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(Marginal) Independence

. -
m Flu and Allergy are (marginally) independent
£ LA
@ Flu=t o2
o4 = POF) P Fu=f | oy
m More Generally: Allergy =t| 2
Allergy = f o F

Flu=t Flu=f

Allergy =t| 0240 -1 63x6-3

Allergy =f| n.2x0 + 0F X0

©2005-2007 Carlos Guestrin [}




Marginally independent random

variables
B

m Sets of variables X, Y

= Xisindependentof Yif /% Vall) ¢ leale)
PA(X=xLY=y),-8%2Val(X)-y2\al(Y)
PO, v=g) = PX=2) . P(Y=9)

w Shorthand: PO/ Y=5) = 7 (s
Marginal independence: %(X 1Y)

m Proposition: P statisfies (X L Y) if and only if
PX.Y) =PX) P(Y)

PV = 17X
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Conditional independence
. B
m Flu and Headache are not (marginally) independent

m Flu and Headache are independent given Sinus
infection

m More Generally:
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Conditionally independent random

variables
B

m Sets of variables X, Y, Z

m X is independent of Y given Z if
P23(X=x L Y=y|Z=z), 8 x2Val(X), y2Val(Y), z2Val(Z)

m Shorthand:
Conditional independence: P2 (X LY | 2Z)
ForP2(X LY |;),writeP2(XLY)

m Proposition: P statisfies (X L Y | Z) if and only if
P(X,Y|Z) = P(X|Z) P(Y|Z)
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Properties of independence

B
= Symmetry:
XLY|2)=(YLX]|2)
m Decomposition:
XLYW|Z)=(XL1Y]|2)

m Weak union:

XLYW|Z)=(XLY]|ZW)

m Contraction:
XLW|Y,Z)&(XLY|Z)=(XLY,W|2)

m Intersection:
XLY|W2Z)&XLW]|Y,Z)=(XLYW|Z)
Only for positive distributions!

P(a)>0, 8a, as;
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The independence assumption

=, _ =

Local Markov Assumption:
A variable X is independent
of its non-descendants given
its parents
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Explaining away

2

Local Markov Assumption:
A variable X is independent
of its non-descendants given
its parents
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Nalve Bayes revisited
. -

Local Markov Assumption:
A variable X is independent
of its non-descendants given
its parents

©2005-2007 Carlos Guestrin 13

What about probabilities?

_Conditional probability tables SCPTS=

=
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Joint distribution

=

Why can we decompose? Markov Assumption!

The chain rule of probabilities

B
= P(A,B) = P(A)P(BIA) @

m More generally:
P(X1,....X,) = P(Xq) ¢ P(X5|X1) ¢ ... ¢ P(X[Xq,..0. % 4)




Chain rule & Joint distribution

[ Local Markov Assumption:
A variable X is independent

@A of its non-descendants given
its parents
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Two (trivial) special cases
S -

Edgeless graph Fully-connected
graph
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The Representation Theorem —
Joint Distribution to BN
. B

BN: e Encodes independence

O, assumptions

_If conditional Joint probability
independencies distribution:

in BN are subset of n
e P(X1q,..., X)) = T] P(x;|Pay.
conditional 1 117 (Xi1Pax)

independencies in P
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A general Bayes net
m Set of random variables

m Directed acyclic graph
Encodes independence assumptions

m CPTs

m Joint distribution:

n
P(X1,.., Xn) = [] P(Xi | PaXZ.)
=1




How many parameters in a BN?
I
m Discrete variables X, ..., X

m Graph
Defines parents of X, PaXi
m CPTs — P(X| Pay;)

n

Real Bayesian networks
applications

m Diagnosis of lymph node disease
m Speech recognition

Microsoft office and Windows
http://www.research.microsoft.com/research/dtg/

Study Human genome

Robot mapping

Robots to identify meteorites to study
Modeling fMRI data

Anomaly detection

Fault dianosis

Modeling sensor network data
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Independencies encoded in BN
. B
m We said: All you need is the local Markov
assumption
(X; L NonDescendants,; | Pay;)
m But then we talked about other (in)dependencies
e.g., explaining away

m What are the independencies encoded by a BN?
Only assumption is local Markov

But many others can be derived using the algebra of
conditional independencies!!!

Understanding independencies in BNs
= BNs with 3 nodes[Local Markov Assumption:

A variable X is independent
of its non-descendants given
its parents

Indirect causal effect:

0020

Indirect evidential effect: Common effect:

ORON0)

Common cause:

&




Understanding independencies in BNs

— Some examples
. I

An active trail — Example

D@ O O O~@
®
©

When are A and H independent?




Active trails formalized

3 -
m A path X, —-X,—- - - =X is an active trail when
variables OC{X,,...,X,} are observed if for each
consecutive triplet in the trail:
Xi.1—Xi—Xi,1, and X; is not observed (X ZO0)

X 4<X<X.,, and X; is not observed (X&ZO)
Xi.1<Xi—Xi,1, and X; is not observed (X ZO0)

X 4—=X<Xi,1, and X; is observed (X,c0), or one of
its descendents

Active trails and independence?
- -
m Theorem: Variables X
and X; are independent
given ZC{X,,..., X} if the
is no active trail between

X; and X; when variables
ZC{X,,...,X,} are observed (F)




The BN Representation Theorem

— N
_If conditional Joint probability
independencies distribution:

in BN are subset of
conditional

independencies in P P(X1.....Xn) = ][ P(X;| Pay,)

i=1

Important because:
Every P has at least one BN structure G

Then conditional

If joirPt_ independencies
probability in BN are subset of
distribution: conditional

independencies in P

Important because:
Read independencies of P from BN structure G

Learning Bayes nets
.

Known structure Unknown structure

Fully observable
data

Missing data

(Coata ) e
CPTs —
g + P(X| Pa)
structure parameters




Learning the CPTs
L —

@ N For each discrete variable X;

Count(X, = ax,;,. X; = x:
U MLE: P(XZ =z, l X] — x]) — u ( 7 Ly X g CI?J)
/ Count(X; = z;)

What you need to know
-

m Bayesian networks
A compact representation for large probability distributions
Not an algorithm
m Semantics of a BN
Conditional independence assumptions
m Representation
Variables
Graph
CPTs
m  Why BNs are useful
m Learning CPTs from fully observable data
m Play with applet!!! ©




Announcements

m Recitation this week
Bayesian networks

m Pick up your midterm from Monica

Bayesian Networks —
Inference

Machine Learning — 10701/15781
Carlos Guestrin
Carnegie Mellon University

October 31st, 2007
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General probabilistic inference

m Query: P(X | e)

==
m Using Bayes rule:
P(X
POx | o) = P00
P(e)
m Normalization:
P(X |e) x P(X,e)
Marginalization
-




Probabilistic inference example
. -

Inference seems exponential in number of variables!
Actually, inference in graphical models is NP-hard ®

Fast probabilistic inference
example — Variable elimination

Do

Headache

(Potential for) Exponential reduction in computation!




Understanding variable elimination —
Exploiting distributivity

Understanding variable elimination —
Order can make a HUGE difference
T

& &

Hea

da




Understanding variable elimination —
Another example

Variable elimination algorithm
. S
m Given a BN and a query P(X|e) x P(X,e)

m Instantiate evidence e | IMPORTANT!!!

m Choose an ordering on variables, e.g., X4, ..., X
m Fori=1ton, If X, &{X,e}

Collect factors f,,....f, that include X;

Generate a new factor by eliminating X; from these factors

k
g=>_ 114
Xi =1
Variable X; has been eliminated!
m Normalize P(X,e) to obtain P(X|e)

n




Complexity of variable elimination —
(Poly)-tree graphs

Variable elimination order:
Start from “leaves” up —

find topological order, eliminate
variables in reverse order

Linear in number of variables!!! (versus exponential)

Complexity of variable elimination —
Graphs with loops

3 - .
_~Smoking__
T’ losis 4,»C‘ancer _Bronchiti
~ P ,
P »’Tb!rCa
Xsﬂv Dysp

Exponential in number of variables in largest factor generated




Complexity of variable elimination
. —Tree-width

P ‘Smoking
T’ . Cg:r B.h
:’m Moralize graph:
P Connect parents
xg ;g,ea into a clique and

remove edge directions

Complexity of VE elimination:
(“Only”) exponential in tree-width
Tree-width is maximum node cut +1

Example: Large tree-width with
_ small number of parents

Compact representation 4> Easy inference ®




Choosing an elimination order
. -
m Choosing best order is NP-complete
Reduction from MAX-Clique
m Many good heuristics (some with guarantees)

m Ultimately, can’t beat NP-hardness of inference
Even optimal order can lead to exponential variable
elimination computation

m |n practice
Variable elimination often very effective

Many (many many) approximate inference approaches
available when variable elimination too expensive

Most likely explanation (MLE)

o
= Query: argmax P(x1,...,2n | e)

=

m Using Bayes rule: B )
T1y...,2Tn, €

argmax P(z1,...,zn | €) = argmax
T1,...,Tn L1y Tn, P(e)

m Normalization irrelevant:

argmax P(xz1,...,xn | €) = argmax P(z1,...,Zn,e)
T1,...,Tn T1,..,Tn




Max-marginalization

Example of variable elimination for
MLE — Forward pass

Do




Example of variable elimination for
MLE — Backward pass

Ded

Headache,

MLE Variable elimination algorithm

— Forward pass
e

Pxy,....xp.€)

EREERAVeN

m Given a BN and a MLE query max, ,
m Instantiate evidence e
m Choose an ordering on variables, e.g., X4, ..., X
m Fori=1ton, If X, &{e}

Collect factors f,,....f, that include X;

Generate a new factor by eliminating X; from these factors

n

k
g = max .Hl fj
j:

Variable X; has been eliminated!




MLE Variable elimination algorithm
— Backward pass
B
m {X,",..., X, } will store maximizing assignment
m Fori=nto1, If X, &{e}

Take factors fy,...,f, used when X; was eliminated

Instantiate f,,...,f,, with {x,,,..., X}
= Now each f; depends only on X;

Generate maximizing assignment for X:
k

x} € argmax [] f;
XLy j:].

What you need to know
. -

m Bayesian networks

A useful compact representation for large probability distributions
m Inference to compute

Probability of X given evidence e

Most likely explanation (MLE) given evidence e

Inference is NP-hard
m Variable elimination algorithm

Efficient algorithm (“only” exponential in tree-width, not number of variables)

Elimination order is important!

Approximate inference necessary when tree-width to large

= not covered this semester

Only difference between probabilistic inference and MLE is “sum
versus “max”

»




