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OK... now we’ll learn to pick those
_ . darned parameters. ..

jm Selecting features (or basis functions)
Linear regression
Naive Bayes
Logistic regression
m Selecting parameter value
Prior strength
= Naive Bayes, linear and logistic regression
Regularization strength
= Naive Bayes, linear and logistic regression
Decision trees
= MaxpChance, depth, number of leaves
Boosting
= Number of rounds
More generally, these are called Model Selection Problems
Today:
Describe basic idea

Introduce very important concept for tuning learning approaches: Cross-Validation
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Simple greedy model selection algorithm

"

m Pick a dictionary of features Y. 1, %, 759/751/:*";
e.g., polynomials for linear regression

m Greedy heuristic:
Start from empty (or simple) set of 4, Fo- {l/it?
features F, = &

Run learning algorithm for current set
of features F,

= Obtain h,
Select next best feature X;

= e.g., X that results in lowest training error
learner when learning with F, U {X}

Fi, +— F U {XJ-}
Recurse
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Greedy model selection
* JJE
m Applicable in many settings:
Linear regression: Selecting basis functions
Naive Bayes: Selecting (independent) features P(Xi|Y)
Logistic regression: Selecting features (basis functions)
Decision trees: Selecting leaves to expand

m Only a heuristic!

But, sometimes you can prove something cool about it

= e.g., [Krause & Guestrin '05]: Near-optimal in some settings that
include Naive Bayes

m There are man elaborate methods out there
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Simple greedy model selection algorithm
" S

m Greedy heuristic:

Select next best feature

= e.g, X that results in?owest training error
learner when learning with F U {X}

U {X}
When do you stop???

m When training error is low enough? <&
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Simple greedy model selection algorithm
" S

m Greedy heuristic:

Select next best feature X;

= e.g, X that results in lowest training error
learner when learning with F U {X}

U {X}
When do you stop???

m ‘When-training-error-islow-enough?—
m When test set error*is low enough? f\L(/zV/va U
S(u_% 2
A

=

Yo |
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Validation set
= JEE

Thus far: Given a dataset, randomm§plit it into fw:
Training data — {X;,..., Xnain}
Test data — {Xy,..., Xyest} J @
But Test data must always remain independent!
Never ever ever ever learn on test data, including for model selection
Gimomly split it into three parts:
Training data — {X, ..., Xnain} =
Validation data — {X,,..., X\yaia} [
Test data — {X,,..., Xntest} 7 ]
Use validation data for tuning learning algorithm, e.g., model
selection
Save test data for very final evaluation

c—
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Simple greedy model selection algorithm
" SN | Lﬁ/ﬁd

m Greedy heuristic:

Select next best feature X;

= e.g, X that results in lowest training error
learner when learning with F U {X}

U {X}
When do you stop???

m ‘When-training-error-islow-enough?—
m When-testseterrorislow-enough?—

m When validation set error is low enough?
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Simple greedy model selection algorithm
" S

m Greedy heuristic:

Select next best feature X;

= e.g., X that results in lowest training error
learner when learning with F U {X}

U {X}
When do you stop???

When-training-erroristow-enough?—
When-testset-errorisltow-enough?—

Mantt 8% SHould 1 ustbmiriEt tred727

| am tired now...
No, “There is a better way!”
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(LOO) Leave-one-out cross validation
" S

m Consider a validation set with 1 example:

D - training data

D\i —training data with ith data point moved to validation set
m Learn classifier hy; with D\i dataset

m Estimate true error as: /) £ [ﬂ(kD/l()( i(g)\s_em
. L , y

0 if hy classifies ith data point correctl 3 A
1if hy,; is wrong about ith data point 2 Undiasd esfud of

Seems really bad estimator, but wait! P trvor of L’D/,‘
m LOO cross validation: Average over all data points i:
For each data point you leave out, learn a new classifier hy,

Estimate error as: — 9 0<0Q l\
1 “"lfd",(

ETTOTLOO = — Z 1 (hp\z(x ) F vy ) Con i
/\ m;— Ldﬁﬂ

/a M\“ l)(ﬁ/v\’) ©2005-2007 Carlos Guestrin 11

LOO cross validation is (almost)
unbiased estimate of true error!
JEE

m  When computing LOOCYV error, we only use m-1 data points
So it's not estimate of true error of learning with m data points!
Usually pessimistic, though — learning with less data typically gives worse answer

m LOO is almost unbiased!
Let errory, . ., be true error of learner when you only get m-1 data points
In homework, you'll prove that LOO is unbiased estimate of error,

true,m-1*

Ep [67“7“07"L00] — CTTOTtrue,m—1

m Great news!
Use LOO error for model selection!!!

©2005-2007 Carlos Guestrin 12




Simple greedy model selection algorithm
" S

m Greedy heuristic:

Select next best feature X;

= e.g, X that results in lowest training error
learner when learning with F U {X}

U {X}
When do you stop???

m ‘When-training-error-islow-enough?—
m When-testseterrorislow-enough?—

. I . :
‘ STOP WHEN error g5 IS LOW!! ;
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Using LOO error for model selection
" S SO

Co,




Computational cost of LOO
“ JEE
m Suppose you have 100,000 data points
m You implemented a great version of your learning
algorithm
Learns in only 1 second
m Computing LOO will take about 1 day!!!

If you have to do for each choice of basis functions, it will
take fooooooreeeve’!!!

m Solution 1: Preferred, but not usually possible
Find a cool trick to compute LOO (e.g., see homework)
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Solution 2 to complexity of computing LOO:
(More typical) Use k-fold cross validation
" JEE

= Randomly divide training data into k equal partsyp, et

D,,....D, ' —
m Foreachi %“‘A — / L /
Learn classifier hy,; USing data point notin D; /m /e ?ojn‘{'g
Estimate error of hy,y; on validation set D;:
errorp, = % Z 1 (hD\\D‘(x-") #*= 1;") é/IQ_‘F;L 99
§iae Mi'i(‘\?c._._/ (7-(-’-!.‘-“)61'3; _ ang
m k-fold cross validation error is average over data splits:  §<cfy, D.)

Lrrar

1 k
CT?"O?"k_fOEd == I Z CT'T'OTDF
i=1
m k-fold cross validation properties:
Much faster to compute than LOO
More (pessimistically) biased — using much less data, only m(k-1)/k

Usually, k =10 ©
R
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Regularization — Revisited
“ JEE
m Model selection 1: Greedy
Pick subset of features that have yield low LOO error

m Model selection 2: Regularization
Include all possible features! { Lx, -,
Penalize “complicated” hypothesis

X

17
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Regularization in linear regression
" S

m Overfitting usually leads to very large parameter choices, e.qg.:
-2.2+3.1X-0.30 X2 -1.1 +4,700,910.7 X — 8,585,638.4 X2 + ...

plck

~
m Regularized least-squares (a.k.a. ridge regression), for A>0:
regularizea

2 k
w = arg II_Vl‘irIlZ (t(xj) — Zwihé(xj)) + )\;w?

7

—_ AN—
e U\}w\b bl

"”—f)v\ e (3evhon Lt,«,,\
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Other reqgularization examples
* J
m Logistic regression regularization
Maximize data likelihood minus penalty for large parameters

o 5
arg mvgaxz In P(y’|x?, w) — AZwi

J
W/\'LIII‘M X vegu lc_v{‘z‘-h‘%

Biases towards small parameter values
m Naive Bayes regularization [ﬁhwﬂ\?)
Prior_over likelihood of features

Biases away from zero probability outcomes

m Decision tree regularization

Many possibilities, e.g., Chi-Square test and MaxPvalue parameter

Biases towards smaller trees
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How do we pick magic parameter?

Cross Validat]

prede  wsq X el

Ain Linea}/Llogistic Regregsion
(analogously for # virtual examples in Naive Bayes,
MaxPvalue in Decision Trees)
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Regularization and Baxﬁsmn learning
Kaeior \\)u,\\ prior S g i
| /\/ﬁ/\/\/—\ l"“""”"ﬁ‘?ls;{&\
p(w | Y,X) o« P(Y | X, w)p(w) | PM=g o)
N PIWIDY) = comshotr [N PLYIUW) % Loy plw) [ o228
m We already saw that regularization foml‘7lP

oz

ogisticw>

regression corresponds to MAP for zero mean, = = =
Gaussian prior forw — v4gwleripife = Plevcing o
Piem o\,
/\V']ga‘wi.s

m Similar interpretation for other learning approaches:
Linear regression: Also zero mean, Gaussian prior for w
Naive Bayes: Directly defined as prior over parameters (St

1"—\_9)
Decision trees: Trickier to define... but we’ll get back to this

©2005-2007 Carlos Guestrin 21

Occam’s Razor
"
= William of Ockham (1285-1349) Principle of Parsimony:

“One should not increase, beyond what is necessary, the number of
entities required to explain anything.”

Regularization penalizes for “complex explanations”

Alternatively (but pretty much the same), use Minimum

Description Length (MDL) Principle: Y ""“’w‘;,“:ffh,(w
minimize length(misclassificati Wlength(hypothesis)
Z ‘i. N\ Size A’ffu

“llnﬂ'l‘:

T :‘\lll\l - )‘; mell;(H-U ’M‘
. e MMy .
Iength(m|scIaSS|f|cat|onsjk: e.g., #wrong training examples
length(hypothesis) — e.g., size of decision tree
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Minimum Description Length Principle
“ JEE
m MDL prefers small hypothesis that fit data well:
hMDL = arg mhin Lcl(D ’ h) + ch(h)
4 \ [MTL‘\ (‘\3

Lc,(Dlh) — description length of data under code C, given h
= Only need to describe points that h doesn’t explain (classify correctly)

Lc,(h) — description length of hypothesis h
m Decision tree example

Lc,(Dh) — #hits required to describe data given h
= If all points correctly classified, L.,(Dlh) =0

Lc,(h) — #bits necessary to encode tree

Trade off quality of classification with tree size
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Bayesian interpretation of MDL Principle

\Lﬂ[,/\ P"ﬂh

" /\/l‘,—'f’( /

m MAP estimate haap = argmax|[P(D | h)P(h)]
Fa kbt h

o, = argmax [logs P(D | h) + logs P(h)]
Qrpaxt = — h
~rymin-§ = argmin [—logy P(D | k) — logs P(h)
h

m Information theory fact:
Smallest code for event of probability p requires —log,p bits
—_————

= MDL interpretation of MAP: /J(k'mk, ooo-d Jus
-log, P(D]h) — length of D under hypothes?s h' & lvi‘f)fk?‘:tﬁvxf‘wma%
-log, P(h) — length of hypothesis h (there is hidden parameter here)

MAP prefers simpler hypothesis: MAD 1§ o 36 DL
"= minimize length(misclassifications) + length(hypothesis)

m In general, Bayesian approach usually looks for simpler
hypothesis — Acts as a regularizer
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What you need to know about Model Selection,

Regularization and Cross Validation
* J
m Cross validation
(Mostly) Unbiased estimate of true error
LOOCV is great, but hard to compute
k-fold much more practical
Use for selecting parameter values!
m Model selection
Search for a model with low cross validation error
m Regularization
Penalizes for complex models
Select parameter with cross validation
Really a Bayesian approach
m Minimum description length

Information theoretic interpretation of regularization
Relationship to MAP
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Logistic regression

"
m P(Y|X) represented by: oA

1 4 e~ (wotd;wizs)

= g(wo + ) w;)
m Learning rule — MLE: g

o ok LW - . :
Tike T sadi - pord =110, w))

¢ j

vvk\'j J i

(1) 4, > 757 rehon
Wi — witn) o b /10
J /

&7 = o —glwo+ > wil)
7
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Sigmoid
“ JEE

1
1+ e—(wo+2; wiz;)

g(wo + Z wix;) =

Wy=2, w;=1 wy=0, w;=1 wy=0, w;=0.5
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Perceptron as a graph
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Linear perceptron

classification region
" JEE—

zzzzzz

1
(O 5 olwo 2 wits) = T ok
7 1L

&
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Optimizing the perceptron
" JE
m Trained to minirr{lize sum-squared err Sg e
(W) = S 3 - glwo+ 3 wid)
I 1

B \ -
7 feudly  PYEichion
0(6-47\ rra'mﬂ"s
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Derivative of sigmoid
* JJE

W) — 3 — gwo+ Nwah)] o oo + Y wid)
7 7 ? ¢
g(z) = 1_|_le—:1:
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The perceptron learning rule
" JE

w; <— wz—l—nz;):‘f&?
J

¥ = [y - glwo+ > wig)lg’ (1 - ¢")

¢ = glwo+> wl)

m Compare to MLE:

_ _ 757 :
w; < wg‘F”?ng‘S 5 = [yj—g(w0+zwi$}z)]
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Percepton, linear classification,
Boolean functions
" SN

m Can learn x; V X,

m Can learn x; A X,

m Can learn any conjunction or disjunction
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Percepton, linear classification,
_ Boolean functions
S

m Can learn majority

m Can perceptrons do everything?

34
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Going beyond linear classification

" JEE
m Solving the XOR problem
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Hidden layer
" A
m Perceptron: out(x) = g(wo+ ) wiz;)

m 1-hidden layer:
out(x) = g (wo + > wrg(w + Y wi"azi))
k i
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Example data for NN with hidden layer

A target function:

| Input Output
[10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
| 00000001 — 00000001

Can this be learned??

UZUUD-2uU L Lanus Guesun 37

Learned weights for hidden layer
"

A network:

Learned hidden layer representation:

Input Hidden Output |
Values

10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 .97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001 ag
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NN for images
"SI

left strt rght up

ﬂ-
v -_
w

Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces

39
Weights in NN for images
]
left stlt rht up Learned Weights
Typical input images
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