
1

1
©Carlos Guestrin 2005-2007

Decision Trees, cont.

Boosting

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

October 1st, 2007

2
©Carlos Guestrin 2005-2007

A Decision Stump

2

3
©Carlos Guestrin 2005-2007

The final tree

4
©Carlos Guestrin 2005-2007

Basic Decision Tree Building
Summarized
BuildTree(DataSet,Output)
 If all output values are the same in DataSet, return a leaf node that says

“predict this unique output”
 If all input values are the same, return a leaf node that says “predict the

majority output”
 Else find attribute X with highest Info Gain
 Suppose X has nX distinct values (i.e. X has arity nX).

 Create and return a non-leaf node with nX children.
 The i’th child should be built by calling

BuildTree(DSi,Output)
Where DSi built consists of all those records in DataSet for which X = ith

distinct value of X.

3

5
©Carlos Guestrin 2005-2007

MPG Test
set error

6
©Carlos Guestrin 2005-2007

MPG Test
set error

The test set error is much worse than the
training set error…

…why?

4

7
©Carlos Guestrin 2005-2007

Decision trees & Learning Bias
mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia

bad 6 medium medium medium medium 70to74 america

bad 4 medium medium medium low 75to78 europe

bad 8 high high high low 70to74 america

bad 6 medium medium medium medium 70to74 america

bad 4 low medium low medium 70to74 asia

bad 4 low medium low low 70to74 asia

bad 8 high high high low 75to78 america

: : : : : : : :

: : : : : : : :

: : : : : : : :

bad 8 high high high low 70to74 america

good 8 high medium high high 79to83 america

bad 8 high high high low 75to78 america

good 4 low low low low 79to83 america

bad 6 medium medium medium high 75to78 america

good 4 medium low low low 79to83 america

good 4 low low medium high 79to83 america

bad 8 high high high low 70to74 america

good 4 low medium low medium 75to78 europe

bad 5 medium medium medium medium 75to78 europe

8
©Carlos Guestrin 2005-2007

Decision trees will overfit

 Standard decision trees are have no learning biased
 Training set error is always zero!

 (If there is no label noise)

 Lots of variance
 Will definitely overfit!!!
 Must bias towards simpler trees

 Many strategies for picking simpler trees:
 Fixed depth
 Fixed number of leaves
 Or something smarter…

5

9
©Carlos Guestrin 2005-2007

Consider
this split

10
©Carlos Guestrin 2005-2007

A chi-square test

 Suppose that mpg was completely uncorrelated with maker.
 What is the chance we’d have seen data of at least this apparent

level of association anyway?

6

11
©Carlos Guestrin 2005-2007

A chi-square test

 Suppose that mpg was completely uncorrelated with maker.
 What is the chance we’d have seen data of at least this apparent level of

association anyway?
By using a particular kind of chi-square test, the answer is 7.2%

(Such simple hypothesis tests are very easy to compute, unfortunately,
not enough time to cover in the lecture,
but in your homework, you’ll have fun! :))

12
©Carlos Guestrin 2005-2007

Using Chi-squared to avoid overfitting

 Build the full decision tree as before
 But when you can grow it no more, start to

prune:
 Beginning at the bottom of the tree, delete splits in

which pchance > MaxPchance
 Continue working you way up until there are no more

prunable nodes

MaxPchance is a magic parameter you must specify to the decision tree,
indicating your willingness to risk fitting noise

7

13
©Carlos Guestrin 2005-2007

Pruning example

 With MaxPchance = 0.1, you will see the
following MPG decision tree:

Note the improved
test set accuracy

compared with the
unpruned tree

14
©Carlos Guestrin 2005-2007

MaxPchance
 Technical note MaxPchance is a regularization parameter that helps us

bias towards simpler models

High Bias High Variance

MaxPchance
IncreasingDecreasing

Ex
pe

ct
ed

 T
es

t s
et

Er
ro

r

We’ll learn to choose the value of these magic parameters soon!

8

15
©Carlos Guestrin 2005-2007

Real-Valued inputs

 What should we do if some of the inputs are real-valued?
mpg cylinders displacementhorsepower weight acceleration modelyear maker

good 4 97 75 2265 18.2 77 asia

bad 6 199 90 2648 15 70 america

bad 4 121 110 2600 12.8 77 europe

bad 8 350 175 4100 13 73 america

bad 6 198 95 3102 16.5 74 america

bad 4 108 94 2379 16.5 73 asia

bad 4 113 95 2228 14 71 asia

bad 8 302 139 3570 12.8 78 america

: : : : : : : :

: : : : : : : :

: : : : : : : :

good 4 120 79 2625 18.6 82 america

bad 8 455 225 4425 10 70 america

good 4 107 86 2464 15.5 76 europe

bad 5 131 103 2830 15.9 78 europe

Infinite number of possible split values!!!

Finite dataset, only finite number of relevant splits!

Idea One: Branch on each possible real value

16
©Carlos Guestrin 2005-2007

“One branch for each numeric
value” idea:

Hopeless: with such high branching factor will shatter
the dataset and overfit

9

17
©Carlos Guestrin 2005-2007

Threshold splits

 Binary tree, split on attribute X
 One branch: X < t
 Other branch: X ¸ t

18
©Carlos Guestrin 2005-2007

Choosing threshold split

 Binary tree, split on attribute X
 One branch: X < t
 Other branch: X ¸ t

 Search through possible values of t
 Seems hard!!!

 But only finite number of t’s are important
 Sort data according to X into {x1,…,xm}
 Consider split points of the form xi + (xi+1 – xi)/2

10

19
©Carlos Guestrin 2005-2007

A better idea: thresholded splits

 Suppose X is real valued
 Define IG(Y|X:t) as H(Y) - H(Y|X:t)
 Define H(Y|X:t) =

H(Y|X < t) P(X < t) + H(Y|X >= t) P(X >= t)

 IG(Y|X:t) is the information gain for predicting Y if all you
know is whether X is greater than or less than t

 Then define IG*(Y|X) = maxt IG(Y|X:t)
 For each real-valued attribute, use IG*(Y|X) for

assessing its suitability as a split

 Note, may split on an attribute multiple times,
with different thresholds

20
©Carlos Guestrin 2005-2007

Example with MPG

11

21
©Carlos Guestrin 2005-2007

Example tree using reals

22
©Carlos Guestrin 2005-2007

What you need to know about
decision trees

 Decision trees are one of the most popular data mining tools
 Easy to understand
 Easy to implement
 Easy to use
 Computationally cheap (to solve heuristically)

 Information gain to select attributes (ID3, C4.5,…)
 Presented for classification, can be used for regression and

density estimation too
 Decision trees will overfit!!!

 Zero bias classifier ! Lots of variance
 Must use tricks to find “simple trees”, e.g.,

 Fixed depth/Early stopping
 Pruning
 Hypothesis testing

12

23
©Carlos Guestrin 2005-2007

Acknowledgements

 Some of the material in the decision trees
presentation is courtesy of Andrew Moore, from
his excellent collection of ML tutorials:
 http://www.cs.cmu.edu/~awm/tutorials

24
©Carlos Guestrin 2005-2007

Announcements

 Homework 1 due Wednesday beginning of class
 started early, started early, started early, started early,

started early, started early, started early, started early

 Exam dates set:
 Midterm: Thursday, Oct. 25th, 5-6:30pm, MM A14
 Final: Tuesday, Dec. 11, 05:30PM-08:30PM

13

25
©Carlos Guestrin 2005-2007

Fighting the bias-variance tradeoff

 Simple (a.k.a. weak) learners are good
 e.g., naïve Bayes, logistic regression, decision stumps

(or shallow decision trees)
 Low variance, don’t usually overfit

 Simple (a.k.a. weak) learners are bad
 High bias, can’t solve hard learning problems

 Can we make weak learners always good???
 No!!!
 But often yes…

26
©Carlos Guestrin 2005-2007

Voting (Ensemble Methods)
 Instead of learning a single (weak) classifier, learn many weak classifiers that are

good at different parts of the input space
 Output class: (Weighted) vote of each classifier

 Classifiers that are most “sure” will vote with more conviction
 Classifiers will be most “sure” about a particular part of the space
 On average, do better than single classifier!

 But how do you ???
 force classifiers to learn about different parts of the input space?
 weigh the votes of different classifiers?

14

27
©Carlos Guestrin 2005-2007

Boosting
 Idea: given a weak learner, run it multiple times on (reweighted)

training data, then let learned classifiers vote

 On each iteration t:
 weight each training example by how incorrectly it was classified
 Learn a hypothesis – ht

 A strength for this hypothesis – αt

 Final classifier:

 Practically useful
 Theoretically interesting

[Schapire, 1989]

28
©Carlos Guestrin 2005-2007

Learning from weighted data
 Sometimes not all data points are equal

 Some data points are more equal than others
 Consider a weighted dataset

 D(i) – weight of i th training example (xi,yi)
 Interpretations:

 i th training example counts as D(i) examples
 If I were to “resample” data, I would get more samples of “heavier” data points

 Now, in all calculations, whenever used, i th training example counts as
D(i) “examples”
 e.g., MLE for Naïve Bayes, redefine Count(Y=y) to be weighted count

15

29
©Carlos Guestrin 2005-2007

30
©Carlos Guestrin 2005-2007

16

31
©Carlos Guestrin 2005-2007

Training error of final classifier is bounded by:

Where

What αt to choose for hypothesis ht?
[Schapire, 1989]

32
©Carlos Guestrin 2005-2007

Training error of final classifier is bounded by:

Where

What αt to choose for hypothesis ht?
[Schapire, 1989]

17

33
©Carlos Guestrin 2005-2007

Training error of final classifier is bounded by:

Where

If we minimize ∏t Zt, we minimize our training error

We can tighten this bound greedily, by choosing αt and ht on each
iteration to minimize Zt.

What αt to choose for hypothesis ht?
[Schapire, 1989]

34
©Carlos Guestrin 2005-2007

What αt to choose for hypothesis ht?

We can minimize this bound by choosing αt on each iteration to minimize Zt.

For boolean target function, this is accomplished by [Freund & Schapire ’97]:

You’ll prove this in your homework! 

[Schapire, 1989]

18

35
©Carlos Guestrin 2005-2007

Strong, weak classifiers

 If each classifier is (at least slightly) better than random
 εt < 0.5

 AdaBoost will achieve zero training error (exponentially fast):

 Is it hard to achieve better than random training error?

36
©Carlos Guestrin 2005-2007

Boosting results – Digit recognition

 Boosting often
 Robust to overfitting
 Test set error decreases even after training error is zero

[Schapire, 1989]

19

37
©Carlos Guestrin 2005-2007

Boosting generalization error bound

 T – number of boosting rounds
 d – VC dimension of weak learner, measures complexity of classifier
 m – number of training examples

[Freund & Schapire, 1996]

38
©Carlos Guestrin 2005-2007

Boosting generalization error bound

 T – number of boosting rounds
 d – VC dimension of weak learner, measures complexity of classifier
 m – number of training examples

[Freund & Schapire, 1996]

 Contradicts: Boosting often
 Robust to overfitting
 Test set error decreases even after training error is zero

 Need better analysis tools
 we’ll come back to this later in the semester

20

39
©Carlos Guestrin 2005-2007

Boosting: Experimental Results

Comparison of C4.5, Boosting C4.5, Boosting decision
stumps (depth 1 trees), 27 benchmark datasets

[Freund & Schapire, 1996]

errorerror

er
ro

r

40
©Carlos Guestrin 2005-2007

21

41
©Carlos Guestrin 2005-2007

Boosting and Logistic Regression

Logistic regression assumes:

And tries to maximize data likelihood:

Equivalent to minimizing log loss

42
©Carlos Guestrin 2005-2007

Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss

Boosting minimizes similar loss function!!

Both smooth approximations of 0/1 loss!

22

43
©Carlos Guestrin 2005-2007

Logistic regression and Boosting

Logistic regression:
 Minimize loss fn

 Define

where xj predefined

Boosting:
 Minimize loss fn

 Define

 where ht(xi) defined
dynamically to fit data
(not a linear classifier)

 Weights αj learned
incrementally

44
©Carlos Guestrin 2005-2007

What you need to know about Boosting

 Combine weak classifiers to obtain very strong classifier
 Weak classifier – slightly better than random on training data
 Resulting very strong classifier – can eventually provide zero training error

 AdaBoost algorithm
 Boosting v. Logistic Regression

 Similar loss functions
 Single optimization (LR) v. Incrementally improving classification (B)

 Most popular application of Boosting:
 Boosted decision stumps!
 Very simple to implement, very effective classifier

