
ANDREW ID (CAPITALS):NAME (CAPITALS):
10-701/15-781 Final, Fall 2003

� You have 3 hours.� There are 10 questions. If you get stuk on one question, move on to others and omebak to the diÆult question later.� The maximum possible total sore is 100.� Unless otherwise stated there is no need to show your working.� Good luk!
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1 Short Questions (16 points)(a) Traditionally, when we have a real-valued input attribute during deision-tree learningwe onsider a binary split aording to whether the attribute is above or below somethreshold. Pat suggests that instead we should just have a multiway split with onebranh for eah of the distint values of the attribute. From the list below hoose thesingle biggest problem with Pat's suggestion:(i) It is too omputationally expensive.(ii) It would probably result in a deision tree that sores badly on the training setand a testset.(iii) It would probably result in a deision tree that sores well on the training set butbadly on a testset.(iv) It would probably result in a deision tree that sores well on a testset but badlyon a training set.(b) You have a dataset with three ategorial input attributes A, B and C. There is oneategorial output attribute Y. You are trying to learn a Naive Bayes Classi�er forprediting Y. Whih of these Bayes Net diagrams represents the naive bayes lassi�erassumption?
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(iv)

() For a neural network, whih one of these strutural assumptions is the one that mosta�ets the trade-o� between under�tting (i.e. a high bias model) and over�tting (i.e.a high variane model):(i) The number of hidden nodes(ii) The learning rate(iii) The initial hoie of weights(iv) The use of a onstant-term unit input2



(d) For polynomial regression, whih one of these strutural assumptions is the one thatmost a�ets the trade-o� between under�tting and over�tting:(i) The polynomial degree(ii) Whether we learn the weights by matrix inversion or gradient desent(iii) The assumed variane of the Gaussian noise(iv) The use of a onstant-term unit input(e) For a Gaussian Bayes lassi�er, whih one of these strutural assumptions is the onethat most a�ets the trade-o� between under�tting and over�tting:(i) Whether we learn the lass enters by Maximum Likelihood or Gradient Desent(ii) Whether we assume full lass ovariane matries or diagonal lass ovarianematries(iii) Whether we have equal lass priors or priors estimated from the data.(iv) Whether we allow lasses to have di�erent mean vetors or we fore them to sharethe same mean vetor(f) For Kernel Regression, whih one of these strutural assumptions is the one that mosta�ets the trade-o� between under�tting and over�tting:(i) Whether kernel funtion is Gaussian versus triangular versus box-shaped(ii) Whether we use Eulidian versus L1 versus L1 metris(iii) The kernel width(iv) The maximum height of the kernel funtion(g) (True or False) Given two lassi�ers A and B, if A has a lower VC-dimension thanB then A almost ertainly will perform better on a testset.(h) P (Good Movie j Inludes Tom Cruise) = 0:01P (Good Movie j Tom Cruise absent) = 0:1P (Tom Cruise in a randomly hosen movie) = 0:01What is P (Tom Cruise is in the movie j Not a Good Movie)?
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2 Markov Deision Proesses (13 points)For this question it might be helpful to reall the following geometri identities, whih assume0 � � < 1. kXi=0 �i = 1� �k+11� � 1Xi=0 �i = 11� �The following �gure shows an MDP with N states. All states have two ations (Northand Right) exept Sn, whih an only self-loop. Unlike most MDPs, all state transitions aredeterministi. Assume disount fator .
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p=1For questions (a){(e), express your answer as a �nite expression (no summationsigns or : : : 's) in terms of n and/or .(a) What is J�(Sn)?
(b) There is a unique optimal poliy. What is it?
() What is J�(S1)?
(d) Suppose you try to solve this MDP using value iteration. What is J1(S1)?
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(e) Suppose you try to solve this MDP using value iteration. What is J2(S1)?

(f) Suppose your omputer has exat arithmeti (no rounding errors). How many itera-tions of value iteration will be needed before all states reord their exat (orret toin�nite deimal plaes) J� value? Pik one:(i) Less than 2n(ii) Between 2n and n2(iii) Between n2 + 1 and 2n(iv) It will never happen(g) Suppose you run poliy iteration. During one step of poliy iteration you ompute thevalue of the urrent poliy by omputing the exat solution to the appropriate systemof n equations in n unknowns. Suppose too that when hoosing the ation during thepoliy improvement step, ties are broken by hoosing North.Suppose poliy iteration begins with all states hoosing North.How many steps of poliy iteration will be needed before all states reord their exat(orret to in�nite deimal plaes) J� value? Pik one:(i) Less than 2n(ii) Between 2n and n2(iii) Between n2 + 1 and 2n(iv) It will never happen 5



3 Reinforement Learning (10 points)This question uses the same MDP as the previous question, repeated here for your onve-niene. Again, assume  = 12 .
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p=1Suppose we are disovering the optimal poliy via Q-learning. We begin with a Q-tableinitialized with 0's everywhere:Q(Si; North) = 0 for all iQ(Si; Right) = 0 for all iBeause the MDP is determisti, we run Q-learning with a learning rate � = 1. Assume westart Q-learning at state S1.(a) Suppose our exploration poliy is to always hoose a random ation. How many stepsdo we expet to take before we �rst enter state Sn?(i) O(n) steps(ii) O(n2) steps(iii) O(n3) steps(iv) O(2n) steps(v) It will ertainly never happen(b) Suppose our exploration is greedy and we break ties by going North:Choose North if Q(Si; North) � Q(Si; Right)Choose Right if Q(Si; North) < Q(Si; Right)How many steps do we expet to take before we �rst enter state Sn?(i) O(n) steps(ii) O(n2) steps(iii) O(n3) steps(iv) O(2n) steps(v) It will ertainly never happen
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() Suppose our exploration is greedy and we break ties by going Right:Choose North if Q(Si; North) > Q(Si; Right)Choose Right if Q(Si; North) � Q(Si; Right)How many steps do we expet to take before we �rst enter state Sn?(i) O(n) steps(ii) O(n2) steps(iii) O(n3) steps(iv) O(2n) steps(v) It will ertainly never happenWARNING: Question (d) is only worth 1 point so you should probably justguess the answer unless you have plenty of time.(d) In this question we work with a similar MDP exept that eah state other than Sn hasa punishment (-1) instead of a reward (+1). Sn remains the same large reward (10).The new MDP is shown below:
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p=1Suppose our exploration is greedy and we break ties by going North:Choose North if Q(Si; North) � Q(Si; Right)Choose Right if Q(Si; North) < Q(Si; Right)How many steps do we expet to take before we �rst enter state Sn?(i) O(n) steps(ii) O(n2) steps(iii) O(n3) steps(iv) O(2n) steps(v) It will ertainly never happen
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4 Bayesian Networks (11 points)Constrution. Two astronomers in two di�erent parts of the world, make measurementsM1 and M2 of the number of stars N in some small regions of the sky, using their telesopes.Normally, there is a small possibility of error by up to one star in eah diretion. Eahtelesope an be, with a muh smaller probability, badly out of fous (events F1 and F2). Insuh a ase the sientist will underount by three or more stars or, if N is less than three,fail to detet any stars at all.For questions (a) and (b), onsider the four networks shown below.
NF1 F2M1 M2 NF1 F2M1 M2
NM1 M2

F1 F2 N
F1 F2M1 M2

(i) (ii)
(iii) (iv)

(a) Whih of them orretly, but not neessarily eÆiently, represents the above informa-tion? Note that there may be multiple answers.
(b) Whih is the best network?
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Inferene. A student of the Mahine Learning lass noties that people driving SUVs(S) onsume large amounts of gas (G) and are involved in more aidents than the nationalaverage (A). He also notied that there are two types of people that drive SUVs: peoplefrom Pennsylvania (L) and people with large families (F ). After olleting some statistis,he arrives at the following Bayesian network.
S P(S|L,F)=0.8P(S|~L,F) = 0.5P(S|L,~F)=0.6P(S|~L,~F)=0.3

LP(L)=0.4 F P(F)=0.6
AP(A|S)=0.7P(A|~S)=0.3 G P(G|S)=0.8P(G|~S)=0.2() What is P (S)?

(d) What is P (SjA)?
Consider the following Bayesian network. State whether the given onditional independenesare implied by the net struture.CA B DEF(f) (True or False) I<A,fg,B>(g) (True or False) I<A,fEg,D>(h) (True or False) I<A,fFg,D> 9



5 Instane Based Learning (8 points)Consider the following dataset with one real-valued input x and onebinary output y. We are going to use k-NN with unweighted Eu-lidean distane to predit y for x.
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4.9 +(a) What is the leave-one-out ross-validation error of 1-NN on this dataset? Give youranswer as the number of mislassi�ations.(b) What is the leave-one-out ross-validation error of 3-NN on this dataset? Give youranswer as the number of mislassi�ations.Consider a dataset with N examples: f(xi; yi)j1 � i � Ng, where both xi and yi are realvalued for all i. Examples are generated by yi = w0 + w1xi + ei where ei is a Gaussianrandom variable with mean 0 and standard deviation 1.() We use least square linear regression to solve w0 and w1, that isfw�0; w�1g = arg minfw0;w1gPNi=1(yi � w0 � w1xi)2:We assume the solution is unique. Whih one of the following statements is true?(i) PNi=1(yi � w�0 � w�1xi)yi = 0(ii) PNi=1(yi � w�0 � w�1xi)x2i = 0(iii) PNi=1(yi � w�0 � w�1xi)xi = 0(iv) PNi=1(yi � w�0 � w�1xi)2 = 0(d) We hange the optimization riterion to inlude loal weights, that isfw�0; w�1g = arg minfw0;w1gPNi=1 �2i (yi � w0 � w1xi)2where �i is a loal weight. Whih one of the following statements is true?(i) PNi=1 �2i (yi � w�0 � w�1xi)(xi + �i) = 0(ii) PNi=1 �i(yi � w�0 � w�1xi)xi = 0(iii) PNi=1 �2i (yi � w�0 � w�1xi)(xiyi + w�1) = 0(iv) PNi=1 �2i (yi � w�0 � w�1xi)xi = 0 10



6 VC-dimension (9 points)Let H denote a hypothesis lass, and V C(H) denote its VC dimension.(a) (True or False) If there exists a set of k instanes that annot be shattered by H,then V C(H) < k.(b) (True or False) If two hypothesis lasses H1 and H2 satisfy H1 � H2, thenV C(H1) � V C(H2).() (True or False) If three hypothesis lasses H1; H2 and H3 satisfy H1 = H2 [ H3 ,then V C(H1) � V C(H2) + V C(H3) .For questions (d){(f), give V C(H). No explanation is required.(d) H = fh�j0 � � � 1; h�(x) = 1 i� x � � otherwise h�(x) = 0g.
(e) H is the set of all pereptrons in 2D plane, i.e.H = fhwjhw = �(w0 + w1x1 + w2x2) where �(z) = 1 i� z � 0 otherwise �z = 0g.
(f) H is the set of all irles in 2D plane. Points inside the irles are lassi�ed as 1otherwise 0.
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7 SVM and Kernel Methods (8 points)(a) Kernel funtions impliitly de�ne some mapping funtion �(�) that transforms an inputinstane x 2 Rd to a high dimensional feature spae Q by giving the form of dot produtin Q: K(xi;xj) = �(xi) � �(xj).Assume we use radial basis kernel funtion K(xi;xj) = exp(�12kxi � xjk2). Thus weassume that there's some impliit unknown funtion �(x) suh that�(xi) � �(xj) = K(xi;xj) = exp(�12kxi � xjk2)Prove that for any two input instanes xi and xj, the squared Eulidean distaneof their orresponding points in the feature spae Q is less than 2, i.e. prove thatk�(xi)� �(xj)k2 < 2.

(b) With the help of a kernel funtion, SVM attempts to onstrut a hyper-plane in thefeature spae Q that maximizes the margin between two lasses. The lassi�ationdeision of any x is made on the basis of the sign ofŵT�(x) + ŵ0 =Xi2SV yi�iK(xi;x) + ŵ0 = f(x;�; ŵ0);where ŵ and ŵ0 are parameters for the lassi�ation hyper-plane in the feature spaeQ, SV is the set of support vetors, and �i is the oeÆient for the support vetor.Again we use the radial basis kernel funtion. Assume that the training instanes arelinearly separable in the feature spae Q, and assume that the SVM �nds a marginthat perfetly separates the points.(True or False) If we hoose a test point xfar whih is far away from any traininginstane xi (distane here is measured in the original spae Rd), we will observe thatf(xfar;�; ŵ0) � ŵ0.() (True or False) The SVM learning algorithm is guaranteed to �nd the globallyoptimal hypothesis with respet to its objet funtion.(d) (True or False) The VC dimension of a Pereptron is smaller than the VC dimensionof a simple linear SVM. 12



(e) (True or False) After being mapped into feature spae Q through a radial basiskernel funtion, a Pereptron may be able to ahieve better lassi�ation performanethan in its original spae (though we an't guarantee this).(f) (True or False) After mapped into feature spae Q through a radial basis kernelfuntion, 1-NN using unweighted Eulidean distane may be able to ahieve betterlassi�ation performane than in original spae (though we an't guarantee this).
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8 GMM (8 points)Consider the lassi�ation problem illustrated in the following �gure. The data points in the�gure are labeled, where \o" orresponds to lass 0 and \+" orresponds to lass 1. We nowestimate a GMM onsisting of 2 Gaussians, one Gaussian per lass, with the onstraint thatthe ovariane matries are identity matries. The mixing proportions (lass frequenies)and the means of the two Gaussians are free parameters.
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(a) Plot the maximum likelihood estimates of the means of the two Gaussians in the �gure.Mark the means as points \x" and label them \0" and \1" aording to the lass.(b) Based on the learned GMM, what is the probability of generating a new data pointthat belongs to lass 0?() How many data points are lassi�ed inorretly?(d) Draw the deision boundary in the same �gure.
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9 K-means Clustering (9 points)There is a set S onsisting of 6 points in the plane shown as below, a = (0; 0), b = (8; 0), = (16; 0), d = (0; 6), e = (8; 6), f = (16; 6). Now we run the k-means algorithm on thosepoints with k = 3. The algorithm uses the Eulidean distane metri (i.e. the straight linedistane between two points) to assign eah point to its nearest entroid. Ties are broken infavor of the entroid to the left/down. Two de�nitions:� A k-starting on�guration is a subset of k starting points from S that form theinitial entroids, e.g. fa; b; g.� A k-partition is a partition of S into k non-empty subsets, e.g. fa; b; eg; f; dg; ffg isa 3-partition.Clearly any k-partition indues a set of k entroids in the natural manner. A k-partitionis alled stable if a repetition of the k-means iteration with the indued entroids leaves itunhanged.
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(a) How many 3-starting on�gurations are there? (Remember, a 3-starting on�gurationis just a subset, of size 3, of the six datapoints).(b) Fill in the following table:3-partition Is it sta-ble? An example 3-starting on�gura-tion that an arrive at the 3-partition after 0 or more itera-tions of k-means (or write \none"if no suh 3-starting on�gura-tion)
The number ofunique startingon�gurations thatan arrive at the3-partitionfa; b; eg; f; dg; ffgfa; bg; fd; eg; f; fgfa; dg; fb; eg; f; fgfag; fdg; fb; ; e; fgfa; bg; fdg; f; e; fgfa; b; dg; fg; fe; fg
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10 Hidden Markov Models (8 points)Consider a hidden Markov model illustrated as the �gure shown below, whih shows thehidden state transitions and the assoiated probabilities along with the initial state distribu-tion. We assume that the state dependent outputs (oin ips) are governed by the followingdistributionsP (x = headsjs = 1) = 0:51P (x = headsjs = 2) = 0:49P (x = tailsjs = 1) = 0:49P (x = tailsjs = 2) = 0:51In other words, our oin is slightly biased towards heads in state 1 whereas in state 2 tailsis a somewhat more probable outome.
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(a) Now, suppose we observe three oin ips all resulting in heads. The sequene ofobservations is therefore heads; heads; heads. What is the most likely state sequenegiven these three observations? (It is not neessary to use the Viterbi algorithm todedue this, nor any subsequent questions).
(b) What happens to the most likely state sequene if we observe a long sequene of allheads (e.g., 106 heads in a row)?
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() Consider the following 3-state HMM, �1, �2 and �3 are the probabilities of starting fromeah state S1, S2 and S3. Give a set of values so that the resulting HMM maximizesthe likelihood of the output sequene ABA.
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PSfrag replaements
�1 = �2 =

�3 =
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(d) We're going to use EM to learn the parameters for the following HMM. Before the �rstiteration of EM we have initialized the parameters as shown in the following �gure.(True or False) For these initial values, EM will suessfully onverge to the modelthat maximizes the likelihood of the training sequene ABA.
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PSfrag replaements�1 =�2 =�3 =
�1 = 1/3 �2 = 1/3

�3 = 1/3

1/3 1/31/3
1/3 2/3 1/3 1/3

1/3
1/3 2/3

1/3 1/3
1/31/32/3

(e) (True or False) In general when are trying to learn an HMM with a small number ofstates from a large number of observations, we an almost always inrease the trainingdata likelihood by permitting more hidden states.
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