Chow-Liu

• Goal: find a tree that maximizes the data likelihood

Algorithm

• Compute weight $I(X_i, X_j)$ of each (possible) edge (X_i, X_j)

• Find a maximum weight spanning tree (MST)

• Give directions to edges in MST
Chow-Liu: how-to

• Goal: find a tree that maximizes the data likelihood

Algorithm

• Compute weight $I(X_i, X_j)$ of each (possible) edge (X_i, X_j)

$$I(X_i, X_j) = \sum_{x_i, x_j} \hat{P}(x_i, x_j) \log \frac{\hat{P}(x_i, x_j)}{\hat{P}(x_i) \hat{P}(x_j)}$$

$$\hat{P}(x_i, x_j) = \frac{\text{Count}(x_i, x_j)}{m}$$

“empirical distribution”

examples

• e.g. (1) & (3)

$$I(X_1, X_3) = \sum_{x_1=0}^{2} \sum_{x_2=0}^{2} \hat{P}(X_1 = x_1, X_2 = x_2) \log \frac{\hat{P}(X_1 = x_1, X_2 = x_2)}{\hat{P}(X_1 = x_1) \hat{P}(X_2 = x_2)}$$

e.g. $\hat{P}(X_1 = 0, X_2 = 1) = \frac{\text{Count}(X_1 = 0, X_2 = 1)}{m}$

Chow-Liu: how-to

• Goal: find a tree that maximizes the data likelihood

Algorithm

• Compute weight $I(X_i, X_j)$ of each (possible) edge (X_i, X_j)

• Find a maximum weight spanning tree (MST)

• tree with the greatest total weight $\sum_{(X_i, X_j) \in E} I(X_i, X_j)$

• greedily add edges, just make sure it’s a tree at every step

• e.g. Kruskal, Prim
Chow-Liu: how-to

• Goal: find a tree that maximizes the data likelihood

Algorithm

• Compute weight $I(X_i, X_j)$ of each (possible) edge (X_i, X_j)

• Find a maximum weight spanning tree (MST)

 • tree with the greatest total weight $\sum_{(X_i, X_j) \in E} I(X_i, X_j)$

 • greedily add edges, just make sure it’s a tree at every step
Chow-Liu: how-to

- Goal: find a tree that maximizes the data likelihood

Algorithm

- Compute weight $I(X_i, X_j)$ of each (possible) edge (X_i, X_j)
- Find a maximum weight spanning tree (MST)
 - tree with the greatest total weight $\sum_{(X_i, X_j) \in E} I(X_i, X_j)$
 - greedily add edges, just make sure it’s a tree at every step

```
1
2
3
4

1
2
3
4
```

Chow-Liu: how-to

- Goal: find a tree that maximizes the data likelihood

Algorithm

- Compute weight $I(X_i, X_j)$ of each (possible) edge (X_i, X_j)
- Find a maximum weight spanning tree (MST)
- Give directions to edges in MST
 - pick your favorite node (e.g. sinus??)
 - draw arrows going away from it (e.g. BFS, DFS)

```
1
2
3
4
```
Chow-Liu: why it works

• Goal: find a tree that maximizes the data likelihood

Algorithm

- Compute weight $I(X_i, X_j)$ of each (possible) edge (X_i, X_j)
- Find a maximum weight spanning tree (MST)
- Give directions to edges in MST

Just two questions:
1. why can we represent data likelihood as sum of $I(X_i, X_j)$ over edges?
2. why can we pick any direction for edges in the tree?*

*as long as it’s a tree

1. why can we represent data likelihood as sum of $I(X_i, X_j)$ over edges?
2. why can we pick any direction for edges in the tree?

- data likelihood given (directed) edges
 \[
 \log P(D | G, \theta_G) = \sum_{j=1}^{m} \sum_{i=1}^{n} \log P(x_i | pa X_i)
 \]
- information theoretic quantity
 \[
 \log P(D | G, \theta_G) = m \sum_{i=1}^{n} (I(X_i, Pa X_i) - H(X_i))
 \]
- max only part that matters
 \[
 \arg\max_{G} \log P(D | G, \theta_G) = \arg\max_{G} \sum_{i=1}^{n} I(X_i, Pa X_i)
 \]
- tree! (Pa_Xi = just one other node) => $I(X_i, Pa_Xi) = I(Xi, Xj)$
 \[
 \arg\max_{G} \log P(D | G, \theta_G) = \arg\max_{G} \sum_{(X_i, X_j) \in E} I(X_i, X_j)
 \]
- directed edges? nah. $I(Xi, Xj) = I(Xj, Xi)$
 \[
 I(X_i, X_j) = \sum_{x_i,x_j} \hat{P}(x_i, x_j) \log \frac{\hat{P}(x_i, x_j)}{P(x_i)P(x_j)}
 \]
1. Why can we represent data likelihood as sum of \(I(X_i, X_j) \) over edges?

2. Why can we pick any direction for edges in the tree?

- Data likelihood given (directed) edges
 \[
 \log P(D | G, \theta_G) = \sum_{j=1}^{m} \sum_{i=1}^{n} \log P(x_i | pa_X_i)
 \]

- Information theoretic quantity
 \[
 \log P(D | G, \theta_G) = m \sum_{i=1}^{n} (I(X_i, pa_X_i) - H(X_i))
 \]

- Max only part that matters
 \[
 \arg \max_G \log P(D | G, \theta_G) = \arg \max_G \sum_{i=1}^{n} I(X_i, pa_X_i)
 \]

- Tree! (\(Pa_X_i \) just one other node) \(\Rightarrow \) \(I(X_i, Pa_X_i) = I(X_i, X_j) \)

- Directed edges? Nah. \(I(X_i, X_j) = I(X_j, X_i) \)

- So directions don't matter

- As long as no v-structures

TAN::Tree-Augmented Naive Bayes

- NB + Chow-Liu

 - Same old Chow-Liu on features, but with \(I(X_i, X_j|c) \) instead of \(I(X_i, X_j) \)

 - Then learn \(P(X_i | Pa(X_i), c) \) as before

 - **Remember** this algorithm for the future
the usual difficulties

- In general, NP-hard to learn structure with #parents > 1
 try e.g.
 - BIC score: approximation of Bayesian score
 maximizing still NP-hard
 "regularization"

- Trees - “easy” to learn:
 - one parent - no v-structures
 can do this greedy search with completely uncoupled scores

Announcing

- no recitation next week - happy thanksgiving!
 - better sleep...!