
©2005-2007 Carlos Guestrin
1

Markov Decision
Processes (MDPs)
Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

May 2nd, 2007



2

©2005-2007 Carlos Guestrin

Joint Decision Space

 State space:
 Joint state x of entire system

 Action space:
 Joint action a= {a1,…, an} for all agents

 Reward function:
 Total reward R(x,a)

 sometimes reward can depend on action

 Transition model:
 Dynamics of the entire system P(x’|x,a)

Markov Decision Process (MDP) Representation:



3

©2005-2007 Carlos Guestrin

Policy

Policy: π(x) = a
At state x,

action a for all
agents

π(x0) = both peasants get wood
x0

π(x1) = one peasant builds 
barrack, other gets gold 

x1

π(x2) = peasants get gold, 
footmen attack

x2



4

©2005-2007 Carlos Guestrin

Computing the value of a policy
Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) + 

γ3 R(x3) + γ4 R(x4) + L]
 Discounted value of a state:

 value of starting from x0 and continuing with policy π from then on

 A recursion!



5

©2005-2007 Carlos Guestrin

Solving an MDP

 Policy iteration [Howard ‘60, Bellman ‘57]

 Value iteration [Bellman ‘57]

 Linear programming [Manne ‘60]

 …

Solve
Bellman
equation

Optimal
value V*(x)

Optimal
policy π*(x)

Many algorithms solve the Bellman equations:

! ""
+=

'

)'(),|'(),(max)(
x

a

xaxxaxx VPRV #

Bellman equation is non-linear!!!



6

©2005-2007 Carlos Guestrin

Value iteration (a.k.a. dynamic programming) –
the simplest of all

 Start with some guess V0

 Iteratively say:


 Stop when ||Vt+1-Vt||1 · ε
 means that ||V∗-Vt+1||1 · ε/(1-γ)

! ""
+=

'

)'(),|'(),(max)(
x

a

xaxxaxx VPRV #

!+=+

'

1 )'(),|'(),(max)(
x

a

xaxxaxx
tt
VPRV "



7

©2005-2007 Carlos Guestrin

Policy iteration – Another approach for
computing π*

 Start with some guess for a policy π0

 Iteratively say:
 evaluate policy:

 improve policy:

 Stop when
 policy stops changing

 usually happens in about 10 iterations
 or ||Vt+1-Vt||1 · ε

 means that ||V∗-Vt+1||1 · ε/(1-γ)

!+=+

'

1 )'(),|'(),(max)(
x

a

xaxxaxx
tt
VPR "#

! =+==
'

)'())(,|'())(,()(
x

xxaxxxaxx
tttt
VPRV "#"



8

©2005-2007 Carlos Guestrin

Policy Iteration & Value Iteration:
Which is best ???
It depends.

Lots of actions?  Choose Policy Iteration
Already got a fair policy? Policy Iteration
Few actions, acyclic?   Value Iteration

Best of Both Worlds:
Modified Policy Iteration   [Puterman]

…a simple mix of value iteration and policy iteration

3rd Approach

Linear Programming



9

©2005-2007 Carlos Guestrin

LP Solution to MDP
Value computed by linear programming:

 One variable  V (x)  for each state
 One constraint for each state x and action a
 Polynomial time solution

[Manne ‘60]

  :subject to

:minimize



 ≥

∑

,∀ ax

x

)(xV

)(xV )(xV

,∀ ax
)(xV !+

'

)'(),|'(),(
x

xaxxax VPR "



10

©2005-2007 Carlos Guestrin

What you need to know

 What’s a Markov decision process
 state, actions, transitions, rewards
 a policy
 value function for a policy

 computing Vπ

 Optimal value function and optimal policy
 Bellman equation

 Solving Bellman equation
 with value iteration, policy iteration and linear

programming



©2005-2007 Carlos Guestrin
11

Reinforcement
Learning
Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

May 2nd, 2007



12

©2005-2007 Carlos Guestrin

The Reinforcement Learning task

World: You are in state 34.
Your immediate reward is 3.  You have possible 3 actions.

Robot: I’ll take action 2.
World:   You are in state 77.

Your immediate reward is -7.  You have possible 2 actions.

Robot:   I’ll take action 1.
World: You’re in state 34 (again).

Your immediate reward is 3.  You have possible 3 actions.



13

©2005-2007 Carlos Guestrin

Formalizing the (online)
reinforcement learning problem

 Given a set of states X and actions A
 in some versions of the problem size of X and A unknown

 Interact with world at each time step t:
 world gives state xt and reward rt

 you give next action at

 Goal: (quickly) learn policy that (approximately)
maximizes long-term expected discounted reward



14

©2005-2007 Carlos Guestrin

The “Credit Assignment” Problem

Yippee!  I got to a state with a big reward!  But which of my
actions along the way actually helped me get there??
This is the Credit Assignment problem.

“   = 100,“    “     “   26,
   “     = 2“      = 0,“    “     “   54,
   “     = 2“      = 0,“    “     “   13,
   “     = 1“      = 0,“    “     “   21,
   “     = 1“      = 0,“    “     “   21,
   “     = 1“      = 0,“    “     “   22,
   “     = 4“      = 0,“    “     “   39,
action = 2reward = 0,I’m in state 43,



15

©2005-2007 Carlos Guestrin

Exploration-Exploitation tradeoff

 You have visited part of the state
space and found a reward of 100
 is this the best I can hope for???

 Exploitation: should I stick with
what I know and find a good
policy w.r.t. this knowledge?
 at the risk of missing out on some

large reward somewhere
 Exploration: should I look for a

region with more reward?
 at the risk of wasting my time or

collecting a lot of negative reward



16

©2005-2007 Carlos Guestrin

Two main reinforcement learning
approaches

 Model-based approaches:
 explore environment ! learn model (P(x’|x,a) and R(x,a))

(almost) everywhere
 use model to plan policy, MDP-style
 approach leads to strongest theoretical results
 works quite well in practice when state space is manageable

 Model-free approach:
 don’t learn a model ! learn value function or policy directly
 leads to weaker theoretical results
 often works well when state space is large



©2005-2007 Carlos Guestrin
17

Rmax – A model-
based approach



18

©2005-2007 Carlos Guestrin

Given a dataset – learn model

 Dataset:

 Learn reward function:
 R(x,a)

 Learn transition model:
 P(x’|x,a)

Given data, learn (MDP) Representation:



19

©2005-2007 Carlos Guestrin

Some challenges in model-based RL 1:
Planning with insufficient information
 Model-based approach:

 estimate R(x,a) & P(x’|x,a)
 obtain policy by value or policy iteration, or linear programming
 No credit assignment problem ! learning model, planning algorithm takes care of

“assigning” credit
 What do you plug in when you don’t have enough information about a state?

 don’t reward at a particular state
 plug in smallest reward (Rmin)?
 plug in largest reward (Rmax)?

 don’t know a particular transition probability?



20

©2005-2007 Carlos Guestrin

Some challenges in model-based RL 2:
Exploration-Exploitation tradeoff

 A state may be very hard to reach
 waste a lot of time trying to learn rewards and

transitions for this state
 after a much effort, state may be useless

 A strong advantage of a model-based approach:
 you know which states estimate for rewards and

transitions are bad
 can (try) to plan to reach these states
 have a good estimate of how long it takes to get there



21

©2005-2007 Carlos Guestrin

A surprisingly simple approach for model
based RL – The Rmax algorithm [Brafman & Tennenholtz]

 Optimism in the face of uncertainty!!!!
 heuristic shown to be useful long before theory was done

(e.g., Kaelbling ’90)
 If you don’t know reward for a particular state-action

pair, set it to Rmax!!!

 If you don’t know the transition probabilities
P(x’|x,a) from some some state action pair x,a
assume you go to a magic, fairytale new state x0!!!
 R(x0,a) = Rmax

 P(x0|x0,a) = 1



22

©2005-2007 Carlos Guestrin

Understanding Rmax

 With Rmax you either:
 explore – visit a state-action

pair you don’t know much
about

 because it seems to have lots of
potential

 exploit – spend all your time
on known states

 even if unknown states were
amazingly good, it’s not worth it

 Note: you never know if you
are exploring or exploiting!!!



23

©2005-2007 Carlos Guestrin

Implicit Exploration-Exploitation Lemma

 Lemma: every T time steps, either:
 Exploits: achieves near-optimal reward for these T-steps, or
 Explores: with high probability, the agent visits an unknown

state-action pair
 learns a little about an unknown state

 T is related to mixing time of Markov chain defined by MDP
 time it takes to (approximately) forget where you started



24

©2005-2007 Carlos Guestrin

The Rmax algorithm

 Initialization:
 Add state x0 to MDP
 R(x,a) = Rmax, ∀x,a
 P(x0|x,a) = 1, ∀x,a
 all states (except for x0) are unknown

 Repeat
 obtain policy for current MDP and Execute policy

 for any visited state-action pair, set reward function to appropriate value

 if visited some state-action pair x,a enough times to estimate P(x’|x,a)
 update transition probs. P(x’|x,a) for x,a using MLE
 recompute policy



25

©2005-2007 Carlos Guestrin

Visit enough times to estimate P(x’|x,a)?

 How many times are enough?
 use Chernoff Bound!

 Chernoff Bound:
 X1,…,Xn are i.i.d. Bernoulli trials with prob. θ
  P(|1/n ∑i Xi - θ| > ε) ≤ exp{-2nε2}



26

©2005-2007 Carlos Guestrin

Putting it all together

 Theorem: With prob. at least 1-δ, Rmax will reach a
ε-optimal policy in time polynomial in: num. states,
num. actions, T, 1/ε, 1/δ
 Every T steps:

 achieve near optimal reward (great!), or
 visit an unknown state-action pair ! num. states and actions is

finite, so can’t take too long before all states are known



27

©2005-2007 Carlos Guestrin

Problems with model-based approach

 If state space is large
 transition matrix is very large!
 requires many visits to declare a state as know

 Hard to do “approximate” learning with large
state spaces
 some options exist, though



©2005-2007 Carlos Guestrin
28

TD-Learning and
Q-learning – Model-
free approaches



29

©2005-2007 Carlos Guestrin

Value of Policy

Value: Vπ(x)
Expected long-
term reward

starting from x

Start 
from x0

x0

R(x0)

π(x0)

Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) +
γ3 R(x3) + γ4 R(x4) + L]

Future rewards 
discounted by γ 2 [0,1)x1

R(x1)

   x1’’

 x1’
R(x1’)

R(x1’’)

π(x1)

x2

R(x2)

π(x2)

x3

R(x3)

π(x3)
x4

R(x4)

π(x1’)

π(x1’’)



30

©2005-2007 Carlos Guestrin

A simple monte-carlo policy evaluation

 Estimate Vπ(x), start several trajectories from x !
Vπ(x) is average reward from these trajectories
  Hoeffding’s inequality tells you how many you need
 discounted reward ! don’t have to run each trajectory

forever to get reward estimate



31

©2005-2007 Carlos Guestrin

Problems with monte-carlo approach

 Resets: assumes you can restart process from
same state many times

 Wasteful: same trajectory can be used to
estimate many states



32

©2005-2007 Carlos Guestrin

Reusing trajectories

 Value determination:

 Expressed as an expectation over next states:

 Initialize value function (zeros, at random,…)
 Idea 1: Observe a transition: xt !xt+1,rt+1, approximate expec. with single sample:

 unbiased!!
 but a very bad estimate!!!



33

©2005-2007 Carlos Guestrin

Simple fix: Temporal Difference
(TD) Learning [Sutton ’84]

 Idea 2: Observe a transition: xt !xt+1,rt+1, approximate expectation by mixture of
new sample with old estimate:

  α>0 is learning rate



34

©2005-2007 Carlos Guestrin

TD converges (can take a long time!!!)

 Theorem: TD converges in the limit (with prob. 1), if:
 every state is visited infinitely often
 Learning rate decays just so:

  ∑i=1
1 αi = 1

  ∑i=1
1 αi

2 < 1



35

©2005-2007 Carlos Guestrin

Using TD for Control

 TD converges to value of current policy πt

 Policy improvement:

 TD for control:
 run T steps of TD
 compute a policy improvement step

!+=+

'

1 )'(),|'(),(max)(
x

a

xaxxaxx
tt
VPR "#

! =+==
'

)'())(,|'())(,()(
x

xxaxxxaxx
tttt
VPRV "#"



36

©2005-2007 Carlos Guestrin

Problems with TD

 How can we do the policy improvement step if
we don’t have the model?

 TD is an on-policy approach: execute policy πt
trying to learn Vt
 must visit all states infinitely often
 What if policy doesn’t visit some states???

!+=+

'

1 )'(),|'(),(max)(
x

a

xaxxaxx
tt
VPR "#



37

©2005-2007 Carlos Guestrin

Another model-free RL approach:
Q-learning [Watkins & Dayan ’92]

 Simple modification to TD

 Learns optimal value function (and policy), not
just value of fixed policy

 Solution (almost) independent of policy you
execute!



38

©2005-2007 Carlos Guestrin

Recall Value Iteration

 Value iteration:

 Or:

 Writing in terms of Q-function:

!+=+

'

1 )'(),|'(),(max)(
x

a

xaxxaxx
tt
VPRV "

!+=+

'

1 )'(),|'(),(),(
x

xaxxaxax tt VPRQ "

),(max)( 11 axx
a

++ = tt QV

!+=+

'
'

1 )','(max),|'(),(),(
x

a

axaxxaxax tt QPRQ "



39

©2005-2007 Carlos Guestrin

Q-learning

 Observe a transition: xt,at !xt+1,rt+1, approximate expectation by mixture of new
sample with old estimate:
 transition now from state-action pair to next state and reward

  α>0 is learning rate

!+=+

'
'

1 )','(max),|'(),(),(
x

a

axaxxaxax tt QPRQ "



40

©2005-2007 Carlos Guestrin

Q-learning convergence
 Under same conditions as TD, Q-learning converges to optimal value function Q*

 Can run any policy, as long as policy visits every state-action pair infinitely often
 Typical policies (non of these address Exploration-Exploitation tradeoff)

  ε-greedy:
 with prob. (1-ε) take greedy action:

 with prob. ε take an action at (uniformly) random
 Boltzmann (softmax) policy:



 K – “temperature” parameter, K!0, as t!1

),(maxarg axa

a

tt Q=

!
"
#

$
%
&

'
K

Q
P t

t

),(
exp)|(

ax
xa



41

©2005-2007 Carlos Guestrin

The curse of dimensionality:
A significant challenge in MDPs and RL

 MDPs and RL are polynomial in number of states and
actions

 Consider a game with n units (e.g., peasants, footmen,
etc.)
 How many states?
 How many actions?

 Complexity is exponential in the number of variables
used to define state!!!



42

©2005-2007 Carlos Guestrin

Addressing the curse!

 Some solutions for the curse of dimensionality:
 Learning the value function: mapping from state-

action pairs to values (real numbers)
 A regression problem!

 Learning a policy: mapping from states to actions
 A classification problem!

 Use many of the ideas you learned this
semester:
 linear regression, SVMs, decision trees, neural

networks, Bayes nets, etc.!!!



43

©2005-2007 Carlos Guestrin

What you need to know about RL

 A model-based approach:
 address exploration-exploitation tradeoff and credit

assignment problem
 the R-max algorithm

 A model-free approach:
 never needs to learn transition model and reward function
 TD-learning
 Q-learning



©2005-2007 Carlos Guestrin
44

Closing….
Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

May 2nd, 2007



45

©2005-2007 Carlos Guestrin

Announcements

 Project:
 Poster session: Friday May 4th 2-5pm, NSH Atrium

 please arrive a 15mins early to set up
 Paper: Thursday May 10th by 2pm

 electronic submission by email to instructors list
 maximum of 8 pages, NIPS format
 no late days allowed

 FCEs!!!!
 Please, please, please, please, please, please give us your

feedback, it helps us improve the class! 
 http://www.cmu.edu/fce



46

©2005-2007 Carlos Guestrin

What you have learned this
semester
 Learning is function approximation
 Point estimation
 Regression
 Discriminative v. Generative learning
 Naïve Bayes
 Logistic regression
 Bias-Variance tradeoff
 Neural nets
 Decision trees
 Cross validation
 Boosting
 Instance-based learning
 SVMs
 Kernel trick
 PAC learning
 VC dimension
 Margin bounds
 Bayes nets

 representation, inference, parameter and structure learning
 HMMs

 representation, inference, learning
 K-means
 EM
 Semi-supervised learning
 Feature selection, dimensionality reduction, PCA
 MDPs
 Reinforcement learning



47

©2005-2007 Carlos Guestrin

BIG PICTURE

 Improving the performance at some task though experience!!! 
 before you start any learning task, remember the fundamental questions:

What is the 
learning problem?

From what
experience?

What loss function
are you optimizing?

With what 
optimization algorithm?

What model?

Which learning
algorithm?

With what 
guarantees?

How will you 
evaluate it?



48

©2005-2007 Carlos Guestrin

What next?
 Machine Learning Lunch talks: http://www.cs.cmu.edu/~learning/
 Intelligence Seminars: http://www.cs.cmu.edu/~iseminar/

 Journal:
 JMLR – Journal of Machine Learning Research (free, on the web)

 Conferences:
 ICML: International Conference on Machine Learning
 NIPS: Neural Information Processing Systems
 COLT: Computational Learning Theory
 UAI: Uncertainty in AI
 AIStats: intersection of Statistics and AI
 Also AAAI, IJCAI and others

 Some MLD courses:
 10-708 Probabilistic Graphical Models (Fall)
 10-705 Intermediate Statistics (Fall)
 11-762 Language and Statistics II (Fall)
 10-702 Statistical Foundations of Machine Learning (Spring)
 10-70? Optimization (Spring)
 …


