Bayesian Networks Inference

Machine Learning - 10701/15781 Carlos Guestrin Carnegie Mellon University

November 5th, 2007

General probabilistic inference

 $P(X \mid e)$ Query:

Using Bayes rule:

$$P(X \mid e) = \frac{P(X, e)}{P(e)}$$

Normalization:

$$P(X \mid e) \propto P(X, e)$$

Fast probabilistic inference example – Variable elimination (Potential for) Exponential reduction in computation!

Variable elimination algorithm

- Given a BN and a query P(X|e) / P(X,e)
- Instantiate evidence e

- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n, If $X_i \notin \{X,e\}$
 - \square Collect factors $f_1, ..., f_k$ that include X_i
 - ☐ Generate a new factor by eliminating X_i from these factors

$$g = \sum_{X_i} \prod_{j=1}^k f_j$$
 \square Variable $\mathbf{X_i}$ has been eliminated!

- Normalize P(X,e) to obtain P(X|e)

Example: Large tree-width with small number of parents

Compact representation

→ Easy inference ⊗

Choosing an elimination order

- Choosing best order is NP-complete
 - □ Reduction from MAX-Clique
- Many good heuristics (some with guarantees)
- Ultimately, can't beat NP-hardness of inference
 - □ Even optimal order can lead to exponential variable elimination computation
- In practice
 - □ Variable elimination often very effective
 - ☐ Many (many many) approximate inference approaches available when variable elimination too expensive

Announcements

- HW4 out later today
- Project milestone
 - □ Next Monday (11/12 in class)

HMMS Machine Learning – 10701/15781 Carlos Guestrin Carnegie Mellon University November 5th, 2007 ©2005-2007 Carlos Guestrin

Adventures of our BN hero

- ٧.
- Compact representation for 1. Naïve Bayes probability distributions
- Fast inference
- Fast learning
- But... Who are the most popular kids?

2 and 3. Hidden Markov models (HMMs) Kalman Filters

Handwriting recognition

Character recognition, e.g., kernel SVMs

HMMs semantics: Details

Just 3 distributions:

$$P(X_1)$$

$$P(X_i \mid X_{i-1})$$

$$P(O_i \mid X_i)$$

HMMs semantics: Joint distribution

$$P(X_1, ..., X_n \mid o_1, ..., o_n) = P(X_{1:n} \mid o_{1:n})$$

$$\propto P(X_1)P(o_1 \mid X_1) \prod_{i=2}^n P(X_i \mid X_{i-1})P(o_i \mid X_i)$$

Learning HMMs from fully observable data is easy

Learn 3 distributions:

$$P(X_1)$$

$$P(O_i \mid X_i)$$

$$P(X_i \mid X_{i-1})$$

Possible inference tasks in an HMM

Marginal probability of a hidden variable:

Viterbi decoding – most likely trajectory for hidden vars:

Using variable elimination to compute P(X_i|o_{1:n})

Variable elimination order?

Example:

What if I want to compute P(X_i|o_{1:n}) for each i?

Variable elimination for each i?

Variable elimination for each i, what's the complexity?

Reusing computation

The forwards-backwards algorithm

$$P(X_i \mid o_{1..n})$$

- Initialization: $\alpha_1(X_1) = P(X_1)P(o_1 \mid X_1)$
- For i = 2 to n
 - \square Generate a forwards factor by eliminating X_{i-1}

$$\alpha_i(X_i) = \sum_{x_{i-1}} P(o_i \mid X_i) P(X_i \mid X_{i-1} = x_{i-1}) \alpha_{i-1}(x_{i-1})$$

- Initialization: $\beta_n(X_n) = 1$
- For i = n-1 to 1
 - \Box Generate a backwards factor by eliminating X_{i+1}

$$\beta_i(X_i) = \sum_{x_{i+1}} P(o_{i+1} \mid x_{i+1}) P(x_{i+1} \mid X_i) \beta_{i+1}(x_{i+1})$$

■ \forall i, probability is: $P(X_i \mid o_{1..n}) \propto \alpha_i(X_i)\beta_i(X_i)$

What you'll implement 1:

multiplication
$$\alpha_i(X_i) = \sum_{x_{i-1}} P(o_i \mid X_i) P(X_i \mid X_{i-1} = x_{i-1}) \alpha_{i-1}(x_{i-1})$$

What you'll implement 2: marginalization

$$\alpha_i(X_i) = \sum_{x_{i-1}} P(o_i \mid X_i) P(X_i \mid X_{i-1} = x_{i-1}) \alpha_{i-1}(x_{i-1})$$

Higher-order HMMs

Add dependencies further back in time \rightarrow better representation, harder to learn

What you need to know

- Hidden Markov models (HMMs)
 - □ Very useful, very powerful!
 - \square Speech, OCR,...
 - □ Parameter sharing, only learn 3 distributions
 - $\hfill\Box$ Trick reduces inference from $O(n^2)$ to O(n)
 - $\hfill \square$ Special case of BN