

K-means

- Randomly initialize k centers
 - \square $\mu^{(0)} = \mu_1^{(0)}, ..., \mu_k^{(0)}$
- Classify: Assign each point j∈{1,...m} to nearest center: penter of point; is absent to s
 - $\square \underbrace{\underline{C^{(t)}(j)}}_{i} \leftarrow \arg\min_{i} ||\mu_{i} x_{j}||^{2}$
- Recenter: μ_i becomes centroid of its point:

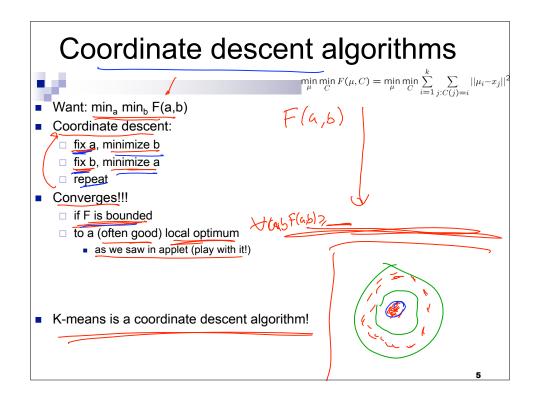
Does K-means converge??? Part 2

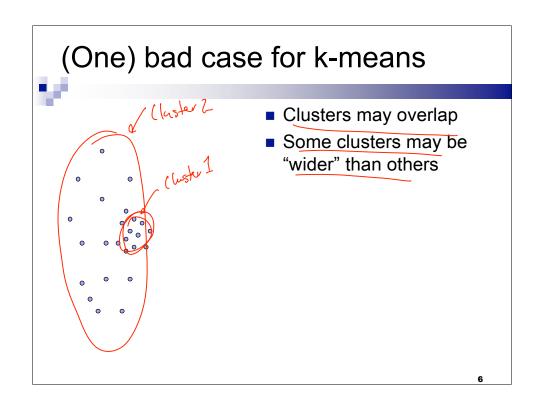
Optimize potential function:

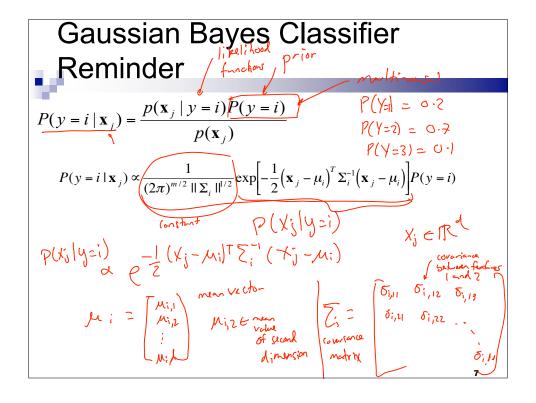
 $\min_{\mu} \min_{C} F(\mu, C) = \min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{j: C(j)=i} ||\mu_i - x_j||^2$

Fix C, optimize μ

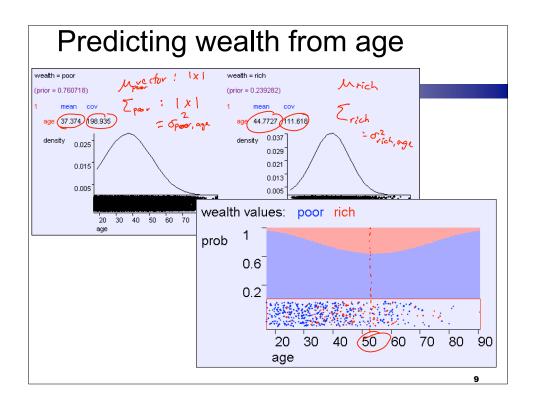
min $\frac{\chi}{2}$ $\frac{\chi}{3}$ $\frac{\chi}{3}$

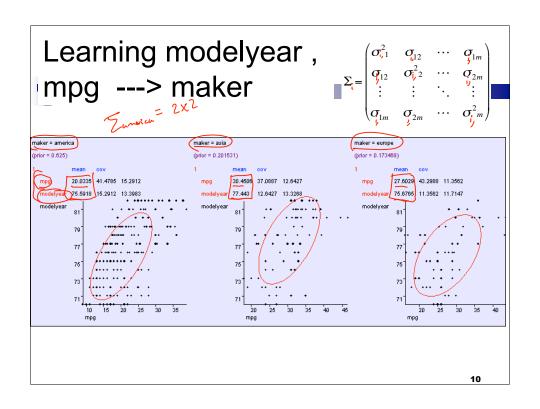


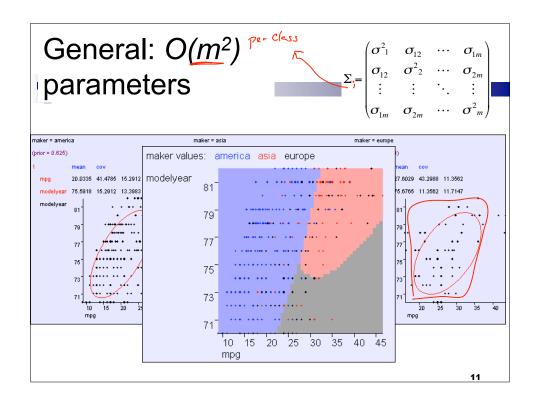


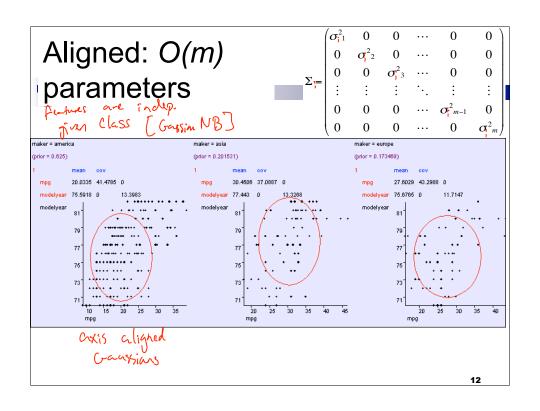


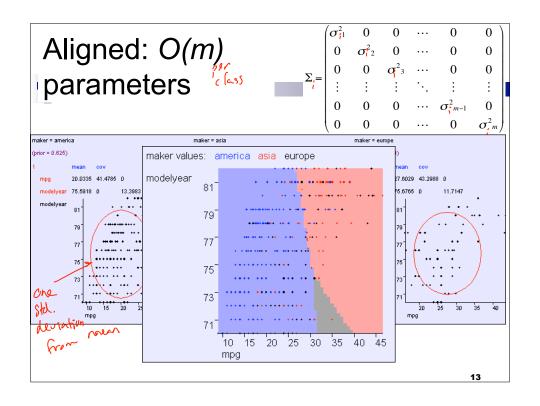


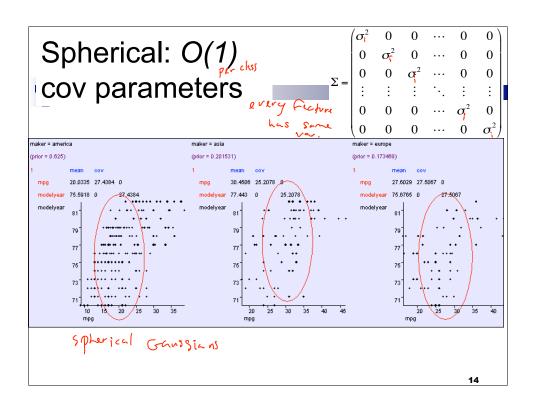


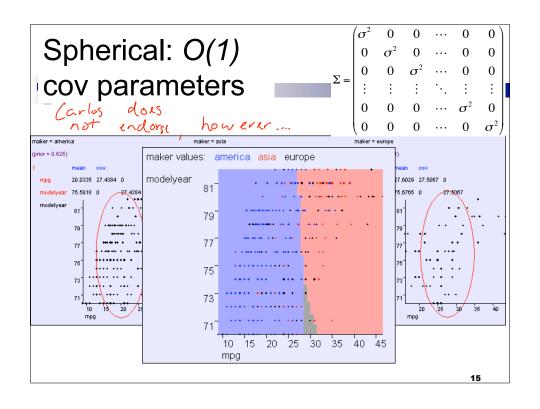


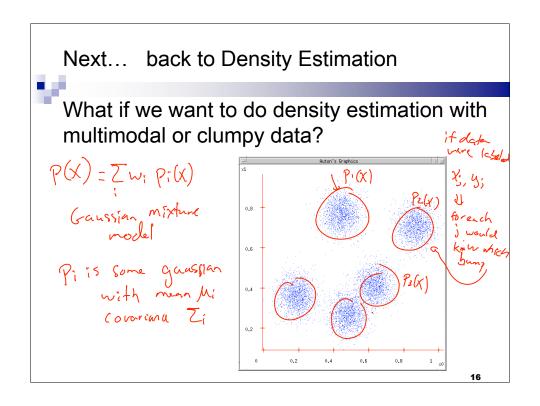






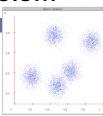






But we don't see class labels!!!

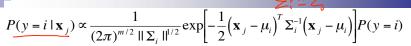
- MLE:
 - \square argmax $\prod_{j} P(y_{j},x_{j})$ List observe y



- But we don't know y 's!!! don't know bung
- Maximize marginal likelihood:
 - \square argmax $\prod_{j} P(x_j) = argmax \prod_{j} \sum_{i=1}^{k} P(y_j = i, x_j)$ part I observa

17

Special case: spherical Gaussians and hard assignments $\delta_{ij}^{i} = \delta_{ij}^{i} = \int_{-\infty}^{\omega_{ij}} \delta_{ij}^{i}$



If P(X|Y=i) is spherical, with same σ for all classes:

$$P(\mathbf{x}_j \mid y = i) \propto \exp \left[-\frac{1}{2\sigma^2} \left\| \mathbf{x}_j - \mu_i \right\|^2 \right]$$

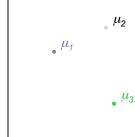
If each x_j belongs to one class C(j) (hard assignment), marginal likelihood: P(X1, Y=i) =0 # (+ C(j)

$$\int_{j=1}^{m} \sum_{i=1}^{k} P(\mathbf{x}_{j}, y = i) \propto \int_{j=1}^{m} \exp \left[-\frac{1}{2\sigma^{2}} \|\mathbf{x}_{j} - \mu_{C(j)}\|^{2} \right]$$

 $\log \prod_{j=1}^{m} \sum_{i=1}^{k} P(\mathbf{x}_{j}, y = i) \propto \prod_{j=1}^{m} \exp\left[-\frac{1}{2\sigma^{2}} \|\mathbf{x}_{j} - \mu_{C(j)}\|^{2}\right]$ $= \text{Same as K-means!!!} = \sum_{j=1}^{m} \left[-\frac{1}{2\sigma^{2}} \|(\mathbf{x}_{j} - \mu_{C(j)})\|^{2}\right] = -\frac{1}{2\sigma^{2}} \sum_{j=1}^{m} \left[|(\mathbf{x}_{j} - \mu_{C(j)})|^{2}\right]$

The GMM assumption

- There are k components
- Component *i* has an associated mean vector μ_i

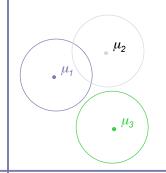


19

The GMM assumption

- There are k components
- Component i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 I$

Each data point is generated according to the following recipe:

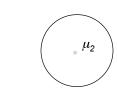


The GMM assumption

- There are k components
- Component i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix σ²I

Each data point is generated according to the following recipe:

1. Pick a component at random: Choose component i with probability *P*(*y*=*i*)



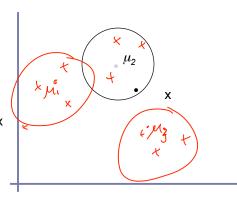
21

The GMM assumption

- There are k components
- Component i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 \mathbf{I}$

Each data point is generated according to the following recipe:

- 1. Pick a component at random: Choose component i with probability *P*(*y*=*i*)
- 2. Datapoint ~ $N(\mu_i, \sigma^2 I)$



The General GMM assumption

- There are k components
- Component i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix Σ_i

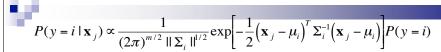
Each data point is generated according to the following recipe:

- 1. Pick a component at random: Choose component i with probability *P*(*y*=*i*)
- 2. Datapoint ~ $N(\mu_i, \Sigma_i)$

23

Unsupervised Learning: not as hard as it looks Sometimes easy IN CASE YOU'RE **WONDERING WHAT** THESE DIAGRAMS ARE, THEY SHOW 2-d UNLABELED DATA (X **VECTORS**) Sometimes impossible DISTRIBUTED IN 2-d SPACE. THE TOP ONE HAS THREE **VERY CLEAR GAUSSIAN CENTERS** and sometimes in between

Marginal likelihood for general case



Marginal likelihood:
$$\prod_{j=1}^{m} P(\mathbf{x}_{j}) = \prod_{j=1}^{m} \sum_{i=1}^{k} P(\mathbf{x}_{j}, y = i)$$

$$= \prod_{j=1}^{m} \sum_{i=1}^{k} \frac{1}{(2\pi)^{m/2} ||\Sigma_{i}||^{1/2}} \exp\left[-\frac{1}{2} \left(\mathbf{x}_{j} - \mu_{i}\right)^{T} \Sigma_{i}^{-1} \left(\mathbf{x}_{j} - \mu_{i}\right)\right] P(y = i)$$
Prior

Special case 2: spherical Gaussians and soft assignments

If P(X|Y=i) is spherical, with same σ for all classes:

$$P(\mathbf{x}_{j} \mid y = i) \propto \exp\left[-\frac{1}{2\sigma^{2}} \left\|\mathbf{x}_{j} - \mu_{i}\right\|^{2}\right]$$
likelihood function

 Uncertain about class of each x_j (soft assignment), marginal likelihood:

$$\prod_{j=1}^{m} \sum_{i=1}^{k} P(\mathbf{x}_{j}, y = i) \propto \prod_{j=1}^{m} \sum_{i=1}^{k} \exp \left[-\frac{1}{2\sigma^{2}} \| \mathbf{x}_{j} - \mu_{i} \|^{2} \right] P(y = i)$$
each point belongs to now
that one cluster: prob. $P(Y_{j-1})$

Unsupervised Learning: Mediumly Good News

We now have a procedure s.t. if you give me a guess at μ_1 , μ_2 .. μ_k , I can tell you the prob of the unlabeled data given those μ 's.

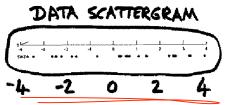
Suppose x's are 1-dimensional.

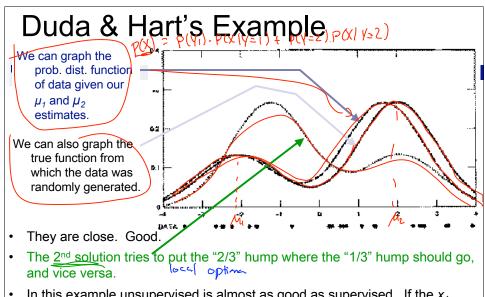
(From Duda and Hart)

There are two classes; w₁ and w₂

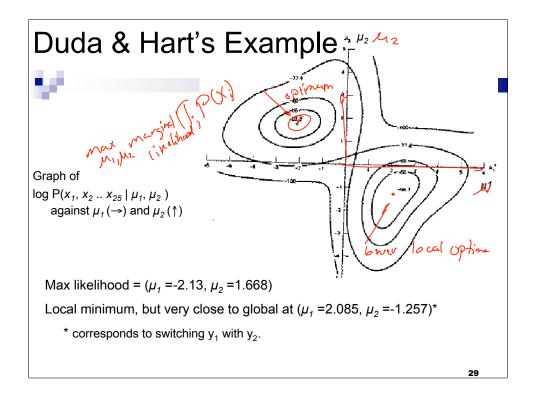
There are 25 unlabeled datapoints

$$x_1 = 0.608$$
 $x_2 = -1.590$
 $x_3 = 0.235$
 $x_4 = 3.949$
 $x_{25} = -0.712$





In this example unsupervised is almost as good as supervised. If the x_1 ... x_{25} are given the class which was used to learn them, then the results are $(\mu_1$ =-2.176, μ_2 =1.684). Unsupervised got $(\mu_1$ =-2.13, μ_2 =1.668).



Finding the max likelihood $\mu_1, \mu_2...\mu_k$

w

We can compute $P(\underline{\text{data}} \mid \mu_1, \mu_2...\mu_k)$ How do we find the μ_i 's which give max. likelihood?

■ The normal max likelihood trick:

Set $\frac{\partial}{\partial u}$ log Prob (....) = 0

not convox (previous slide)

and solve for μ_i 's.

Here you get non-linear non-analytically-solvable equations

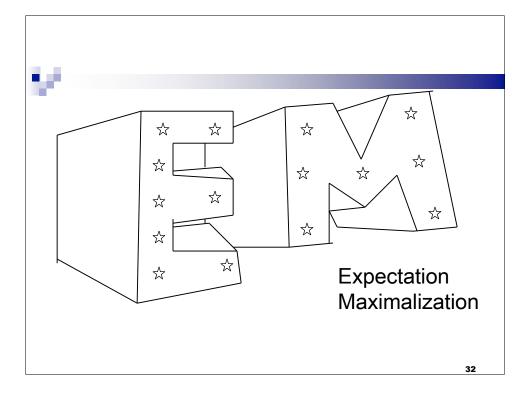
Use gradient descent

Often slow but doable

■ Use a much faster, cuter, and recently very popular method...

Announcements

- HW5 out later today…
 - □ Due December 5th by 3pm to Monica Hopes, Wean 4619
- Project:
 - ☐ Poster session: NSH Atrium, Friday 11/30, 2-5pm
 - Print your poster early!!!
 - □ SCS facilities has a poster printer, ask helpdesk
 - □ Students from outside SCS should check with their departments
 - □ It's OK to print separate pages
 - We'll provide pins, posterboard and an easel
 - □ Poster size: 32x40 inches
 - Invite your friends, there will be a prize for best poster, by popular vote
- Last lecture:
 - □ Thursday, 11/29, 5-6:20pm, Wean 7500



E.M. Algorithm

- We'll get back to unsupervised learning soon
- But now we'll look at an even simpler case with hidden information
- The EM algorithm
 - Can do trivial things, such as the contents of the next few slides
 - An excellent way of doing our unsupervised learning problem, as we'll see
 - Many, many other uses, including learning BNs with hidden data

33

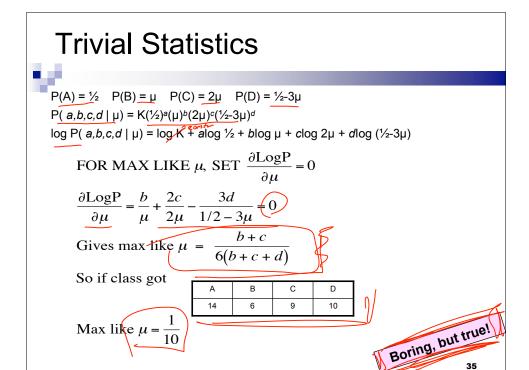
Silly Example

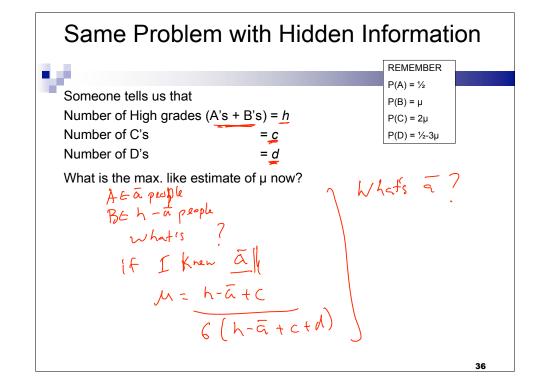
Let events be "grades in a class"

```
\begin{array}{lll} w_1 = {\rm Gets \; an \; A} & & P(A) = \frac{1}{2} \\ w_2 = {\rm Gets \; a} & B & P(B) = \mu \\ w_3 = {\rm Gets \; a} & C & P(C) = 2\mu \\ w_4 = {\rm Gets \; a} & D & P(D) = \frac{1}{2} - 3\mu \\ & & ({\rm Note \; } 0 \leq \mu \leq 1/6) \end{array}
```

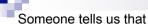
Assume we want to estimate μ from data. In a given class there were

What's the maximum likelihood estimate of μ given a,b,c,d?





Same Problem with Hidden Information



Number of High grades (A's + B's) = h

Number of C's

Number of D's = d

What is the max. like estimate of μ now?

We can answer this question circularly:

EXPECTATION

If we know the value of $\underline{\mu}$ we could compute the expected value of a and b

Since the ratio a:b should be the same as the ratio $1\!\!/_2$: μ

REMEMBER

 $P(A) = \frac{1}{2}$ $P(B) = \mu$

 $P(C) = 2\mu$

 $P(D) = \frac{1}{2} - 3\mu$

MAXIMIZATION

If we know the expected values of a and b we could compute the maximum likelihood value of µ

$$\mu = \frac{\overline{b} + c}{6(\overline{b} + c + d)}$$

E.M. for our Trivial Problem

We iterate between EXPECTATION and MAXIMALIZATION to improve our estimates

REMEMBER

 $P(A) = \frac{1}{2}$

 $P(B) = \mu$

 $P(C) = 2\mu$

 $P(D) = \frac{1}{2} - 3\mu$

Define $\underline{\mu^{(t)}}$ the estimate of μ on the t'th iteration

b(t) the estimate of b on t'th iteration

 $\mu^{(0)}$ = initial guess

We begin with a guess for μ

of μ and a and b.

= max like est. of μ given \underline{b}

Continue iterating until converged.

Good news: Converging to local optimum is assured.

Bad news: I said "local" optimum.

E.M. Convergence

- Convergence proof based on fact that Prob(data | μ) must increase or remain same between each iteration [NOT OBVIOUS]
- But it can never exceed 1 [OBVIOUS]

So it must therefore converge [OBVIOUS]

