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Possible queries

Flu Allergy

Sinus

Headache Nose

 Inference

 Most probable
explanation

 Active data
collection
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Factored joint distribution -
Preview

Flu Allergy

Sinus

Headache Nose
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Number of parameters

Flu Allergy

Sinus

Headache Nose
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Key: Independence assumptions

Flu Allergy

Sinus

Headache Nose

Knowing sinus separates the variables from each other
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(Marginal) Independence

 Flu and Allergy are (marginally) independent

 More Generally:

Flu = t Flu = f

Allergy = t

Allergy = f

Allergy = t

Allergy = f

Flu = t

Flu = f
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Marginally independent random
variables

 Sets of variables X, Y
 X is independent of Y if

 P ²(X=x⊥Y=y), 8 x2Val(X), y2Val(Y)

 Shorthand:
 Marginal independence: P ² (X ⊥ Y)

 Proposition: P statisfies (X ⊥ Y) if and only if
 P(X,Y) = P(X) P(Y)
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Conditional independence

 Flu and Headache are not (marginally) independent

 Flu and Headache are independent given Sinus
infection

 More Generally:
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Conditionally independent random
variables

 Sets of variables X, Y, Z
 X is independent of Y given Z if

 P ²(X=x ⊥ Y=y|Z=z), 8 x2Val(X), y2Val(Y), z2Val(Z)

 Shorthand:
 Conditional independence: P ² (X ⊥ Y | Z)
 For P ² (X ⊥ Y | ;), write P ² (X ⊥ Y)

 Proposition: P statisfies (X ⊥ Y | Z) if and only if
 P(X,Y|Z) = P(X|Z) P(Y|Z)
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Properties of independence

 Symmetry:
 (X ⊥ Y | Z) ⇒ (Y ⊥ X | Z)

 Decomposition:
 (X ⊥ Y,W | Z) ⇒ (X ⊥ Y | Z)

 Weak union:
 (X ⊥ Y,W | Z) ⇒ (X ⊥ Y | Z,W)

 Contraction:
 (X ⊥ W | Y,Z) & (X ⊥ Y | Z) ⇒ (X ⊥ Y,W | Z)

 Intersection:
 (X ⊥ Y | W,Z) & (X ⊥ W | Y,Z) ⇒ (X ⊥ Y,W | Z)
 Only for positive distributions!
 P(α)>0, 8α, α≠;



©2005-2007 Carlos Guestrin 11

The independence assumption

Flu Allergy

Sinus

Headache Nose

Local Markov Assumption:
A variable X is independent
of its non-descendants given
its parents
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Explaining away

Flu Allergy

Sinus

Headache Nose

Local Markov Assumption:
A variable X is independent
of its non-descendants given
its parents
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Naïve Bayes revisited

Local Markov Assumption:
A variable X is independent
of its non-descendants given
its parents
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What about probabilities?
Conditional probability tables (CPTs)

Flu Allergy

Sinus

Headache Nose
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Joint distribution

Flu Allergy

Sinus

Headache Nose

Why can we decompose? Markov Assumption!
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The chain rule of probabilities

 P(A,B) = P(A)P(B|A)

 More generally:
 P(X1,…,Xn) = P(X1) ¢ P(X2|X1) ¢ … ¢ P(Xn|X1,…,Xn-1)

Flu

Sinus



©2005-2007 Carlos Guestrin 17

Chain rule & Joint distribution

Flu Allergy

Sinus

Headache Nose

Local Markov Assumption:
A variable X is independent
of its non-descendants given
its parents
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Two (trivial) special cases

Edgeless graph Fully-connected 
graph
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The Representation Theorem –
Joint Distribution to BN

Joint probability
distribution:Obtain

BN: Encodes independence
assumptions

If conditional
independencies

in BN are subset of 
conditional 

independencies in P

A general Bayes net

 Set of random variables

 Directed acyclic graph
 Encodes independence assumptions

 CPTs

 Joint distribution:



How many parameters in a BN?

 Discrete variables X1, …, Xn

 Graph
 Defines parents of Xi, PaXi

 CPTs – P(Xi| PaXi)
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Real Bayesian networks
applications

 Diagnosis of lymph node disease
 Speech recognition
 Microsoft office and Windows

 http://www.research.microsoft.com/research/dtg/
 Study Human genome
 Robot mapping
 Robots to identify meteorites to study
 Modeling fMRI data
 Anomaly detection
 Fault dianosis
 Modeling sensor network data



Independencies encoded in BN

 We said: All you need is the local Markov
assumption
 (Xi ⊥ NonDescendantsXi | PaXi)

 But then we talked about other (in)dependencies
 e.g., explaining away

 What are the independencies encoded by a BN?
 Only assumption is local Markov
 But many others can be derived using the algebra of

conditional independencies!!!

Understanding independencies in BNs
– BNs with 3 nodes

Z

YX

Local Markov Assumption:
A variable X is independent
of its non-descendants given
its parents

Z YX

Z YX

Z
YX

Indirect causal effect:

Indirect evidential effect:

Common cause:

Common effect:



Understanding independencies in BNs
– Some examples

A

H

C
E

G

D

B

F

K

J

I

An active trail – Example

A HC
E G

DB F

F’’

F’

When are A and H independent?



Active trails formalized

 A path X1 – X2 – · · · –Xk is an active trail when
variables Oµ{X1,…,Xn} are observed if for each
consecutive triplet in the trail:
 Xi-1→Xi→Xi+1, and Xi is not observed (Xi∉O)

 Xi-1←Xi←Xi+1, and Xi is not observed (Xi∉O)

 Xi-1←Xi→Xi+1, and Xi is not observed (Xi∉O)

 Xi-1→Xi←Xi+1, and Xi is observed (Xi2O), or one of
its descendents

Active trails and independence?

 Theorem: Variables Xi
and Xj are independent
given Zµ{X1,…,Xn} if the is
no active trail between Xi
and Xj when variables
Zµ{X1,…,Xn} are observed

A

H

C
E

G

D

B

F

K

J

I



The BN Representation Theorem

If joint
probability

distribution:
Obtain

Then conditional
independencies

in BN are subset of 
conditional 

independencies in P

Joint probability
distribution:Obtain

If conditional
independencies

in BN are subset of
conditional

independencies in P

Important because: 
Every P has at least one BN structure G

Important because: 
Read independencies of P from BN structure G


