Boosting

Simple Model Selection
Cross Validation
Regularization

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University
October 3rd, 2007

Boosting [Schapire, 1989]

- Idea: given a weak learner, run it multiple times on (reweighted) training data, then let learned classifiers vote

- On each iteration t:
 - weight each training example by how incorrectly it was classified
 - Learn a hypothesis $- h_t$
 - A strength for this hypothesis $- \alpha_t$

- Final classifier:

$$H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)$$

- Practically useful
- Theoretically interesting
AdaBoost

Given: \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in X, y_i \in Y = \{-1, +1\}\)

Initialize \(D_1(i) = 1/m\).

For \(t = 1, \ldots, T\):

1. Train base learner using distribution \(D_t\).
2. Get base classifier \(h_t : X \rightarrow \mathbb{R}\).
3. Choose \(\alpha_t \in \mathbb{R}\).
4. Update:
 \[
 D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
 \]
 where \(Z_t\) is a normalization factor.
 \[
 Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))
 \]

Output the final classifier:

\[
H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right).
\]

Figure 1: The boosting algorithm AdaBoost.
Training error of final classifier is bounded by:

\[
\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i} \exp(-y_if(x_i)) = \prod_{t} Z_t
\]

Where \(f(x) = \sum_{t} \alpha_t h_t(x); H(x) = \text{sign}(f(x)) \)

If we minimize \(\prod_{t} Z_t \), we minimize our training error.

We can tighten this bound greedily, by choosing \(\alpha_t \) and \(h_t \) on each iteration to minimize \(Z_t \).

\[
Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))
\]

What \(\alpha_t \) to choose for hypothesis \(h_t \)?

[Schapire, 1989]

We can minimize this bound by choosing \(\alpha_t \) on each iteration to minimize \(Z_t \).

\[
Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))
\]

For boolean target function, this is accomplished by [Freund & Schapire '97]:

\[
\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)
\]

You'll prove this in your homework! 😊
Strong, weak classifiers

- If each classifier is (at least slightly) better than random
 - $\epsilon_t < 0.5$

- AdaBoost will achieve zero training error (exponentially fast):

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \prod_{t} Z_t \leq \exp \left(-2 \sum_{t=1}^{T} (1/2 - \epsilon_t)^2 \right) \leq e^{-2T \epsilon_t^2}$$

- Is it hard to achieve better than random training error?
 - $|\epsilon - \epsilon_t| \geq \gamma$

Boosting results – Digit recognition

- Boosting often
 - Robust to overfitting
 - Test set error decreases even after training error is zero

[Schapire, 1989]
Boosting generalization error bound

\[\text{error}_{\text{true}}(H) \leq \text{error}_{\text{train}}(H) + \hat{O}\left(\sqrt{\frac{Td}{m}}\right) \]

- **T** – number of boosting rounds
- **d** – VC dimension of weak learner, measures complexity of classifier
- **m** – number of training examples

[Freund & Schapire, 1996]

Contradicts: Boosting often
- Robust to overfitting
- Test set error decreases even after training error is zero

Need better analysis tools
- we’ll come back to this later in the semester
Boosting: Experimental Results

Comparison of C4.5, Boosting C4.5, Boosting decision stumps (depth 1 trees), 27 benchmark datasets

AdaBoost and AdaBoost.MH on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer, ML 1999]
Boosting and Logistic Regression

Logistic regression assumes:
\[P(Y = 1|X) = \frac{1}{1 + \exp(f(x))} \]

And tries to maximize data likelihood:
\[P(D|H) = \prod_{i=1}^{m} \frac{1}{1 + \exp(-y_if(x_i))} \]

Equivalent to minimizing log loss
\[\sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i))) \]

Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss
\[\sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i))) \]

Boosting minimizes similar loss function!!
\[\frac{1}{m} \sum_{i} \exp(-y_if(x_i)) = \prod_{t} Z_t \]

Both smooth approximations of 0/1 loss!
Logistic regression and Boosting

Logistic regression:

- Minimize loss fn
 \[\sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i))) \]

- Define
 \[f(x) = \sum_j w_j x_j \]
 where \(x_j \) predefined

Boosting:

- Minimize loss fn
 \[\sum_{i=1}^{m} \exp(-y_i f(x_i)) \]

- Define
 \[f(x) = \sum_t \alpha_t h_t(x) \]
 where \(h_t(x) \) defined dynamically to fit data
 (not a linear classifier)

- Weights \(\alpha_t \) learned incrementally

What you need to know about Boosting

- Combine weak classifiers to obtain very strong classifier
 - Weak classifier – slightly better than random on training data
 - Resulting very strong classifier – can eventually provide zero training error
- AdaBoost algorithm
- Boosting v. Logistic Regression
 - Similar loss functions
 - Single optimization (LR) v. Incrementally improving classification (B)
- Most popular application of Boosting:
 - Boosted decision stumps!
 - Very simple to implement, very effective classifier
OK… now we’ll learn to pick those darned parameters…

- **Selecting features (or basis functions)**
 - Linear regression
 - Naive Bayes
 - Logistic regression

- **Selecting parameter value**
 - Prior strength
 - Naive Bayes, linear and logistic regression
 - Regularization strength
 - Naive Bayes, linear and logistic regression
 - Decision trees
 - MaxpChance, depth, number of leaves
 - Boosting
 - Number of rounds

More generally, these are called **Model Selection Problems**

Today:
- Describe basic idea
- Introduce very important concept for tuning learning approaches: **Cross-Validation**

Test set error as a function of model complexity
Simple greedy model selection algorithm

- Pick a dictionary of features
 - e.g., polynomials for linear regression
- Greedy heuristic:
 - Start from empty (or simple) set of features $F_0 = \emptyset$
 - Run learning algorithm for current set of features F_t
 - Obtain h_t
 - Select next best feature X_i
 - e.g., X_i that results in lowest training error learner when learning with $F_t \cup \{X_i\}$
 - $F_{t+1} \leftarrow F_t \cup \{X_i\}$
 - Recurse

Greedy model selection

- Applicable in many settings:
 - Linear regression: Selecting basis functions
 - Naïve Bayes: Selecting (independent) features $P(X_i|Y)$
 - Logistic regression: Selecting features (basis functions)
 - Decision trees: Selecting leaves to expand
- Only a heuristic!
 - But, sometimes you can prove something cool about it
 - e.g., [Krause & Guestrin ’05]: Near-optimal in some settings that include Naïve Bayes
- There are many more elaborate methods out there
Simple greedy model selection algorithm

- Greedy heuristic:
 - ...
 - Select **next best feature** X_i
 - e.g., X_i that results in lowest training error learner when learning with $F_t \cup \{X_i\}$
 - $F_{t+1} = F_t \cup \{X_i\}$
 - **Recurse**

When do you stop???
- When training error is low enough?
- When test set error is low enough?
Validation set

- Thus far: Given a dataset, **randomly** split it into two parts:
 - Training data – \(\{x_1, \ldots, x_{N_{\text{train}}} \} \)
 - Test data – \(\{x_1, \ldots, x_{N_{\text{test}}} \} \)
- But **Test data must always remain independent**!
 - Never ever ever ever learn on test data, including for model selection
- Given a dataset, **randomly** split it into three parts:
 - Training data – \(\{x_1, \ldots, x_{N_{\text{train}}} \} \)
 - Validation data – \(\{x_1, \ldots, x_{N_{\text{valid}}} \} \)
 - Test data – \(\{x_1, \ldots, x_{N_{\text{test}}} \} \)
- Use validation data for tuning learning algorithm, e.g., model selection
 - Save test data for very final evaluation

Simple greedy model selection algorithm

- Greedy heuristic:
 - ...
 - Select **next best feature** \(X_i \)
 - e.g., \(X_i \) that results in lowest training error learner when learning with \(F_t \cup \{X_i\} \)
 - \(F_{t+1} \leftarrow F_t \cup \{X_i\} \)
 - **Recurse**

When do you stop???
- When training error is low enough?
- When test set error is low enough?
- When validation set error is low enough?
Simple greedy model selection algorithm

- **Greedy heuristic:**
 - ...
 - Select **next best feature** \(X_i \)
 - e.g., \(X_i \) that results in lowest training error learner when learning with \(F_t \cup \{X_i\} \)
 - \(F_{t+1} = F_t \cup \{X_i\} \)
 - **Recurse**

 When do you stop???
 - When training error is low enough?
 - When test set error is low enough?
 - When validation set error is low enough?
 - Man!!! OK, should I just repeat until I get tired???
 - I am tired now...
 - No, “There is a better way!”

(LOO) Leave-one-out cross validation

- Consider a **validation set with 1 example:**
 - \(D \) – training data
 - \(D_{\bar{i}} \) – training data with \(i \)th data point moved to validation set
- **Learn classifier** \(h_{D_{\bar{i}}} \) **with** \(D_{\bar{i}} \) **dataset**
- **Estimate true error** as:
 - 0 if \(h_{D_{\bar{i}}} \) classifies \(i \)th data point correctly
 - 1 if \(h_{D_{\bar{i}}} \) is wrong about \(i \)th data point
 - Seems really bad estimator, but wait!
- **LOO cross validation:** Average over all data points \(i \):
 - For each data point you leave out, learn a new classifier \(h_{D_{\bar{i}}} \)
 - **Estimate error** as:
 \[
 \text{error}_{LOO} = \frac{1}{m} \sum_{i=1}^{m} 1 \left(h_{D_{\bar{i}}} (x^i) \neq y^i \right)
 \]
LOO cross validation is (almost) unbiased estimate of true error!

- When computing LOOCV error, we only use \(m-1 \) data points
 - So it’s not estimate of true error of learning with \(m \) data points!
 - Usually pessimistic, though – learning with less data typically gives worse answer

- LOO is almost unbiased!
 - Let \(\text{error}_{\text{true,}m-1} \) be true error of learner when you only get \(m-1 \) data points
 - In homework, you’ll prove that LOO is unbiased estimate of \(\text{error}_{\text{true,}m-1} \):
 \[
 E_D[\text{error}_{\text{LOO}}] = \text{error}_{\text{true,}m-1}
 \]

- Great news!
 - Use LOO error for model selection!!!

Simple greedy model selection algorithm

- Greedy heuristic:
 - ...
 - Select next best feature \(X_i \)
 - e.g., \(X_i \) that results in lowest training error learner when learning with \(F_t \cup \{X_i\} \)
 - \(F_t \rightarrow F_t \cup \{X_i\} \)
 - Recurse

When do you stop???
- When training error is low enough?
- When test set error is low enough?
- When validation set error is low enough?
- STOP WHEN error_{LOO} IS LOW!!!
Using LOO error for model selection

Computational cost of LOO

- Suppose you have 100,000 data points
- You implemented a great version of your learning algorithm
 - Learns in only 1 second
- Computing LOO will take about 1 day!!!
 - If you have to do for each choice of basis functions, it will take fooooooreeeeve’!!!
- Solution 1: Preferred, but not usually possible
 - Find a cool trick to compute LOO (e.g., see homework)
Solution 2 to complexity of computing LOO:

(More typical) **Use k-fold cross validation**

- Randomly divide training data into k equal parts
 - D_1, \ldots, D_k
- For each i
 - Learn classifier $h_{D\setminus D_i}$ using data point not in D_i
 - Estimate error of $h_{D\setminus D_i}$ on validation set D_i:
 $$
 error_{D_i} = \frac{k}{m} \sum_{(x', y') \in D_i} 1 \left(h_{D\setminus D_i}(x') \neq y' \right)
 $$
- **k-fold cross validation error is average** over data splits:
 $$
 error_{k\text{-fold}} = \frac{1}{k} \sum_{i=1}^{k} error_{D_i}
 $$
- k-fold cross validation properties:
 - Much faster to compute than LOO
 - More (pessimistically) biased – using much less data, only $m(k-1)/k$
 - Usually, $k = 10$

Regularization – Revisited

- Model selection 1: **Greedy**
 - Pick subset of features that have yield low LOO error
- Model selection 2: **Regularization**
 - Include all possible features!
 - Penalize “complicated” hypothesis
Regularization in linear regression

- Overfitting usually leads to very large parameter choices, e.g.:
 \[-2.2 + 3.1 X - 0.30 X^2 \quad -1.1 + 4,700,910.7 X - 8,585,638.4 X^2 + \ldots\]

- Regularized least-squares (a.k.a. ridge regression), for \(\lambda \geq 0\):
 \[w^* = \arg\min_w \sum_j \left(t(j) - \sum_i w_i h_i(x_j) \right)^2 + \lambda \sum_i w_i^2\]

Other regularization examples

- **Logistic regression** regularization
 - Maximize data likelihood minus penalty for large parameters
 \[\arg\max_w \sum_j \ln P(y_j|x_j, w) - \lambda \sum_i w_i^2\]
 - Biases towards small parameter values

- **Naïve Bayes** regularization
 - Prior over likelihood of features
 - Biases away from zero probability outcomes

- **Decision tree** regularization
 - Many possibilities, e.g., Chi-Square test and MaxPvalue parameter
 - Biases towards smaller trees
How do we pick magic parameter?

Cross Validation!!!!

\[\lambda \text{ in Linear/Logistic Regression} \]
(analogously for \# virtual examples in Naïve Bayes,
MaxPvalue in Decision Trees)

Regularization and Bayesian learning

\[p(w \mid Y, X) \propto P(Y \mid X, w)p(w) \]

- We already saw that regularization for logistic regression corresponds to MAP for zero mean, Gaussian prior for \(w \)

- Similar interpretation for other learning approaches:
 - **Linear regression**: Also zero mean, Gaussian prior for \(w \)
 - **Naïve Bayes**: Directly defined as prior over parameters
 - **Decision trees**: Trickier to define… but we’ll get back to this
Occam’s Razor

- William of Ockham (1285-1349) *Principle of Parsimony*:
 - “One should not increase, beyond what is necessary, the number of entities required to explain anything.”
- Regularization penalizes for “complex explanations”

- Alternatively (but pretty much the same), use *Minimum Description Length (MDL) Principle*:
 - minimize \(\text{length(misclassifications)} + \text{length(hypothesis)} \)

- \(\text{length(misclassifications)} \) – e.g., #wrong training examples
- \(\text{length(hypothesis)} \) – e.g., size of decision tree

Minimum Description Length Principle

- MDL prefers small hypothesis that fit data well:
 \[
 h_{MDL} = \arg \min_h L_{C_1}(D \mid h) + L_{C_2}(h)
 \]

- \(L_{C_1}(D|h) \) – description length of data under code \(C_1 \) given \(h \)
 - Only need to describe points that \(h \) doesn’t explain (classify correctly)
- \(L_{C_2}(h) \) – description length of hypothesis \(h \)

- Decision tree example
 - \(L_{C_1}(D|h) \) – #bits required to describe data given \(h \)
 - If all points correctly classified, \(L_{C_1}(D|h) = 0 \)
 - \(L_{C_2}(h) \) – #bits necessary to encode tree
 - Trade off quality of classification with tree size
Bayesian interpretation of MDL Principle

- **MAP estimate**
 \[h_{MAP} = \underset{h}{\text{argmax}} \left[P(D \mid h) P(h) \right] \]
 \[= \underset{h}{\text{argmax}} \left[\log_2 P(D \mid h) + \log_2 P(h) \right] \]
 \[= \underset{h}{\text{argmin}} \left[-\log_2 P(D \mid h) - \log_2 P(h) \right] \]

- **Information theory fact:**
 - Smallest code for event of probability \(p \) requires \(-\log_2 p \) bits

- **MDL interpretation of MAP:**
 - \(-\log_2 P(D \mid h)\) – length of \(D \) under hypothesis \(h \)
 - \(-\log_2 P(h)\) – length of hypothesis \(h \) (there is hidden parameter here)
 - MAP prefers simpler hypothesis:
 - minimize \(\text{length}(\text{misclassifications}) + \text{length}(\text{hypothesis}) \)

- **In general, Bayesian approach usually looks for simpler hypothesis** – Acts as a regularizer

What you need to know about Model Selection, Regularization and Cross Validation

- **Cross validation**
 - (Mostly) Unbiased estimate of true error
 - LOOCV is great, but hard to compute
 - \(k \)-fold much more practical
 - Use for selecting parameter values!

- **Model selection**
 - Search for a model with low cross validation error

- **Regularization**
 - Penalizes for complex models
 - Select parameter with cross validation
 - Really a Bayesian approach

- **Minimum description length**
 - Information theoretic interpretation of regularization
 - Relationship to MAP