
©Carlos Guestrin 2005-2007
1

Decision Trees, cont.

Boosting

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

October 1st, 2007

©Carlos Guestrin 2005-2007
2

A Decision Stump

©Carlos Guestrin 2005-2007
3

The final tree

©Carlos Guestrin 2005-2007
4

Basic Decision Tree Building
Summarized
BuildTree(DataSet,Output)
 If all output values are the same in DataSet, return a leaf node that says

“predict this unique output”
 If all input values are the same, return a leaf node that says “predict the

majority output”
 Else find attribute X with highest Info Gain
 Suppose X has nX distinct values (i.e. X has arity nX).

 Create and return a non-leaf node with nX children.
 The i’th child should be built by calling

BuildTree(DSi,Output)
Where DSi built consists of all those records in DataSet for which X = ith

distinct value of X.

©Carlos Guestrin 2005-2007
5

MPG Test
set error

©Carlos Guestrin 2005-2007
6

MPG Test
set error

The test set error is much worse than the
training set error…

…why?

©Carlos Guestrin 2005-2007
7

Decision trees & Learning Bias
mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia

bad 6 medium medium medium medium 70to74 america

bad 4 medium medium medium low 75to78 europe

bad 8 high high high low 70to74 america

bad 6 medium medium medium medium 70to74 america

bad 4 low medium low medium 70to74 asia

bad 4 low medium low low 70to74 asia

bad 8 high high high low 75to78 america

: : : : : : : :

: : : : : : : :

: : : : : : : :

bad 8 high high high low 70to74 america

good 8 high medium high high 79to83 america

bad 8 high high high low 75to78 america

good 4 low low low low 79to83 america

bad 6 medium medium medium high 75to78 america

good 4 medium low low low 79to83 america

good 4 low low medium high 79to83 america

bad 8 high high high low 70to74 america

good 4 low medium low medium 75to78 europe

bad 5 medium medium medium medium 75to78 europe

©Carlos Guestrin 2005-2007
8

Decision trees will overfit

 Standard decision trees are have no learning biased
 Training set error is always zero!

 (If there is no label noise)

 Lots of variance
 Will definitely overfit!!!
 Must bias towards simpler trees

 Many strategies for picking simpler trees:
 Fixed depth
 Fixed number of leaves
 Or something smarter…

©Carlos Guestrin 2005-2007
9

Consider
this split

©Carlos Guestrin 2005-2007
10

A chi-square test

 Suppose that mpg was completely uncorrelated with maker.
 What is the chance we’d have seen data of at least this apparent

level of association anyway?

©Carlos Guestrin 2005-2007
11

A chi-square test

 Suppose that mpg was completely uncorrelated with maker.
 What is the chance we’d have seen data of at least this apparent level of

association anyway?
By using a particular kind of chi-square test, the answer is 7.2%

(Such simple hypothesis tests are very easy to compute, unfortunately,
not enough time to cover in the lecture,
but in your homework, you’ll have fun! :))

©Carlos Guestrin 2005-2007
12

Using Chi-squared to avoid overfitting

 Build the full decision tree as before
 But when you can grow it no more, start to

prune:
 Beginning at the bottom of the tree, delete splits in

which pchance > MaxPchance
 Continue working you way up until there are no more

prunable nodes

MaxPchance is a magic parameter you must specify to the decision tree,
indicating your willingness to risk fitting noise

©Carlos Guestrin 2005-2007
13

Pruning example

 With MaxPchance = 0.1, you will see the
following MPG decision tree:

Note the improved
test set accuracy

compared with the
unpruned tree

©Carlos Guestrin 2005-2007
14

MaxPchance
 Technical note MaxPchance is a regularization parameter that helps us

bias towards simpler models

High Bias High Variance

MaxPchance
IncreasingDecreasing

Ex
pe

ct
ed

 T
es

t s
et

Er
ro

r

We’ll learn to choose the value of these magic parameters soon!

©Carlos Guestrin 2005-2007
15

Real-Valued inputs

 What should we do if some of the inputs are real-valued?
mpg cylinders displacementhorsepower weight acceleration modelyear maker

good 4 97 75 2265 18.2 77 asia

bad 6 199 90 2648 15 70 america

bad 4 121 110 2600 12.8 77 europe

bad 8 350 175 4100 13 73 america

bad 6 198 95 3102 16.5 74 america

bad 4 108 94 2379 16.5 73 asia

bad 4 113 95 2228 14 71 asia

bad 8 302 139 3570 12.8 78 america

: : : : : : : :

: : : : : : : :

: : : : : : : :

good 4 120 79 2625 18.6 82 america

bad 8 455 225 4425 10 70 america

good 4 107 86 2464 15.5 76 europe

bad 5 131 103 2830 15.9 78 europe

Infinite number of possible split values!!!

Finite dataset, only finite number of relevant splits!

Idea One: Branch on each possible real value

©Carlos Guestrin 2005-2007
16

“One branch for each numeric
value” idea:

Hopeless: with such high branching factor will shatter
the dataset and overfit

©Carlos Guestrin 2005-2007
17

Threshold splits

 Binary tree, split on attribute X
 One branch: X < t
 Other branch: X ¸ t

©Carlos Guestrin 2005-2007
18

Choosing threshold split

 Binary tree, split on attribute X
 One branch: X < t
 Other branch: X ¸ t

 Search through possible values of t
 Seems hard!!!

 But only finite number of t’s are important
 Sort data according to X into {x1,…,xm}
 Consider split points of the form xi + (xi+1 – xi)/2

©Carlos Guestrin 2005-2007
19

A better idea: thresholded splits

 Suppose X is real valued
 Define IG(Y|X:t) as H(Y) - H(Y|X:t)
 Define H(Y|X:t) =

H(Y|X < t) P(X < t) + H(Y|X >= t) P(X >= t)

 IG(Y|X:t) is the information gain for predicting Y if all you
know is whether X is greater than or less than t

 Then define IG*(Y|X) = maxt IG(Y|X:t)
 For each real-valued attribute, use IG*(Y|X) for

assessing its suitability as a split

 Note, may split on an attribute multiple times,
with different thresholds

©Carlos Guestrin 2005-2007
20

Example with MPG

©Carlos Guestrin 2005-2007
21

Example tree using reals

©Carlos Guestrin 2005-2007
22

What you need to know about
decision trees

 Decision trees are one of the most popular data mining tools
 Easy to understand
 Easy to implement
 Easy to use
 Computationally cheap (to solve heuristically)

 Information gain to select attributes (ID3, C4.5,…)
 Presented for classification, can be used for regression and

density estimation too
 Decision trees will overfit!!!

 Zero bias classifier ! Lots of variance
 Must use tricks to find “simple trees”, e.g.,

 Fixed depth/Early stopping
 Pruning
 Hypothesis testing

©Carlos Guestrin 2005-2007
23

Acknowledgements

 Some of the material in the decision trees
presentation is courtesy of Andrew Moore, from
his excellent collection of ML tutorials:
 http://www.cs.cmu.edu/~awm/tutorials

©Carlos Guestrin 2005-2007
24

Announcements

 Homework 1 due Wednesday beginning of class
 started early, started early, started early, started early,

started early, started early, started early, started early

 Exam dates set:
 Midterm: Thursday, Oct. 25th, 5-6:30pm, MM A14
 Final: Tuesday, Dec. 11, 05:30PM-08:30PM

©Carlos Guestrin 2005-2007
25

Fighting the bias-variance tradeoff

 Simple (a.k.a. weak) learners are good
 e.g., naïve Bayes, logistic regression, decision stumps

(or shallow decision trees)
 Low variance, don’t usually overfit

 Simple (a.k.a. weak) learners are bad
 High bias, can’t solve hard learning problems

 Can we make weak learners always good???
 No!!!
 But often yes…

©Carlos Guestrin 2005-2007
26

Voting (Ensemble Methods)
 Instead of learning a single (weak) classifier, learn many weak classifiers that are

good at different parts of the input space
 Output class: (Weighted) vote of each classifier

 Classifiers that are most “sure” will vote with more conviction
 Classifiers will be most “sure” about a particular part of the space
 On average, do better than single classifier!

 But how do you ???
 force classifiers to learn about different parts of the input space?
 weigh the votes of different classifiers?

©Carlos Guestrin 2005-2007
27

Boosting
 Idea: given a weak learner, run it multiple times on (reweighted)

training data, then let learned classifiers vote

 On each iteration t:
 weight each training example by how incorrectly it was classified
 Learn a hypothesis – ht

 A strength for this hypothesis – αt

 Final classifier:

 Practically useful
 Theoretically interesting

[Schapire, 1989]

©Carlos Guestrin 2005-2007
28

Learning from weighted data
 Sometimes not all data points are equal

 Some data points are more equal than others
 Consider a weighted dataset

 D(i) – weight of i th training example (xi,yi)
 Interpretations:

 i th training example counts as D(i) examples
 If I were to “resample” data, I would get more samples of “heavier” data points

 Now, in all calculations, whenever used, i th training example counts as
D(i) “examples”
 e.g., MLE for Naïve Bayes, redefine Count(Y=y) to be weighted count

©Carlos Guestrin 2005-2007
29

©Carlos Guestrin 2005-2007
30

©Carlos Guestrin 2005-2007
31

Training error of final classifier is bounded by:

Where

What αt to choose for hypothesis ht?
[Schapire, 1989]

©Carlos Guestrin 2005-2007
32

Training error of final classifier is bounded by:

Where

What αt to choose for hypothesis ht?
[Schapire, 1989]

©Carlos Guestrin 2005-2007
33

Training error of final classifier is bounded by:

Where

If we minimize ∏t Zt, we minimize our training error

We can tighten this bound greedily, by choosing αt and ht on each
iteration to minimize Zt.

What αt to choose for hypothesis ht?
[Schapire, 1989]

©Carlos Guestrin 2005-2007
34

What αt to choose for hypothesis ht?

We can minimize this bound by choosing αt on each iteration to minimize Zt.

For boolean target function, this is accomplished by [Freund & Schapire ’97]:

You’ll prove this in your homework! 

[Schapire, 1989]

©Carlos Guestrin 2005-2007
35

Strong, weak classifiers

 If each classifier is (at least slightly) better than random
 εt < 0.5

 AdaBoost will achieve zero training error (exponentially fast):

 Is it hard to achieve better than random training error?

©Carlos Guestrin 2005-2007
36

Boosting results – Digit recognition

 Boosting often
 Robust to overfitting
 Test set error decreases even after training error is zero

[Schapire, 1989]

