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Boosting [Schapire, 1989]
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m |dea: given a weak learner, run it multiple times on (reweighted)
training data, then let learned classifiers vote (e i+
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m Final classifier:

m Practically useful
m Theoretically interesting
neoretically interestin
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Given: (z1,%1),.- s (Tm, Ym) Where z; € X, y; € Y = {—1, +1}
Initialize D1 (i) = 1/m.
Fort=1,...,T:
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What ¢, to choose for hypothesis h,?
[Schapire, 1989]
* J
Training errTr of final classifier is bounded by:
m v
ool 32 801G 730 < 3 exp(if () = [ 7

Where f(z) = Z athi(z), H(x) = sign(f(z))
t

If we minimize I, Z{' we minimize our training error

We can i n this boupd greedily, by choosing ¢ and h,
iteration to minimiz¢ Z;

m
Zy = Dy(i) exp(—oyy;he(x;))
i=1 2
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What ¢, to choose for hypothesis h,?

[Schapire, 1989]
"

We can minimize this bound by choosing ¢, on each iteration to minimize Z,
m
= Y Dy(i) exp(fagyihi(x;))
i=1

For boolean target function, this is accomplished by [Freund & Schapire '97]:
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You'll prove this in your homework! ©
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Strong, weak classifiers
“ JEE
m If each classifier is (at least slightly) better than random
g<05

m AdaBoost will achieve zero training error (exponentially fast):

1 M T 2T Y
— > 6(H(x) #=vi) <[[ 2 < exp (—2 > (1/2- 6t)2)§€
=1 t t=1
-0 (:'L/LYL \ k (V )1 c ho A
i _ — GJ nual
of &N“mﬂéa* Lt bef s

achieve better than random training é*rréwﬁ?é {)/ 2%!
T2y

7
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Boosting results — Digit recognition
3 [Schapire, 1989]
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m Boosting often

obust to overfitting
Test set error decreases even after training error is zero _
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Boosting generalization error bound

[Freund & Schapire, 1996]

)

erroryue(H) < erroryqin(H)
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- . o
m T — number of boosting rounds VGarioact

m d - VC dimension of weak learner, measures complexity of classifier
= m — number of training examples 9
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Boosting generalization error bound
[Freund & Schapire, 1996]

" J
~ [T
ETT 0T true (H) < GTTOTtTain(H) + 0O ( Ed)

m Contradicts: Boosti?;g often ler)
_ - ot ' N Y
Robust to overfitting | {m"ﬂ’\*\g [ Hefin g
Test set error decreases even after training error is zero

= Need better analysis tools "”W"‘(”””’u.,fﬁl

Lwe’ll come back to this later in the semester mrSL Y
m T — number of boosting rounds Y W wean l"“@‘j i+(v<,f,-(,:d
m d - VC dimension of weak learner, measures complexity of classifier

m m — number of training examples 10
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G- bogdont

error G4.5

Comparison of C4.5, Boosting C4.5, Boosting decision
stumps (depth 1 trees), 27 benchmark datasets

Boosting: Experimental Results

[Freund & Schapire, 1996]
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15 20 25 30
error boosting C4.5

11

AdaBoost and AdaBoost.MH on Train (left) and Test (right) data from Irvine repository.

[Schapire and Singer. ML 1999]

onecnDn R

18 -

promotens

votes |

©Carlos Guestrin 2005-2007

g

we3ZRLERET

EE EGHHBBEHE & & H U B

4

w3 N

. & o

%.‘.,

promom

%"*‘ﬂ%

hei vt

|o————vw-/'

b ance HRCOmIn

el
0 ,vaef—ruﬁ




. " g =Sl
Boosting and Logistic Regression

Logistic regression assumes:
O 1) — 1 —,[‘{?o :Wr,‘Z‘A«')(:
——7 1+ exp(f(2)) f 3=+)
And tries to imi ta likelihood: ‘
- ———l/:-FT::-)
1 ;
P(D|H) = ¢
b q\ (DIH) ll;ll 1+ exp(—y;f(z;)) P
Ia Vb ortr detn 9=t
nn Equivalent to minimizing log loss /lm‘
m « £
b4 Z IN(1 4 exp(—y;f(x;))) | (ﬁzr\
mn Y =1 - — )
[ & ¢

13
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Boosting and Logistic Regression
" S

Logistic regression equivalent to minimizing log loss
.
> In(1 + exp(—yif (#:)) &
i=1 —

Boosting minimizes similar loss function!!

X eeCui@) =%

Both stnooth approximations of 0/1 loss!
hro
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Logistic regression and Boosting

" JE
Logistic regression:
= Minimize loss fn ¢/
> In(1 + exp(—yif (i)

i=lc ——

m Define
f(z) = ijxj
J

where x; predefined
A b""’kk:) ﬁ
(KU\LW\‘{ "(‘LF»M“

S ten . Lo~ Flest
s(lw\mg I [/ﬂ
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bsstting 1 7 (karning Lo
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Boosting:
m Minimize loss fn &P loss

> exp(—yif (z:))
i=1 weh
m Define C/ %Srr R
f@) =) athy(z)
7

where h(x;) defined
dynamically to fit data

(not a linear classifier)

m |Weights o, learned
incrementally

15

What you need to know about Boosting

AdaBoost algorithm>

Similar loss functions

Single optimization (LR) v. Incrementally improving clas
Most popular application of Boosting:

Boosted decision stumps!

Very simple to implement, very effective classifier

A\/JL (‘\$ o ud ((>

Combine weak classifiers to obtain very strong classifier
Weak classifier — slightly better than random on training data
Resulting very strong classifier — can eventually provide zero training error

Boosting v. Logistic Regression

ification (B)

P

v,

16
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OK... now we’ll learn to pick those
darned parameters...

m Selecting features (or basis functions)

Linear regression
Naive Bayes
Logistic regression
m Selecting parameter value
Prior strength
= Naive Bayes, linear and logistic regression
Regularization strength
Md logistic regression
Decision trees
ch, depth, number of leaves
Boosting
= Number of rounds
More generally, these are called Model Selection Problems

Today:
Describe Qasic ide;
Introduce very important concept for tuning learning approaches: Cross-Validation
—_
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Test set error as a function of

_ .model comglexity
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Simple greedy model selection algorithm
* J
m Pick a dictionary of features

e.g., polynomials for linear regression

m Greedy heuristic:

Start from empty (or simple) set of
features F, = &

Run learning algorithm for current set
of features F,

= Obtainh,
Select next best feature X,

= €.g., X that results in lowest training error
learner when learning with F, U {X}

Fut + FU{X}
Recurse
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Greedy model selection
" JE
m Applicable in many settings:
Linear regression: Selecting basis functions
Naive Bayes: Selecting (independent) features P(Xi|Y)
Logistic regression: Selecting features (basis functions)
ecision trees: Selecting leaves to expand

= Only a heuristic!

But, someti rove something cool about it
= e.g5[Krause & Guestrin '05)/ Near-optimal in some settings that
include Naive

m There are many more elaborate methods out there
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Simple greedy model selection algorithm
" S

m Greedy heuristic:

Select next best feature X;

= e.g, X that results in lowest training error
learner when learning with F U {X}

QP4 2T pn whon v dee?
@ When do you stop???

m When training error is low enough?

<7 6\4&{#@ .

D B
\bw 'h’/t/(l”r\W)Y_ ’fz;:i,v
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Simple greedy model selection algorithm
" S

m Greedy heuristic:

Select next best feature X;

= e.g., X that results in lowest training error
learner when learning with F U {X}

U {X}
When do you stop???

m ‘When-training-error-islow-enough?—
m When test set error is low enough?
V‘ﬂ—k[ﬂf IZULVI (rav e ’{V/\-i'\ g —[L$7L S‘—l)

\ \

[ bed L
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Validation set

* J
Thus far: Given a dataset, randomly split it into two parts: —F{S“’L

Training data — {Xy,..., Xnyain} ’!"7’5\)' n
Test data — {X,,...,

XNtest}
But Test data must always remain independent!

Never ever ever ever learn on test data, including for model selection
Given a dataset, randomly split it into three parts:

Training data — {Xy,..., Xnyain}

Validation data — {X,..., Xyyaia} '{‘mlr\ V‘L '{WL
Test data — {X;,..., Xytest)

Use validation data for tuning learning algorlthm,ke.,q model selectlo

A
Save test data for very final evaluation ”D . j
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Simple greedy model selection algorithm
" S
m Greedy heuristic:

Select next best feature X;

= e.g., X that results in lowest training error
learner when learning with F U {X}

U {Xi}

@ When do you stop???

. A . s | he
n Wheﬁ—tes{—se{—eﬁ%is—lew—eﬁeughﬂ—
= When validation set error is Iow enéUQ

om"};{# ’f’b V’\L&éj
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Simple greedy model selection algorithm
" I
m Greedy heuristic:

Select next best feature X;

= e.g, X that results in lowest training error
learner when learning with F U {X}

U {Xi}

@ When do you stop???

m ‘When-training-error-islow-enough?—

m When-testseterrorislow-enough?—

. Wi Lt - he

m Man!!! OK, should | just repeat until | get tired???
| am tired now...
No, “There is a better way!”
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(LOO) Leave-one-out cross validation
*

m Consider a validation set with 1 example:

D — training data

D\i — training data with i th data point moved to validation set
m Learn classifier hy; with D\i dataset

m Estimate true error as: hewih!
Q if hy, classifies i th data point correctly

l_{_po
1 if hp, is wrong about ith data pont zf @M’M )t (6 ')}: e'""";,(ib”
Seéms really bad estimator, but wait!
m LOO cross validation: Average over all data points i:
For each data point you leave out, learn a new classifier hy
Estimate error aS:W'FO‘I’\

1 m . .
errorLoo = 2.1 (hD\z'(XZ> 7 yz)
i=1

©Carlos Guestrin 2005-2007




LOO cross validation is (almost)
unbiased estimate of true error!
S

m  When computing LOOCYV error, we only use m-1 data points 5 L‘C“”\
—_— —— .
Soit's no tirmlte of true error of learning with m data points! ™i

te
HAS
Usually péjsg is‘t)lc, though — learning with less data typically gives worse answer

m LOOis almost unbiased!
Let error,,. .., be true error of learner when you only get m-1 data points
\e’? s . . . . oA
In homework, you'll prove that LOO is unbiased estimate of error,, . n.1: I&
e s yht"’

Eplerrorrool = errorirye m—1 Jo K
e \
m Great news!
f
Use LOO error for model selection!!!
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Simple greedy model selection algorithm
" S

m Greedy heuristic:

Select next best feature X, leai

i i 8% L gL
= e.g., X that results in lowest training error “‘9%‘&’(1/
learner when learning with F U {X}

U{Xi} @df Z~cA D//'

4
@ When do you stop??? Na

» When- training-error-is-low-enough? — <

m ‘When-testset-errorislow-enough?— %
- W st o - g
s STOP WHEN error, oo IS LOW!!! i
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Using LOO error for model selection
" S e,

Computational cost of LOO
" JE
m Suppose you have 100,000 data points
m You implemented a great version of ng
algorithm
Learns in only 1 second

m Computing LOO will take about 1 day!!!

If you have to do for each choice of basis functions, it will
take fooooooreeeve'!!!

m Solution 1: Preferred, but not usually possible
Find a cool trick to compute LOO (e.g., see homework)




Solution 2 to complexity of computing LOO:
(More typical) Use k-fold cross validation
u

= )
m Randomly divide training data into k equal parts T 5 l I Z (Lmt[
D, D<

..... [?k D, Dy -
m Foreachi
Learn classifier hy, using data point not in D,
Estimate error of hi,; on validation set D;:
errorp, = £ Z 1 {h'ﬂ,\'ﬂ, (x—") = 1;""
i m . N !
CTe (%7, 4)eD;

m k-fold cross validation erroris average over data splits:

CT?”OTk_fOEd = I Z ET‘TOTDE
m k-fold cross validation properties:

E i=1
Much faster to compute than LOO

More (pessimistically) biased — using much less data, only m(k-1)/k

Usually, k =10 ©
i
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Regularization — Revisited
" JEE
m Model selection 1: Greedy
Pick subset of features that have yield low LOO error
m Model selection 2: Reqularization

Include all possible features!
Penalize “complicated” hypothesis
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Regularization in linear regression
"

m Overfitting usually leads to very large parameter choices, e.g.:
-2.2+3.1X-0.30 X2 -1.1 + 4,700,910.7 X — 8,585,638.4 X2 + ...

m Regularized least-squares (a.k.a. ridge regression), for A>0:
2 k
i i i=1

—_—
S%(,‘_QVW( (vvor V[_ju‘\ﬁ-ﬁg“{,‘oh
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Other regularization examples
"
m Logistic regression regularization
Maximize data likelihood minus penalty for large parameters

o 5
arg m‘gxz In P(y’|x7, w) — AZwi
J 7

Biases towards small parameter values . S?\m
m Naive Bayes regularization ?&1 \ Y>
Prior over likelihood of features ety daw S asad
Biases away from zero probability outcomes L},J. addh o Someall
Cy r/\’\_)(_

m Decision tree regularization
Many possibilities, e.g., Chi-Square test and MaxPvalue parameter
_ viaxrvalue
Biases towards smaller trees
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How do we pick magic parameter?

4 Cross Validatien!!!!

v

LryovLov 14

Ain Linear/Logistic Regression
(analogously for # virtual examples in Naive Bayes,
MaxPvalue in Decision Trees)
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Regularization and Bayesian learning

" JEE
p(w|Y,X) o P(Y| X, w)p(w)
(LT ’ T \
m We already saw that regularization for logistic
regression corresponds to MAP for zero mean,
Gaussian prior for w

m Similar interpretation for other learning approaches:
Linear regression: Also zero mean, Gaussian prior for w
Naive Bayes: Directly defined as prior over parameters
Decision trees: Trickier to define... but we'll get back to this
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Occam’s Razor

“ JEE
] V\Qw’hgm (1285-1349) Principle of Parsimony:

“One should not increase, beyond what is necessary, the number of
Lentities required to explain anything.”

m Regularization penalizes for “complex explanations”

m Alternatively (but pretty much the same), use Minimum
Description Length (MDL) Principle:

minimize length(misclassifications) + length(hypothesis)
7\_ -_—

h\ bes ] ¢
o w bing \” 7
m |length(misclassifications) — e.g.,_#mmg_tg@gexamgles

m |length(hypothesis) — e.g., size of decision tree
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Minimum Description Length Principle
" JEE
m MDL prefers small hypothesis that fit data well:
hMDL = argmin Lcl(D | h) + ch(h)
== Rt

Lc1(D]h) — description length of data under code C, given h

= Only need to describe points that r@wil(classiw correctly)
Lc,(h) — description length of hypothesis h
p—— -—

m Decision tree example
Lc.(D[h) — #bits required to describe data given h
= If all points correctly classified, L,(D|h) =0

Lc,(h) — #bits necessary to encode tree
Trade off quality of classification with tree size
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Bayesian interpretation of MDL wePrincipIe

rlon
" J / 1
.TMAP estimate  hyap = argzﬂaX[P(D]h)P(h)]
L

‘= argmax[loga P(D | h) 4 logz P(h)]
h

= argmin[—logo P(D | h) — logs P(h)
_ h — =
m Information theory fact:
Smallest code for event of probability p requires —log,p bits
m  MDL interpretation of MAP:

-log, P(D]h) — length of D under hypothesw

-log, P(h) — length of hypothesis h (there is hidden parameter here}
MAP pre simpter-hypothesis:

= minimize length(misclassifications) + length(hypothesis)

m In general, Bgyesian appraach Iooks for_simpler
hypothesis — Acts as a regularizer
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What you need to know about Model Selection,

Regularization and Cross Validation
" JEE
m Cross validation
(Mostly) Unbiased estimate of true error
LOOCYV is great, but hard to compute
k-fold much more practical
Use for selecting parameter values!

= Model selection
Search for a model with low cross validation error

m Regularization
Penalizes for complex models
Select parameter with cross validation
Really a Bayesian approach
m  Minimum description length
Information theoretic interpretation of regularization
Relationship to MAP
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