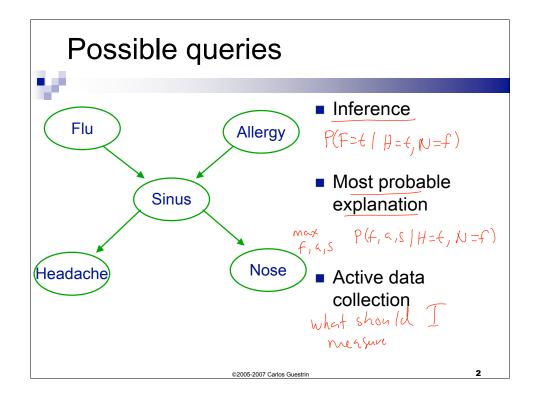
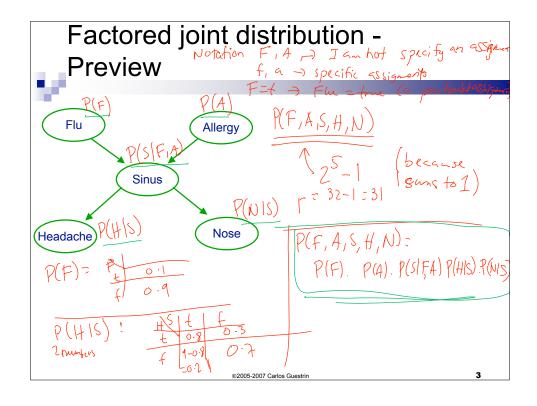
Bayesian Networks - Representation

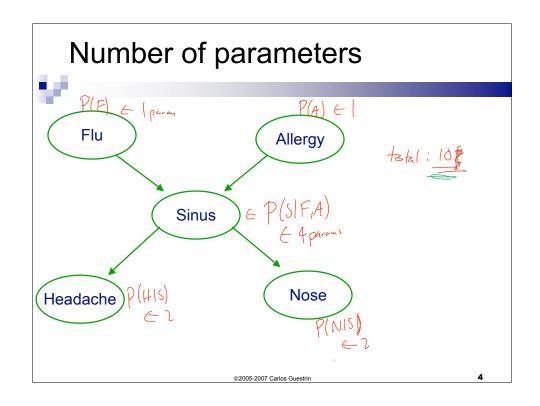
Machine Learning – 10701/15781 Carlos Guestrin Carnegie Mellon University

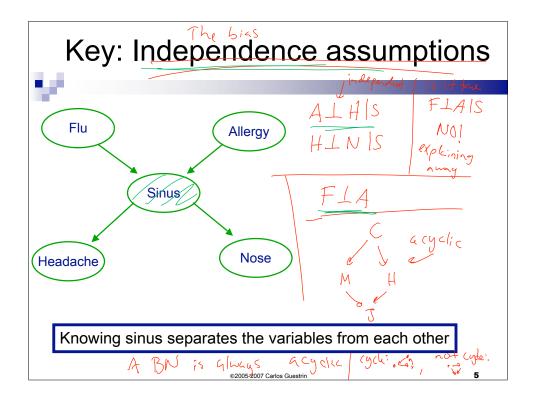
October 31st, 2007

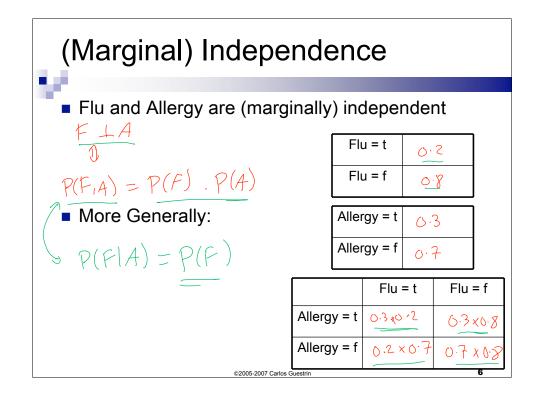
1











Marginally independent random variables

- Sets of variables X, Y
- X is independent of Y if $\forall x \in V_{\alpha}(x)$, $y \in V_{\alpha}(x)$

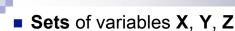
P(X=x, Y=y) = P(X=x). P(Y=9)

- P(x=x|y=y)=P(x=x)Shorthand:
 - □ Marginal independence: (X ⊥ Y)
- Proposition: P statisfies (X ⊥ Y) if and only if
 - \square P(X,Y) = P(X) P(Y) P(X|Y) = P(X)

Conditional independence

- Flu and Headache are not (marginally) independent $P(F|H) \neq P(F)$
- Flu and Headache are independent given Sinus infection P(H|S) = P(H|S, F) FIHIS P(H=t) = 0.1 P(H=t) = 0.7 P(H=t | S=t, F=t) = 0.7P(H={|S={|}=0.7
- More Generally: Xi ∠Xi Xk $P(X; |X_S, X_R) = P(X; |X_R)$ $P(X_i, X_j | X_R) = P(X_i | X_R) \cdot P(X_j | X_R)$

Conditionally independent random variables



- X is independent of Y given Z if
 - $\square \mathcal{P}^{2}(X=x \perp Y=y|Z=z), \underbrace{\$ 2 \text{Val}(X), *2 \text{Val}(Y), *2 \text{Val}(Z)}_{\forall x \in Y} \forall y \forall z \forall z \forall z \forall z \in \mathcal{P}(X=x) \neq z \in \mathcal{P}$
- Shorthand:

 - \square For \nearrow \nearrow $(X \perp Y)$, write \nearrow $(X \perp Y)$
- Proposition: P statisfies (X ⊥ Y | Z) if and only if
 - $\Box P(X,Y|Z) = P(X|Z) P(Y|Z)$

©2005-2007 Carlos Guestrin

•

Properties of independence

Symmetry:

$$\square \; (\textbf{X} \perp \textbf{Y} \mid \textbf{Z}) \Rightarrow (\textbf{Y} \perp \textbf{X} \mid \textbf{Z})$$

Decomposition:

$$\square (X \perp Y,W \mid Z) \Rightarrow (X \perp Y \mid Z)$$

Weak union:

$$\square \; (\textbf{X} \perp \textbf{Y}, \textbf{W} \mid \textbf{Z}) \Rightarrow (\textbf{X} \perp \textbf{Y} \mid \textbf{Z}, \textbf{W})$$

Contraction:

$$\square \; (\textbf{X} \perp \textbf{W} \mid \textbf{Y}, \textbf{Z}) \; \& \; (\textbf{X} \perp \textbf{Y} \mid \textbf{Z}) \Rightarrow (\textbf{X} \perp \textbf{Y}, \textbf{W} \mid \textbf{Z})$$

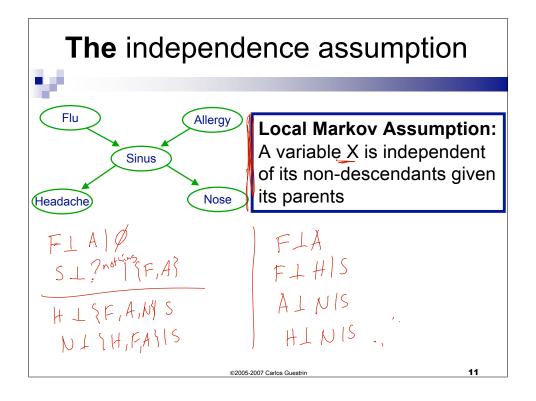
Intersection:

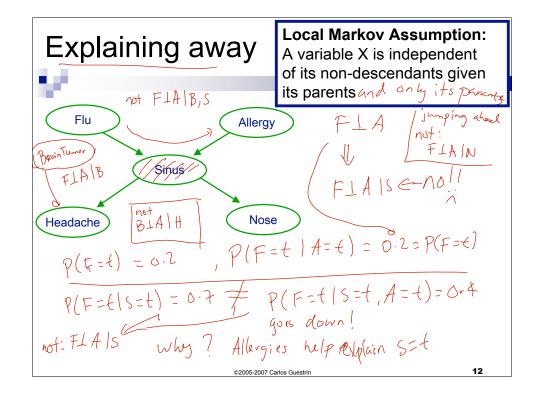
$$\square (X \perp Y \mid W,Z) \& (X \perp W \mid Y,Z) \Rightarrow (X \perp Y,W \mid Z)$$

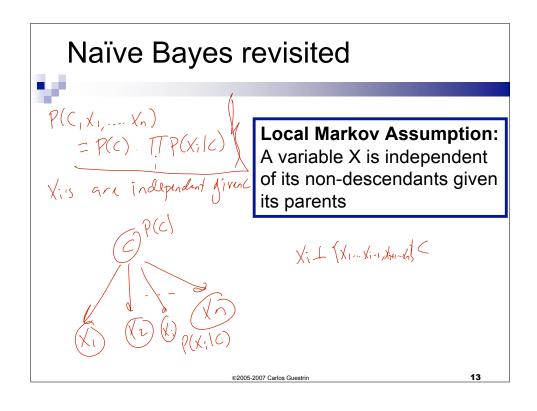
- □ Only for positive distributions!
- \square P(α)>0, 8 α , $\alpha \neq$;

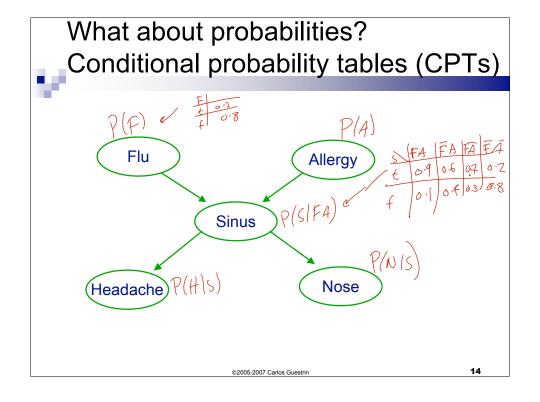
©2005-2007 Carlos Guestrin

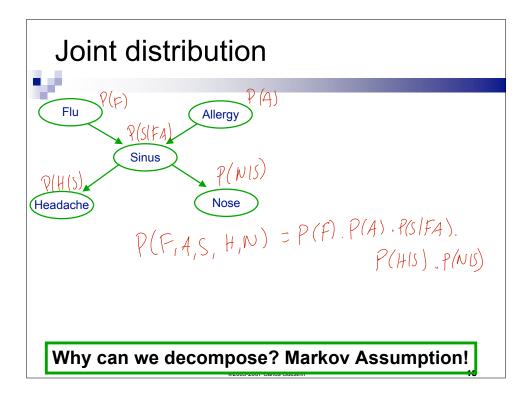
10

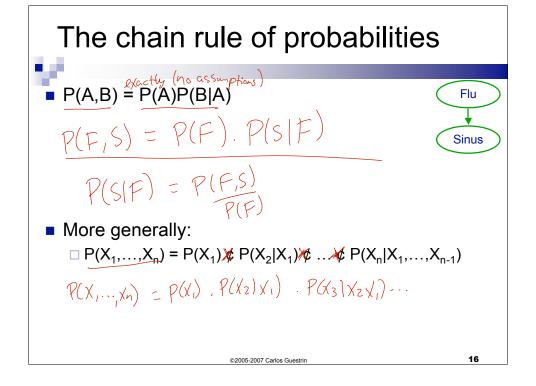


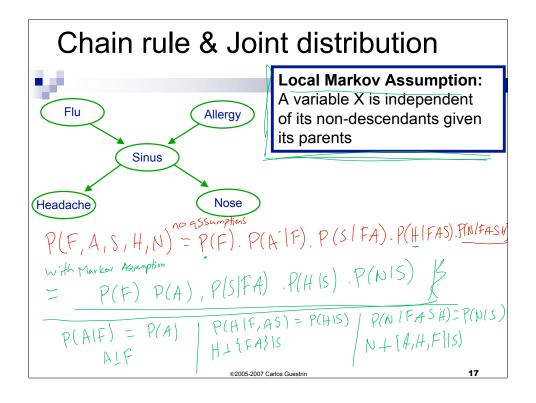


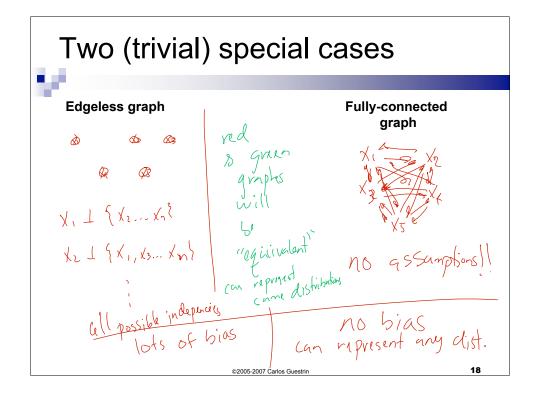


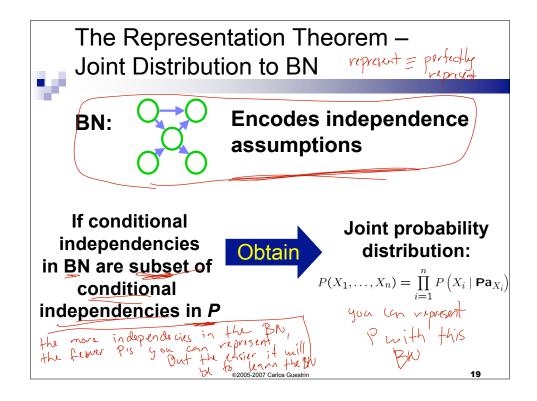












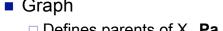
A general Bayes net

- Set of random variables x_{1,...} x_n
- F, A, H, ... Directed acyclic graph
- □ Encodes independence assumptions

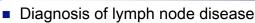
Joint distribution:

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

How many parameters in a BN? ■ Discrete variables X₁, ..., X_n bingry



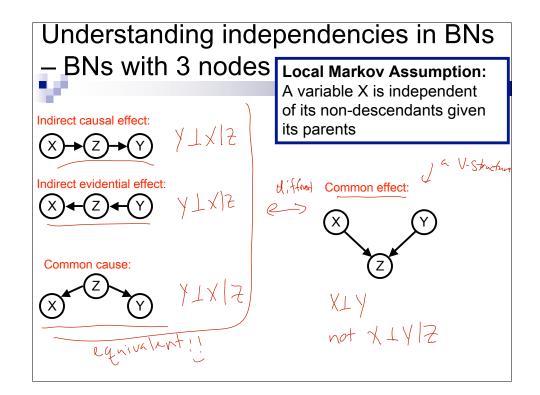
Real Bayesian networks applications

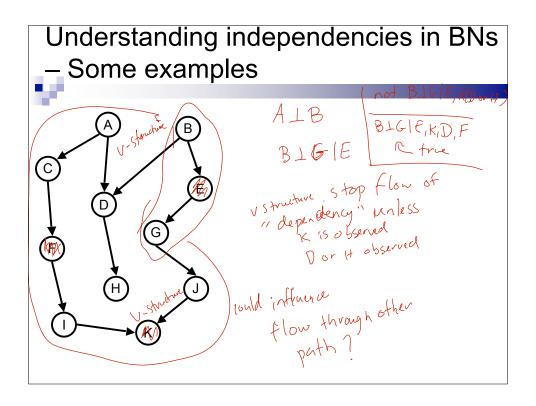


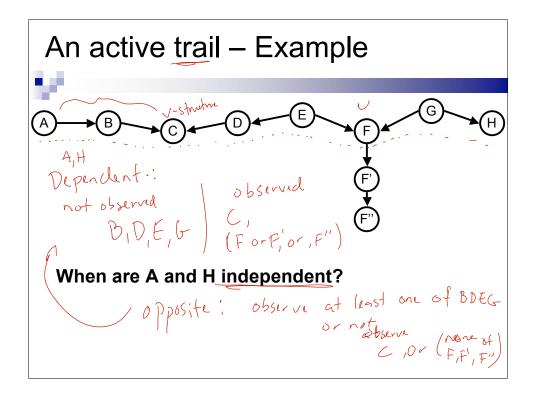
- Speech recognition
- Microsoft office and Windows □ http://www.research.microsoft.com/research/dtg/
- Study Human genome
- Robot mapping
- Robots to identify meteorites to study
- Modeling fMRI data
- Anomaly detection
- Fault dianosis
- Modeling sensor network data

Independencies encoded in BN

- v
 - We said: All you need is the local Markov assumption
 - \square (X_i \perp NonDescendants_{Xi} | \mathbf{Pa}_{Xi}), and \mathbf{A}_{Xi} only \mathbf{Pa}_{Xi}
 - But then we talked about other (in)dependencies
 □ e.g., explaining away
 - What are the independencies encoded by a BN?
 - ☐ Only assumption is local Markov
 - □ But many others can be derived using the algebra of conditional independencies!!!



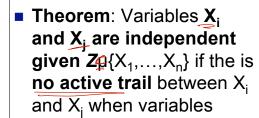




Active trails formalized

- A path $X_1 X_2 \cdots X_k$ is an **active trail** when variables O[$\{X_1, \dots, X_n\}$ are observed if for each consecutive triplet in the trail:
 - $\square X_{i-1} \rightarrow X_i \rightarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin \mathbf{O})$
 - $\square X_{i-1} \leftarrow X_i \leftarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin \mathbf{O})$
 - $\square X_{i-1} \leftarrow X_i \rightarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin O)$
 - $\square X_{i-1} \rightarrow X_i \leftarrow X_{i+1}$, and X_i is observed $(X_i \bigcirc O)$, or one of its descendents

Active trails and independence?



 $\mathbf{Z}_{\mu}\{X_1,\ldots,X_n\}$ are observed

