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Linear classifiers — Which line igﬁbetter’?
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Pick the one with the largest margin!
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Maximize the margin
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But there are a many planes...
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Review: Normal to a plane
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Normalized margin — Canonical
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Normalized margin — Canonical

hyperplanes
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Margin maximization using .
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Support vector machines (SVMs)
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Announcements

" J
m Third homework out later today
m This one is shorter!!!l ;)

m Due on Monday March 5th

m No late days allowed
SO we can give solutions before midterm
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What if the data is not linearly

] segarable?
Use features of features

+ of features of features....
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What if the data is still not linearly

] segarable?

minimizey ;, WwW.w
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T 0/1 loss

Slack penalty C

Not QP anymore

Also doesn’t distinguish near misses
and really bad mistakes
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Slack variables — Hinge loss
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Side note: What's the difference between

SVMs and logistic regression?
" J

SVM: Logistic regression:
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What about multiple classes?
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One against All

6 o Learn 3 classifiers:
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Learn 1 classifier: Multiclass SVM

" J
Simultaneously learn 3 sets of weights
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Learn 1 classifier: Multiclass SVM
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What you need to know
" A
m Maximizing margin
m Derivation of SVM formulation
m Slack variables and hinge loss

m Relationship between SVMs and logistic regression
0/1 loss
Hinge loss
Log loss

m Tackling multiple class

One against All
Multiclass SVMs
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