
10-701 Midterm Exam, Spring 2006
Solutions

1. Write your name and your email address below.

• Name:

• Andrew account:

2. There should be 17 numbered pages in this exam (including this cover sheet).

3. You may use any and all books, papers, and notes that you brought to the exam, but
not materials brought by nearby students. Calculators are allowed, but no laptops,
PDAs, or Internet access.

4. If you need more room to work out your answer to a question, use the back of the page
and clearly mark on the front of the page if we are to look at what’s on the back.

5. Work efficiently. Some questions are easier, some more difficult. Be sure to give yourself
time to answer all of the easy ones, and avoid getting bogged down in the more difficult
ones before you have answered the easier ones.

6. Note there are extra-credit sub-questions. The grade curve will be made without
considering students’ extra credit points. The extra credit will then be used to try to
bump your grade up without affecting anyone else’s grade.

7. You have 80 minutes.

8. Good luck!

Question Topic Max. score Score

1 Short questions 12 + 0.52 extra
2 Regression 12
3 k-NN and Cross Validation 16
4 Decision trees and pruning 20
5 Learning theory 20 + 6 extra
6 SVM and slacks 20 + 6 extra
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1 [12 points] Short questions

The following short questions should be answered with at most two sentences, and/or a
picture. For the (true/false) questions, answer true or false. If you answer true, provide a
short justification, if false explain why or provide a small counterexample.

1. [2 points] Discuss whether MAP estimates are less prone to overfitting than MLE.

F SOLUTION: Usually, MAP is less prone to overfitting than MLE. MAP introduces
a prior over the parameters. So, given prior knowledge, we can bias the values of the
parameters. MLE on the other hand just returns the most likely parameters. Whether
MAP is really less prone to overfitting depends on which prior is used – an uninformative
(uniform) prior can lead to the same behavior as MLE.

2. [2 points] true/false Consider a classification problem with n attributes. The VC
dimension of the corresponding (linear) SVM hypothesis space is larger than that of
the corresponding logistic regression hypothesis space.

F SOLUTION: False. Since they are both linear classifiers, they have same VC di-
mension.

3. [2 points] Consider a classification problem with two classes and n binary attributes.
How many parameters would you need to learn with a Naive Bayes classifier? How
many parameters would you need to learn with a Bayes optimal classifier?

F SOLUTION: NB has 1 + 2n parameters — prior P (y = T ) and for every attribute
xi, we have p(xi = T |yi = T ) and p(xi = T |yi = F ).

For optimal Bayes for every configuration of attributes we need to estimate p(y|x). This
means we have 2n parameters.

4. [2 points] For an SVM, if we remove one of the support vectors from the training set,
does the size of the maximum margin decrease, stay the same, or increase for that data
set?

F SOLUTION: The margin will either increase or stay the same, because support
vectors are the ones that hold the marging from expanding.

Here is an example of increasing margin. Suppose we have one feature x ∈ R and binary
class y. The dataset consists of 3 points:

(x1, y1) = (−1,−1), (x2, y2) = (1, 1), (x3, y3) = (3, 1).
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Figure 1: Example of SVM margin remaining the same after one support vector is deleted
(for question 1.4).

For standard SVM with slacks the optimal separating hyperplane wx+b = 0 has parameters

w = 1, b = 0

corresponding to the margin of 2
|w| = 2. The support vectors are x1 and x2. If we remove

(x2, y2) from the dataset, new optimal parameters for the separating hyperplane will be

w =
1

2
, b =

−1

2

for the new margin of 2
|w| = 4.

If there are redundant support vectors, the margin may stay the same - see Fig. 1

Only mentioning that the margin will increase was worth 1 point. Full score was given for
mentioning both possibilities.

5. [2 points] true/false In n-fold cross-validation each data point belongs to exactly one
test fold, so the test folds are independent. Are the error estimates of the separate
folds also independent? So, given that the data in test folds i and j are independent,
are ei and ej, the error estimates on test folds i and j, also independent?

F SOLUTION: False. Since a data point appears in multiple folds the training sets
are dependent and thus test fold error estimates are dependent.

6. [2 points] true/false There is an a priori good choice of n for n-fold cross-validation.

F SOLUTION: False. We do not know the relation between sample size and the
accuracy. High n increases correlation in training set and decreases variance of estimates.
How much depends on the data and the learning method.

7. [0.52 extra credit points] Which of following songs are hits played by the B-52s:
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F Love Shack

F Private Idaho

• Symphony No. 5 in C Minor, Op. 67
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2 [12 points] Regression

For each of the following questions, you are given the same data set. Your task is to fit
a smooth function to this data set using several regression techniques. Please answer all
questions qualitatively, drawing the functions in the respective figures.

1. [3 points] Show the least squares fit of a linear regression model Y = aX + b.
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2. [3 points] Show the fit using Kernel regression with Gaussian kernel and an appropri-
ately chosen bandwidth.
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3. [3 points] Show the fit using Kernel local linear regression for an appropriately chosen
bandwidth.
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4. [3 points] Suggest a linear regression model Y =
∑

i φi(X) which fits the data well.
Why might you prefer this model to the kernel local linear regression model from part
3)?

F SOLUTION: An appropriate choice would be to fit a polynomial of degree three,
i.e. Y = w0 + w1X + w2X

2 + w3X
3. This choice seems to fit the overall trend in

the data well. The advantage of this approach over kernel local linear regression is that
only four parameters need to be estimated for making predictions. For kernel local linear
regression, all the data has to be remembered, leading to high memory and computational
requirements.
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3 [16 points] k-nearest neighbor and cross-validation

In the following questions you will consider a k-nearest neighbor classifier using Euclidean
distance metric on a binary classification task. We assign the class of the test point to be the
class of the majority of the k nearest neighbors. Note that a point can be its own neighbor.
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Figure 2: F SOLUTION: 1-nearest neighbor decision boundary.

1. [3 points] What value of k minimizes the training set error for this dataset? What is
the resulting training error?

F SOLUTION: Note that a point can be its own neighbor. So, k = 0 minimizes the
training set error. The error is 0.

2. [3 points] Why might using too large values k be bad in this dataset? Why might too
small values of k also be bad?

F SOLUTION: Too big k (k = 13) misclassifies every datapoint (using leave one out
cross validation). Too small k leads to overfitting.

3. [6 points] What value of k minimizes leave-one-out cross-validation error for this
dataset? What is the resulting error?
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F SOLUTION: k = 5 or k = 7 minimizes the leave-one-out cross-validation error.
The error is 4/14.

4. [4 points] In Figure 2, sketch the 1-nearest neighbor decision boundary for this dataset.

F SOLUTION: See figure 2.
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4 [20] Decision trees and pruning

You get the following data set:

V W X Y
0 0 0 0
0 1 0 1
1 0 0 1
1 1 0 0
1 1 1 0

Your task is to build a decision tree for classifying variable Y . (You can think of the data
set as replicated many times, i.e. overfitting is not an issue here).

1. [6 points] Compute the information gains IG(Y |V ), IG(Y |W ) and IG(Y |X). Remem-
ber, information gain is defined as

IG(A|B) = H(A)−
∑
b∈B

P (B = b)H(A|B = b)

where
H(A) = −

∑
a∈A

P (A = a) log2 P (A = a)

is the entropy of A and

H(A|B = b) = −
∑
a∈A

P (A = a|B = b) log2 P (A = a|B = b)

is conditional entropy of A given B.

Which attribute would ID3 select first?

F SOLUTION: We calculate:

H(Y ) = 0.97
H(Y |V ) = H(Y |W ) =

∑
b∈B P (B = b)H(A|B = b) = 0.95

H(Y |X) = 0.8

and information gains are: IG(Y |V ) = IG(Y |W ) = 0.02 and IG(Y |X) = 0.17. So
attribute X is selected first.

2. [3 points] Write down the entire decision tree constructed by ID3, without pruning.
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X
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X
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(a) Full tree (b) After top-down pruning

Figure 3: Solutions to questions 4.3, 4.4., 4.6.

F SOLUTION: A full tree is constructed. First we split on X. Given a split on X the
information grains for V and W are 0, so we split on either of them (let’s say V ). Last we
split on W (information gain is 1). Figure 3(a) gives the solution.

3. [3 points] One idea for pruning would be to start at the root, and prune splits for which
the information gain (or some other criterion) is less than some small ε. This is called
top-down pruning. What is the decision tree returned for ε = 0.0001? What is the
training set error for this tree?

F SOLUTION: After splitting on X the information gain of both V and W is 0. So
we will prune V and set the prediction to either Y = 0 or Y = 1. In either case we make
2 errors. Figure 3(b) gives the tree.

4. [3 points] Another option would be to start at the leaves, and prune subtrees for which
the information gain (or some other criterion) of a split is less than some small ε. In
this method, no ancestors of children with high information gain will get pruned. This
is called bottom-up pruning. What is the tree returned for ε = 0.0001? What is the
training set error for this tree?

F SOLUTION: Note that Y = V xor W . So when splitting on V information gain
of V is IG(Y |V ) = 0, and a step later when splitting on W , information gain of W is
IG(Y |W ) = 1.

So bottom-up pruning won’t delete any nodes and the tree remains the same, figure 3(a).

5. [2 points] Discuss when you would want to choose bottom-up pruning over top-down
pruning and vice versa. Compare the classification accuracy and computational com-
plexity of both types of pruning.
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V
0 1
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Y=0

W
0 1

W
0 1

Figure 4: Optimal decision tree for our dataset.

F SOLUTION: Top-down is computationally cheaper – when building the tree we can
determine when to stop (no need for real pruning). But as we saw top-down pruning prunes
too much. On the other hand bottom-up pruning is more expensive since we have to first
build a full tree – which can be exponentially large – and then apply pruning. The other
problem with this is that in the lower levels of the tree the number of examples in the
subtree gets smaller so information gain might be an inappropriate criterion for pruning.
One would usually use a statistical test (the p-values discussed in class) instead.

6. [3 points] What is the height of the tree returned by ID3 with bottom-up pruning?
Can you find a tree with smaller height which also perfectly classifies Y on the training
set? What conclusions does that imply about the performance of the ID3 algorithm?

F SOLUTION: Bottom-up pruning returns tree of height 3. Smaller tree that has
zero error is given in figure 4.

ID3 is a greedy algorithm. It looks only one step ahead and picks the best split. So for
instance it can not find optimal tree for the XOR dataset, which is the case in our dataset.
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5 [20 + 6 points] Learning theory

5.1 [8 points] Sample complexity

Consider the following hypothesis class: 3-SAT formulas over n attributes with k clauses.
A 3-SAT formula is a conjunction (AND, ∧) of clauses, where each clause is a disjunction
(OR, ∨) or three attributes, the attributes may appear positively or negated (¬) in a clause,
and an attribute may appear in many clauses. Here is an example over 10 attributes, with
5 clauses:

(X1∨¬X2∨X3)∧(¬X2∨X4∨¬X7)∧(X3∨¬X5∨¬X9)∧(¬X7∨¬X6∨¬X10)∧(X5∨X8∨X10).

You are hired as a consultant for a new company called FreeSAT.com, who wants to learn
3-SAT formulas from data. They tell you: We are trying to learn 3-SAT formulas for secret
widget data, all we can tell you us that true hypothesis is a 3-SAT formula in the hypothesis
class, and our top-secret learning algorithm always returns a hypothesis consistent with the
input data.

Here is your job: we give you an upper bound ε > 0 on the amount of true error we are
willing to accept. We know that this machine learning stuff can be kind of flaky and the
hypothesis you provide may not always be good, but it can only be bad with probability at
most δ > 0. We really want to know how much data we need. Please provide a bound on the
amount of data required to achieve this goal. Try to make your bound as tight as possible.
Justify your answer.

F SOLUTION: As discussed in the lecture, P (errortrue(h) > ε) ≤ |H|e−mε. By rearranging
the terms, we obtain that |H|e−mε < δ if and only if

m >
1

ε
(ln |H|+ ln

1

δ
). (1)

Thus, we only need to determine the number of possible hypotheses |H| the learner can
choose from. Each attribute may appear either positively or negated, and may only appear once
in a clause. Hence, there are 2n 2(n − 1) 2(n − 2) = 8n(n − 1)(n − 2) possible clauses. Since
there are a total of k clauses in each formula, |H| = (8n(n− 1)(n− 2))k.

Plugging |H| back to Equation 1, we obtain

m >
1

ε
(k ln 8n(n− 1)(n− 2) + ln

1

δ
). (2)

� COMMON MISTAKE 1: Some people claimed that |H| = 2(n
3), reasoning that there

are
(

n
3

)
clauses, and that each clause can either appear or not appear in the formula. However, in

this question, each variable can appear negated, and there are exactly k clauses in the formula.

� COMMON MISTAKE 2: A few people used the bound based on the Chernoff inequality.
While this is a valid bound, it is not tight (we took off 1 point).
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(a) three points (b) four points

Figure 5: Figures for Question 5.2.

5.2 [12 points] VC dimension

Consider the hypothesis class of rectangles, where everything inside the rectangle is labeled
as positive: A rectangle is defined by the bottom left corner (x1, y1) and the top right corner
(x2, y2), where x2 > x1 and y2 > y1. A point (x, y) is labeled as positive if and only if
x1 ≤ x ≤ x2 and y1 ≤ y ≤ y2. In this question, you will determine the VC dimension of this
hypothesis class.

1. [3 points] Consider the three points in Figure 5(a). Show that rectangles can shatter
these three points.

F SOLUTION: We need to verify that for any assignment of labels to the points, there
is a rectangle that covers the positively labeled points (and no other). Figure 6 illustrates
some possible assignments and corresponding rectangles; the remaining cases follow by
symmetry.

2. [3 points] Consider the four points in Figure 5(b). Show that rectangles cannot shatter
these four points.

F SOLUTION: Assign positive labels to the opposite vertices of the square formed by
the 4 points and negative labels to the other two vertices, see Figure 7(a). The rectangle
can cover only two points that are vertically or horizontally aligned, but not those along a
diagonal.
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Figure 6: Solution to Question 5.2.1.
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(a) 4 points that cannot be shat-
tered with rectangles

(b) 4 points that can be shat-
tered with rectangles

Figure 7: Solutions to Questions 5.2.2,5.2.3.

3. [3 points] The VC dimension of a hypothesis space is defined in terms of the largest
number of input points that can be shattered, where the “hypothesis” gets to pick the
locations, and an opponent gets to pick the labels. Thus, even though you showed in
Item 2 that rectangles cannot shatter the four points in Figure 5(b), the VC dimension
of rectangles is actually equal to 4. Prove that rectangles have VC dimension of at least
4 by showing the position of four points that can be shattered by rectangles. Justify
your answer.

F SOLUTION: The points in Figure 7(b) can always be correctly classified, as illus-
trated in Figure 8.

� COMMON MISTAKE : Some people merely showed a configuration and one
labeling of points that is correctly classified by rectangles. This is incorrect: instead, we
need to show a configuration s.t. for every labeling of the points, there is a consistent
hypothesis (rectangle).
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Figure 8: Solution to Question 5.2.3.

4. [3 points] So far, you have proved that the VC dimension of rectangles is at least 4.
Prove that the VC dimension is exactly 4 by showing that there is no set of 5 points
which can be shattered by rectangles.

F SOLUTION: Given any five points in the plane, the following algorithm assigns a
label to each point s.t. no rectangle can classify the points correctly: Find a point with a
minimum x coordinate and a point with a maximum x coordinate and assign these points
a positive label. Similarly, find a point with a minimum y coordinate and a maximum
y coordinate, and assign these points a positive label. Assign the remaining point(s) a
negative label. Any rectangle that classifies the positively labeled points correctly must
contain all five points, hence would not correctly classify the point(s) with a negative label.

� COMMON MISTAKE : Some people provided a partial proof based on the convex
hull of the points, arguing that if there is a point inside the hull, we can assign this point
a negative label and assign all the other points a positive label. While this statement is
true, it still needs to be shown what the labeling ought to be when all five points lie on the
boundary of the convex hull.
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Figure 9: Solution to 5.2.5. (a) 5 points that can be correctly classified with signed rectangles.
(b)-(d) Labeling of any 6 points that cannot be correctly classified with signed rectangles.

5. Extra credit: [6 points] Now consider signed rectangles, where, in addition to defining
the corners, you get to define whether everything inside the rectangle is labeled as
positive or as negative. What is the VC dimension of this hypothesis class?

Prove tight upper and lower bounds: if your answer is k, show that you can shatter k
points and also show that k + 1 points can not be shattered.

F SOLUTION: We will show that k = 5.
To prove the lower bound, consider the configuration of points in Figure 9(a). It can be easily

verified that this configuration can be classified correctly by signed rectangles for any labeling of
the points, hence signed rectangles can shatter 5 points.

The proof of the upper bound is based on the following idea: Consider 6 points in an arbitrary
position, as illustrated in Figure 9(b). Suppose that we are able to split these 6 points into
two sets V , W , so that the minimal rectangle that covers the set V includes at least one point
from rectangle W and vice versa. For example, in Figure 9(b), we can let V = {1, 2, 3} and
W = {4, 5, 6}. Then, if we label the points in V as positive and the points in W as negative, no
signed rectangle can classify the points correctly.

How do we obtain such a partition? Similarly to the solution to part 4, let

• xL , mini xi denote the x coordinate of a leftmost point L,

• xR , maxi xi denote the x coordinate of a rightmost point R,

• yB , mini yi denote the y coordinate of a lowest point B, and

• yT , maxi yi denote the y coordinate of a topmost point T .

Take any two of the remaining points, say, 1 and 2; let 1 denote the point with the smaller
x coordinate, i.e. x1 ≤ x2. If y1 ≤ y2, let V = {L, B, 2}, W = {R, T, 1}, see Figure 9(c).
Otherwise, if y1 > y2, let V = {R,B, 1}, W = {L, T, 2}, see Figure 9(d).
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6 [20 + 6 points] SVM and slacks

Consider a simple classification problem: there is one feature x with values in R, and class
y can be 1 or -1. You have 2 data points:

(x1, y1) = (1, 1)

(x2, y2) = (−1,−1).

1. [4 points] For this problem write down the QP problem for an SVM with slack variables
and Hinge loss. Denote the weight for the slack variables C, and let the equation of
the decision boundary be

wx + b = 0.

F SOLUTION: The general problem formulation is

min wT w + C
∑

i ξi

subject to yi(wxi + b) ≥ 1− ξi

ξi ≥ 0
(3)

In our case w is one-dimensional, so wT w = w2. Plugging in the values for xi and yi we
get

min w2 + C(ξ1 + ξ2)
subject to 1(1w + b) ≥ 1− ξ1

−1(−1w + b) ≥ 1− ξ2

ξ1 ≥ 0, ξ2 ≥ 0

⇒

min w2 + C(ξ1 + ξ2)
subject to w + b ≥ 1− ξ1

w − b ≥ 1− ξ2

ξ1 ≥ 0, ξ2 ≥ 0

(4)

� COMMON MISTAKE 1: Many people stopped after writing down a general SVM
formulation (Equation 3) or its dual. We gave 2 points out of 4 for that.

2. [6 points] It turns out that optimal w is

w∗ = min(C, 1).

Find the optimal b as a function of C. Hint: for some values of C there will be an
interval of optimal b’s that are equally good.

F SOLUTION: First let us write down the constraints on b from Equation 4:

w + b ≥ 1− ξ1

w − b ≥ 1− ξ2
⇒ 1− ξ1 − w ≤ b ≤ −1 + ξ2 + w (5)
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We know w∗ = min(C, 1), so we only need conditions on ξi.

w∗ + b ≥ 1− ξ1

w∗ − b ≥ 1− ξ2
⇒ ξ1 + ξ2 ≥ 2− 2w∗

We also know that ξi ≥ 0 and that we are minimizing

w2 + C(ξ1 + ξ2), C > 0

w = w∗ is fixed, so we need to minimize C(ξ1 + ξ2). Therefore

ξ1 + ξ2 = max{2− 2w, 0} = max{2− 2 min{C, 1}, 0}

Suppose C ≥ 1. Then w∗ = 1 and

ξ1 + ξ2 = max{2− 2w∗, 0} = max{0, 0} = 0 ⇒ ξ1 = ξ2 = 0

and Equation 5 gives us

1− ξ1 − w∗ ≤ b ≤ −1 + ξ2 + w∗ ⇒ 1− w ≤ b ≤ −1 + w

⇒ 0 ≤ b ≤ 0

⇒ b = 0

Now suppose C < 1. Then w∗ = C and

2− 2w∗ = 2(1− C) > 0

so
ξ1 + ξ2 = max{2− 2w∗, 0} = 2− 2C ⇒ ξ2 = 2− 2C − ξ1 (6)

and Equation 5 gives us

1− ξ1 − w∗ ≤ b ≤ −1 + ξ2 + w∗ ⇒ 1− ξ1 − C ≤ b ≤ −1 + ξ2 + C

⇒ 1− ξ1 − C ≤ b ≤ −1 + 2− 2C − ξ1 + C

⇒ 1− ξ1 − C ≤ b ≤ 1− ξ1 − C

⇒ b = 1− C − ξ1 (7)

So, where are the intervals of equally good b’s that we were promised in the beginning?
Equation 6 along with

ξi ≥ 0

give us flexibility in choosing ξ1: all

ξ1 ∈ [0; 2− 2C]

are equally good. Therefore

b ∈ [1− C − (2− 2C), 1− C] = [−1 + C, 1− C]

To conclude, we have shown that optimal b is

b =

{
0, C ≥ 1
[−1 + C, 1− C], 0 < C ≤ 1

18



3. [4 points] Suppose that C < 1 and you have chosen a hyperplane

xw∗ + b∗ = 0, such that b∗ = 0

as a solution. Now a third point, (x3, 1), is added to your dataset. Show that if x3 > 1
C
,

then the old parameters (w∗, b∗) achieve the same value of the objective function

w2 +
∑

i

Cξi

for the 3-point dataset as they did for a 2-point dataset.

F SOLUTION: Because the new criterion is

new criterion = w2 + C(ξ1 + ξ2 + ξ3) = old criterion + Cξ3,

we only need to show that the corresponding constraint

y3(w
∗x3 + b∗) ≥ 1− ξ3 (8)

is inactive, i.e. ξ3 = 0. Plugging in w∗ = C, b = 0 we get

x3

C
≥ 1− ξ3

But

x3 >
1

C
⇒ x3

C
> 1

so the constraint (8) is satisfied for ξ3 = 0, qed.

4. [6 points] Now in the same situation as in part 3., assume x3 ∈ [1, 1
C
]. Show that there

exists a b∗3 such that (w∗, b∗3) achieve the same value of the objective function for the
3-point dataset as (w∗, b∗) achieve for the 2-point dataset. Hint: Consider b∗3 such that
the positive canonical hyperplane contains x3.

F SOLUTION: We cannot anymore show that the new constraint

y3(w
∗x3 + b∗) ≥ 1− ξ3

is inactive given the old value of b∗, so let us use the hint and consider b∗3 such that the
positive canonical hyperplane contains x3:

y3(w
∗x3 + b∗3) = 1 ⇒ b∗3 = 1− Cx3

Using Equation 7 we get

b∗3 = 1− C − ξ1 ⇒ ξ1 = 1− C − (1− Cx3)

⇒ ξ1 = C(x3 − 1)

⇒ ξ2 = 2− 2C − ξ1 = 2− C(1 + x3)
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and we can check that ξi ≥ 0 holds:

x3 > 1 ⇒ ξ1 = C(x3 − 1) > 0

x3 <
1

C
⇒ ξ2 = 2− C(1 + x3) > 1− C > 0

and the value of the new objective function is

w∗2 + C(ξ1 + ξ2 + ξ3) = C2 + C(C(x3 − 1) + 2− C(1 + x3) + 0) = C2 + 2C(1− C)

whereas the old objective function value was

w∗2 + C(ξ1 + ξ2) = {using (6) and (7)} = C2 + C(1− C + 1− C) = C2 + 2C(1− C)

qed.

5. Extra credit: [6 points] Solve the QP problem that you wrote in part 1 for the optimal
w. Show that the optimal w is

w∗ = min(C, 1).

Hint: Pay attention to which constraints will be tight. It is useful to temporarily denote
ξ1 +ξ2 with t. Solve the constraints for t and plug into the objective. Do a case analysis
of when the constraint for t in terms of C will be tight.

F SOLUTION: From Equation 4 we have

w + b ≥ 1− ξ1

w − b ≥ 1− ξ2
⇒ w ≥ 1− ξ1 + ξ2

2

Let us show that this is in fact a tight constraint. We need to minimize w2. If ξ1+ξ2
2

≤ 1,
then

1− ξ1 + ξ2

2
≥ 0

so the minimal w2 is achieved when w = 1− ξ1+ξ2
2

.

Suppose now that ξ1+ξ2
2

> 1. Then optimal value of w is 0. The conditions on ξi become

b ≥ 1− ξ1

−b ≥ 1− ξ2

We can then set b = 0, ξnew
i = 1 to achieve the optimization criterion value of

w2 + C(ξnew
1 + ξnew

2 ) = 0 + 2C = 2C

instead of the old value of

w2 + C(ξ1 + ξ2) = 0 + C(ξ1 + ξ2) > 2C
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so ξ1+ξ2
2

> 1 cannot be the optimal solution to the problem.

Now we know that w = 1− ξ1+ξ2
2

. Denote

t ≡ ξ1 + ξ2.

The optimization criterion becomes

min(w2 + C(ξ1 + ξ2)) = min((1− t

2
)2 + Ct) (9)

Take a derivative w.r.t. t and set it to 0:

2(1− t

2
)
−1

2
+ C = 0

t

2
= 1− C

so the lowest point of (9) is achieved by

t = 2(1− C)

Now we need the last observation: because ξi ≥ 0, we have a constraint on t: t ≥ 0.
Therefore

t = max{2(1− C), 0}

so

w = 1− t

2
= 1−max{1− C, 0} = 1 + min{C − 1, 0} = min{C, 1}

qed. This was a really hard question, especially since you did not have a lot of time on the
midterm, but then it was an extra credit part.
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