis:

$$
u_{i} \cdot u_{i}=1 \text { and } u_{i} u_{j}=0 \text { for } i \neq j
$$

select a center - $\overline{\mathbf{x}}$, defines offset of space
best coordinates in lower dimensional space defined by dot-products: $\left(z_{1}, \ldots, z_{k}\right), z_{i}=(x-\bar{x}) \bullet u_{i}$

- minimum squared error

©2005-2007 Carlos Guestrin

