Boosting

Idea: given a weak learner, run it multiple times on (rewighted) training data, then let learned classifiers vote

On each iteration t:
- weight each training example by how incorrectly it was classified
- Learn a hypothesis $-h_t$
- A strength for this hypothesis $-\alpha_t$

Final classifier:

$$f(x) = \text{Sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)$$

Practical useful
Theoretically interesting
Given: \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in X, y_i \in Y = \{-1, +1\}\)
Initialize \(D_1(i) = 1/m\).
For \(t = 1, \ldots, T\):

- Train base learner using distribution \(D_t\).
- Get base classifier \(h_t : X \rightarrow \mathbb{R}\).
- Choose \(\alpha_t \in \mathbb{R}\).
- Update:
 \[
 D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
 \]
 where \(Z_t\) is a normalization factor
 \[
 Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))
 \]

Output the final classifier:

\[
H(x) = \text{sign} \left(\sum_{t=1}^T \alpha_t h_t(x) \right).
\]

Figure 1: The boosting algorithm AdaBoost.
Training error of final classifier is bounded by:

$$\text{Error}(f) = \frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i} \exp(-y_i f(x_i)) - \prod_{t} Z_t$$

Where $$f(x) = \sum_{t} \alpha_t h_t(x); H(x) = \text{sign}(f(x))$$

If we minimize $$\prod_{t} Z_t$$, we minimize our training error.

We can tighten this bound greedily, by choosing $$\alpha_t$$ and $$h_t$$ on each iteration to minimize $$Z_t$$.

$$Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

What $$\alpha_t$$ to choose for hypothesis $$h_t$$?

We can minimize this bound by choosing $$\alpha_t$$ on each iteration to minimize $$Z_t$$.

For boolean target function, this is accomplished by [Freund & Schapire '97]:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

You'll prove this in your homework! 😊
Strong, weak classifiers

- If each classifier is (at least slightly) better than random
 - \(\epsilon_i < 0.5 \)

- AdaBoost will achieve zero training error (exponentially fast):

\[
\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \prod_{t} z_t \leq \exp \left(-2 \sum_{t=1}^{T} \left(\frac{1}{2} - \epsilon_t \right)^2 \right) \leq e^{-2T\epsilon^2}
\]

- Is it hard to achieve better than random training error \((\sqrt{2} - \epsilon) \) \(\epsilon \) times faster?

Boosting results – Digit recognition [Schapire, 1989]

- Boosting often
 - Robust to overfitting
 - Test set error decreases even after training error is zero

©Carlos Guestrin 2005-2007
Boosting generalization error bound

\[\text{error}_{\text{true}}(H) \leq \text{error}_{\text{train}}(H) + \tilde{O}\left(\sqrt{\frac{Td}{m}}\right) \]

- \(T\) – number of boosting rounds
- \(d\) – VC dimension of weak learner, measures complexity of classifier
- \(m\) – number of training examples

Con contradicts: Boosting often
- Robust to overfitting
- Test set error decreases even after training error is zero

Need better analysis tools
- We’ll come back to this later in the semester
Boosting: Experimental Results

Comparison of C4.5, Boosting C4.5, Boosting decision stumps (depth 1 trees), 27 benchmark datasets

[Freund & Schapire, 1996]
Boosting and Logistic Regression

Logistic regression assumes:

\[P(Y = 1|X) = \frac{1}{1 + \exp(f(x))} \]

And tries to maximize data likelihood:

\[P(D|H) = \prod_{i=1}^{m} \frac{1}{1 + \exp(-y_i f(x_i))} \]

Equivalent to minimizing log loss

\[\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i))) \]

Logistic regression equivalent to minimizing log loss

\[\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i))) \]

Boosting minimizes similar loss function!!

\[\frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i)) = \prod_{t} Z_t \]

Both smooth approximations of 0/1 loss!
Logistic regression and Boosting

Logistic regression:
- Minimize loss fn \(\log \text{loss} \)
 \[\sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i))) \]
- Define \(f(x) = \sum_j w_j x_j \)
 where \(x_j \) predefined

Boosting:
- Minimize loss fn \(\exp \text{loss} \)
 \[\sum_{i=1}^{m} \exp(-y_if(x_i)) \]
- Define \(f(x) = \sum_t \alpha_t h_t(x) \)
 where \(h_t(x) \) defined dynamically to fit data
 (not a linear classifier)
- Weights \(\alpha_t \) learned incrementally

What you need to know about Boosting

- Combine weak classifiers to obtain very strong classifier
 - Weak classifier – slightly better than random on training data
 - Resulting very strong classifier – can eventually provide zero training error
- AdaBoost algorithm
- Boosting v. Logistic Regression
 - Similar loss functions
 - Single optimization (LR) v. Incrementally improving classification (B)
- Most popular application of Boosting:
 - Boosted decision stumps!
 - Very simple to implement, very effective classifier

AWL (is out!!)
OK... now we’ll learn to pick those darned parameters...

- **Selecting features (or basis functions)**
 - Linear regression
 - Naive Bayes
 - Logistic regression

- **Selecting parameter value**
 - Prior strength
 - Naive Bayes, linear and logistic regression
 - Regularization strength
 - Naive Bayes, linear and logistic regression
 - Decision trees
 - MaxpChance, depth, number of leaves
 - Boosting
 - Number of rounds

More generally, these are called **Model Selection** Problems.

Today:
- Describe basic idea
- Introduce very important concept for tuning learning approaches: **Cross-Validation**

Test set error as a function of model complexity
Simple greedy model selection algorithm

- Pick a dictionary of features
 - e.g., polynomials for linear regression
- Greedy heuristic:
 - Start from empty (or simple) set of features $F_0 = \emptyset$
 - Run learning algorithm for current set of features F_t
 - Obtain h_t
 - Select next best feature X_i
 - e.g., X_i that results in lowest training error learner when learning with $F_t \cup \{X_i\}$
 - $F_{t+1} \leftarrow F_t \cup \{X_i\}$
 - Recurse

Greedy model selection

- Applicable in many settings:
 - Linear regression: Selecting basis functions
 - Naïve Bayes: Selecting (independent) features $P(X_i|Y)$
 - Logistic regression: Selecting features (basis functions)
 - Decision trees: Selecting leaves to expand
- Only a heuristic!
 - But, sometimes you can prove something cool about it
 - e.g., [Krause & Guestrin '05]: Near-optimal in some settings that include Naïve Bayes
- There are many more elaborate methods out there
Simple greedy model selection algorithm

Greedy heuristic:

- ...

- Select **next best feature** X_i
 - e.g., X_i that results in lowest training error learner when learning with $F_t \cup \{X_i\}$

- $F_{t+1} \leftarrow F_t \cup \{X_i\}$

- **Recurse**

When do you stop???

- When training error is low enough?
- When test set error is low enough?

(overfitting)

$\text{low train error} \not\Rightarrow \text{low test error}$

©Carlos Guestrin 2005-2007
Validation set

Thus far: Given a dataset, randomly split it into two parts:

- Training data – \{x_1, \ldots, x_{N_{train}}\}
- Test data – \{x_{N_{train}+1}, \ldots, x_{N_{test}}\}

But **Test data must always remain independent!**

- Never ever ever ever learn on test data, including for model selection

Given a dataset, **randomly** split it into three parts:

- Training data – \{x_1, \ldots, x_{N_{train}}\}
- Validation data – \{x_{N_{train}+1}, \ldots, x_{N_{valid}}\}
- Test data – \{x_{N_{valid}+1}, \ldots, x_{N_{test}}\}

Use validation data for tuning learning algorithm, e.g., model selection

- Save test data for very final evaluation

Simple greedy model selection algorithm

Greedy heuristic:

- ...
- Select next best feature \(X_i\)
 - e.g., \(X_i\) that results in lowest training error
 learner when learning with \(F_t \cup \{X_i\}\)
- \(F_{t+1} \leftarrow F_t \cup \{X_i\}\)
- Recurse

When do you stop???

- When training error is low enough?
- When test set error is low enough?
- When validation set error is low enough?
Simple greedy model selection algorithm

Greedy heuristic:
- Select **next best feature** X_i
 - e.g., X_j that results in lowest training error learner when learning with $F_t \cup \{X_j\}$
- $F_{t+1} \leftarrow F_t \cup \{X_i\}$
- **Recurse**

When do you stop???
- When training error is low enough?
- When test set error is low enough?
- When validation set error is low enough?
- Man!!! OK, should I just repeat until I get tired???
 - I am tired now...
 - No, “There is a better way!”

(LOO) Leave-one-out cross validation

Consider a **validation set with 1 example**:
- D – training data
- D_i – training data with ith data point moved to validation set

Learn classifier h_{D_i} with D_i dataset

Estimate true error as:
- 0 if h_{D_i} classifies ith data point correctly
- 1 if h_{D_i} is wrong about ith data point
- Seems really bad estimator, but wait!

LOO cross validation: Average over all data points i:
- For each data point you leave out, learn a new classifier h_{D_i}
- **Estimate error** as:

$$error_{LOO} = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}(h_D \backslash i(x^i) \neq y^i)$$
LOO cross validation is (almost) unbiased estimate of true error!

- When computing LOOCV error, we only use \(m-1 \) data points
 - So it’s not estimate of true error of learning with \(m \) data points!
 - Usually pessimistic, though – learning with less data typically gives worse answer

- LOO is almost unbiased!
 - Let \(\text{error}_{\text{true},m-1} \) be true error of learner when you only get \(m-1 \) data points
 - In homework, you’ll prove that LOO is unbiased estimate of \(\text{error}_{\text{true},m-1} \):
 \[
 E_D[\text{error}_{\text{LOO}}] = \text{error}_{\text{true},m-1}
 \]

- Great news!
 - Use LOO error for model selection!!!

Simple greedy model selection algorithm

- Greedy heuristic:
 - Select next best feature \(X_i \)
 - e.g., \(X_j \) that results in lowest training error learner when learning with \(F_t \cup \{X_j\} \)
 - \(F_{t+1} \leftarrow F_t \cup \{X_i\} \)
 - Recurse

When do you stop???
- When training error is low enough?
- When test set error is low enough?
- When validation set error is low enough?
- STOP WHEN error_{LOO} IS LOW!!!
Using LOO error for model selection

Suppose you have 100,000 data points
You implemented a great version of your learning algorithm
- Learns in only 1 second
Computing LOO will take about 1 day!!!
- If you have to do for each choice of basis functions, it will take foooooooooooreeeve'!!!
Solution 1: Preferred, but not usually possible
- Find a cool trick to compute LOO (e.g., see homework)
Solution 2 to complexity of computing LOO:

(More typical) **Use k-fold cross validation**

- Randomly divide training data into k equal parts
 - D_1,\ldots,D_k
- For each i
 - Learn classifier h_{D_i} using data point not in D_i
 - Estimate error of h_{D_i} on validation set D_i

 $$
 error_{D_i} = \frac{1}{m} \sum_{(x',y') \in D_i} 1 \left(h_{D_i}(x') \neq y' \right)
 $$

- **k-fold cross validation error is average** over data splits:

 $$
 error_{k-fold} = \frac{1}{k} \sum_{i=1}^{k} error_{D_i}
 $$

- **k-fold cross validation properties:**
 - Much faster to compute than LOO
 - More (pessimistically) biased – using much less data, only $m(k-1)/k$
 - Usually, $k = 10$ 😊

Regularization – Revisited

- **Model selection 1:** Greedy
 - Pick subset of features that have yield low LOO error
- **Model selection 2:** Regularization
 - Include all possible features!
 - Penalize “complicated” hypothesis
Regularization in linear regression

- Overfitting usually leads to very large parameter choices, e.g.:

 \[-2.2 + 3.1 X - 0.30 X^2\]
 \[-1.1 + 4,700,910.7 X - 8,585,638.4 X^2 + \ldots\]

- Regularized least-squares (a.k.a. ridge regression), for \(\lambda \geq 0\):

 \[w^* = \arg\min_w \sum_j \left((y_j - \sum_i w_i x_{ij})^2 + \lambda \sum_i w_i^2 \right)\]

\[\text{Squared error} \quad \text{Regularization}\]

Other regularization examples

- **Logistic regression** regularization

 - Maximize data likelihood minus penalty for large parameters

 \[\arg\max_w \sum_j \ln P(y^j|x^j, w) - \lambda \sum_i w_i^2\]

 - Biases towards small parameter values

- **Naïve Bayes** regularization

 - Prior over likelihood of features

 - Biases away from zero probability outcomes

- **Decision tree** regularization

 - Many possibilities, e.g., Chi-Square test and MaxPvalue parameter

 - Biases towards smaller trees

\(P(X|Y)\) never saw a word, but add a small count
How do we pick magic parameter?

\[\lambda \text{ in Linear/Logistic Regression} \]
(Analogously for # virtual examples in Naïve Bayes, MaxPvalue in Decision Trees)

Cross Validation!!!!

Regularization and Bayesian learning

\[p(w \mid Y, X) \propto P(Y \mid X, w)p(w) \]

- We already saw that regularization for logistic regression corresponds to MAP for zero mean, Gaussian prior for \(w \).

- Similar interpretation for other learning approaches:
 - **Linear regression**: Also zero mean, Gaussian prior for \(w \)
 - **Naïve Bayes**: Directly defined as prior over parameters
 - **Decision trees**: Trickier to define... but we'll get back to this
Occam’s Razor

- William of Ockham (1285-1349) *Principle of Parsimony*:
 - "One should not increase, beyond what is necessary, the number of entities required to explain anything."
- Regularization penalizes for “complex explanations”

- Alternatively (but pretty much the same), use *Minimum Description Length (MDL) Principle*:
 - minimize $\text{length}(\text{misclassifications}) + \text{length}(\text{hypothesis})$
 - $\text{length}(\text{misclassifications})$ – e.g., #wrong training examples
 - $\text{length}(\text{hypothesis})$ – e.g., size of decision tree

Minimum Description Length Principle

- MDL prefers small hypothesis that fit data well:
 $$h_{MDL} = \arg\min_h L_{C_1}(D \mid h) + L_{C_2}(h)$$
 - $L_{C_1}(D \mid h)$ – description length of data under code C_1, given h
 - Only need to describe points that h doesn’t explain (classify correctly)
 - $L_{C_2}(h)$ – description length of hypothesis h

- Decision tree example
 - $L_{C_1}(D \mid h)$ – #bits required to describe data given h
 - If all points correctly classified, $L_{C_1}(D \mid h) = 0$
 - $L_{C_2}(h)$ – #bits necessary to encode tree
 - Trade off quality of classification with tree size
Bayesian interpretation of MDL Principle

- **MAP estimate**
 \[h_{\text{MAP}} = \arg \max_h [P(D | h)P(h)] \]
 \[= \arg \max_h [\log_2 P(D | h) + \log_2 P(h)] \]
 \[= \arg \min_h [-\log_2 P(D | h) - \log_2 P(h)] \]

- **Information theory fact**: Smallest code for event of probability \(p \) requires \(-\log_2 p \) bits

- **MDL interpretation of MAP**:
 - \(-\log_2 P(D|h) \) – length of \(D \) under hypothesis \(h \)
 - \(-\log_2 P(h) \) – length of hypothesis \(h \) (there is hidden parameter here)
 - MAP prefers simpler hypothesis:
 - minimize length(misclassifications) + length(hypothesis)

- **In general, Bayesian approach usually looks for simpler hypothesis** – Acts as a regularizer

What you need to know about Model Selection, Regularization and Cross Validation

- **Cross validation**
 - (Mostly) Unbiased estimate of true error
 - LOOCV is great, but hard to compute
 - \(k \)-fold much more practical
 - Use for selecting parameter values!

- **Model selection**
 - Search for a model with low cross validation error

- **Regularization**
 - Penalizes for complex models
 - Select parameter with cross validation
 - Really a Bayesian approach

- **Minimum description length**
 - Information theoretic interpretation of regularization
 - Relationship to MAP